Abstract :
Oral Squamous Cell Carcinoma (OSCC) is a highly aggressive tumor with a poor prognosis and is most frequent histological neoplasm of head and neck cancers, and although it is localized in a region that is accessible to see and can be detected very early, this usually does not occur. The standard procedure for the diagnosis of oral cancer is based on histopathological examination, however, the main problem in this kind of procedure is tumor heterogeneity where a subjective component of the examination could directly impact patient-specific treatment intervention. AI can precisely analyze a vast dataset of various imaging modalities, such as fluorescent, hyperspectral, cytological, histological, radiological, endoscopic, clinical, and infrared thermal modalities. In this review, we discuss digital histopathological image analysis, computer vision and radiological analysis for the early detection of OSCC.
Keyword :
Artificial intelligence, Oral squamous cell carcinoma, Histopathological images, Radiological analysis, Computer vision.