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ABSTRACT : This article deals with the estimation of population mean under simple random sampling
using a new form of ratio estimator. The expression for mean square error and bias has been obtained.
An efficiency comparison is considered for proposed estimator with the classical ratio, product  and
exponential ratio estimator. Finally an empirical study is also carried out to judge the performance of
proposed estimator.
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INTRODUCTION :

In sampling it is a well known fact that the proper
use of auxiliary information supplied by auxiliary variable
improves the efficiency of the estimators of population
parameters of the study variable. Ratio estimation is one
such example where this criterion is fulfilled. Ratio
estimators are used for estimation of population mean
when study variable and auxiliary variable are highly
correlated with each other.  Early historical developments
of the ratio method of estimation are being well presented
by, Sen (1993). Some of the modified ratio estimators
given by Cochran (1977); Murthy (1967); Prasad (1989);
Sen (1993); Singh and Tailor (2003 and 2005); Upadhyaya
and Singh (1999); Yan and Tian (2010) and Jeelani and
Maqbool (2013) are available in literature.
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Suggested estimator:
In this section we suggest a new ratio estimator by
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adapting an exponential estimator given by, Bahl and Tuteja
(1991). The suggested ratio estimator will take the form
as given below;

E(BT)E(BT)E(BT)(MIJ)E y)-(1y)]y(–y[yy  (1)

where, E(BT)y is the exponential estimator proposed

by, Bahl and Tuteja (1991) and is as follows;
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Also in equ. (1)  is is a constant such that the

mean square error of the proposed estimator E(MIJ)y  is

minimized.

Estimation of bias and mean square error of the
suggested estimator :

For calculation of bias and mean square error of
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Applying Taylor series expansion and expectations
on equ. (1), we can have the Bias and MSE of the
proposed estimator in the following steps;
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Applying the value of K in equ. (6), the above
equation changes to ;
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Utilizing the equ. (7), the Bias of proposed estimator
will be;
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Now the MSE of E(MIJ)y  will take the following form;

}xψ--{ηYY-)y(MSE 0(MIJ)E  (10)

where

2
1

Utilizing the value of  in equ. (10), we have;
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Again by using Taylor series expansion and taking
expectations and squaring on both sides in equ. (11) then

the MSE of E(MIJ)y  will be
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The optimum value of to minimize the mean square

error of equ. (1) can be easily found as;
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Now recalling the equ. (1) and applying * in it in

place of such that the MSE of E(MIJ)y is minimum in

place of.

Then the MSE ( E(MIJ)y ) will be
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The mean square error of (15) will tend to mean
square error of (16) by replacing in (1) by, then the
mean square error of (16) will be ;
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As we know the classical ratio, product and
exponential estimator given by, Bahl and Tuteja (1991)
for population mean Y and there mean square errors by
applying Taylor’s first degree expansion are as follows;
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For efficiency comparison we have;
The MSE of (17) will be less than MSE of (18),

(19) and (20) if and only if
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Empirical study :
For empirical study two natural populations where

considered from Singh and Chaudhary (1986) and
Cochran (1997). The population parameters and the
constants computed from the above populations are given
Table 1. The efficiency comparison is given in Table 2.

Conclusion :
From theoretical discussion and numerical example,

we infer that the proposed estimator is more efficient
than the classical ratio, product estimator and the
exponential ratio estimator given by, Bahl and Tuteja
(1991), as the efficiency of the proposed estimator is
much higher than the efficiencies of the classical ratio,

Table 1 : Parameters of the population
Parameters

Populations N n Y X yx Sy Cy Sx Cx

Singh and Chaudhary (1986) 22 5 22.62 1467.54 0.92 33.04 1.46 2562.14 1.74

Cochran (1997) 49 20 116.16 98.67 0.69 98.82 0.85 102.97 1.04

Table 2 : Relative efficiency comparison
Estimators

)y( r )y( pr )BT(Ey )MIJ(Ey

Singh and Chaudhary (1986) 180.63 167.13 210.13 286.41

Cochran (1997) 128.27 110.56 166.32 212.19
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product estimator and the exponential ratio estimator
given by, Bahl and Tuteja (1991). Hence, we strongly
recommend that the proposed modified estimator may
be preferred over the classical ratio, product estimator
and the exponential ratio estimator given by, Bahl and
Tuteja (1991)for the use of practical applications.
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