Using CloudSat observations to evaluate cloud top heights from convection parameterization


Article PDF :

Veiw Full Text PDF

Article type :

Original article

Author :

Guang Jun Zhang, Mingcheng Wang

Volume :

2

Issue :

2

Abstract :

How high convective clouds can go is of great importance to climate. Cloud ice and liquid water that detrain near the top of convective cores are important for the formation of anvil clouds and thus impact cloud radiative forcing and the Earth’s radiation budget. This study uses CloudSat observations to evaluate convective cloud top heights in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM5). Results show that convective cloud top heights in the tropics are much lower than observed by CloudSat, by more than 2 km on average. Temperature and moisture anomalies from climatological means are composited for convective clouds of different heights for both observations and model simulation. It is found that convective environment is warmer and moister, and the anomalies are larger for clouds of higher tops. For a given convective cloud top height, the corresponding atmosphere in CAM5 is more convectively unstable than what the CloudSat observations indicate, suggesting that there is too much entrainment into convective clouds in the model.

Keyword :

CloudSat; cloud top heights; satellite data
Journals Insights Open Access Journal Filmy Knowledge Hanuman Devotee Avtarit Wiki In Hindi Multiple Choice GK