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ABSTRACT : In this paper we studied Bayesian aspect of small area estimation using Area level
model.  We proposed and evaluated new prior distribution for the area level model, for the variance
component rather than uniform  prior. The proposed model is implemented using the MCMC method
for fully Bayesian inference. Laplace approximation is used to obtain accurate approximations to the
posterior moments. We apply the proposed model to the analysis of horticultural data and results from
the model are compared with frequestist approach and with Bayesian model of uniform prior in terms
of average relative bias, average squared relative bias and average absolute bias. The numerical
results obtained highlighted the superiority of using the proposed prior over the uniform prior.
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INTRODUCTION :

Model-based small area estimation methods have
been widely used in practice due to the increasing demand
for precise estimates for local regions and various small
areas. It is now generally accepted that the indirect
estimates should be based on explicit models that provide
links to related areas through the use of supplementary
data such as census counts or administrative records;
see, for example (Rao, 2003 and Jiang and Lahiri, 2006)
for more discussion on model-based small area methods.
Also, (Adam et al., 2013) summarise the main
methodological approaches to SAE and their linkages.
(Jiango et al., 2013) investigate two new approaches:
one relying on the work of Chambers, and the second
using the concept of conditional bias to measure the
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influence of units in the population. (Chambers et al.,
2014) proposed two different analytical mean-squared
error estimators for the ensuing bias-corrected outlier
robust estimators. (Rao et al., 2013) they relaxed the
assumption of linear regression for the fixed part of the
model and replace it by a weaker assumption of a semi-
parametric regression. The model-based estimates are
obtained to improve the direct design-based estimates in
terms of precision and reliability, i.e., smaller co-efficients
of variation (CVs). There are two broad classifications
for small area models: area level models and unit level
models. Area level models are based on area direct survey
estimates and unit level models are based on individual
observations in small areas. In this paper we focus on
area level models that borrow strength across regions to
improve the direct survey estimates. Among the area
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level models, the Fay-Herriot model (Fay and Herriot,
1979) is a basic and widely used area level model in
practice to obtain reliable model-based estimates for small
areas. The Fay-Herriot model basically has two
components, namely, a sampling model for the direct
estimates and a linking model for the parameters of
interest.

The objective of this paper is to consider new
improved prior on hyperparameters of variance
component A of Area Level model and illustrate the
usefulness of this models through an application to
horticultural survey data. The paper is organized as
follows. In section 2, we first study area level models
including EBLUP estimators of area level model. Then
in section 3 we propose Bayesian formulation of area
level model with new prior for variance component A
and obtain HB inference for small area parameters
through the MCMC method using Laplace approximation.
In section 4, we apply the proposed model to the analysis
of small area data from the Horticultural Survey. We
compare the performance the proposed model i.e.
hierarchical Bayes estimate with the proposed prior
(HB

LL
) with the hierarchical Bayes estimate with uniform

prior and EBLUP estimates to investigate the effects of
incorporating new prior on the area-specific random
effects. Bayesian model comparison and model fit analysis
are also provided. Finally in section 5, we offer some
concluding remarks.

Area level model:
A basic area level model assumes that the small

area parameter of interest 
i
 is related to area specific

auxiliary data x
i
through a linear model:

m1,2,...,i,vβxθ i
T
ii                          ....(1)

where m is the number of small areas,  
p

’is p x 1 vector of regression co-efficients Further,
the V

i
’S are area-specific random effects assumed to

be independent and identically distributed (iid) with E
m

(v
i
) =0, V

m
 (v

i
)= A (> 0). Where E

m
 denotes the model

expectation and V
m
 the model variance. This assumption

can be denoted as v
i
~ iid (0, A). Normality of the random

effect v
i
 may also be included. The parameter A is a

measure of homogeneity of the areas after accounting
for the covariates x

i
. The area level model assumes that

there exists a direct survey estimator y
i
 for the small

area parameter 
i
 such that :

yi = i+ ei ,         i=1,2,...,m                                  ......(2)

where, the e
i
 is the sampling error associated with

the direct estimator y
i
. We also assume that the e

i
’s are

independent normal random variables with mean Ep (e
i
 |


i
 ) = 0 and sampling variance V

p
 (e

i
 |

i
 ) = D

i
 , it is also

customary to assume that sampling variances D
i
 are

known.

EBLUP estimators of area level model :
For the basic area level model defined above in

section (2) the BLUP estimator of 
i
 is given as :

)βx(θγβxθ '
iii

'
ii

~~~
  = βx)γ(1θγ '

iiii

~
                   ....(3)

where,

i
i DA

Aγ


  and 







 








 



A)(D/θxA)(D /xxβ iii

1

i
'
ii

~

The BLUP estimator is dependent on the variance
component A. However, replacing A with an

asymptotically consistent estimator Â  yields a two stage

estimator. This estimator iθ̂  is called empirical BLUP or

EBLUP (Jiang and Lahiri, 2006). It will remain
approximately unbiased provided the distribution of v

i
  and

e
i
 are both symmetrical. This EBLUP estimator of 

i
 is

given as:

βx)γ(1θγθ '
iiiii
ˆˆˆˆ                                     .....(4)

where, iγ̂  and iβ̂  are the values of 
i
and 

i
 when AA

is replaced by Â . The MSE of the BLUP estimator iθ
~

can be obtained from the general results of MSE of mixed
effects model or by direct calculation. It is given by :

(A)g(A)g)θθ(E)θ(MSE 2i1i
2

iii 
~~          .......(5)

where,

ii
i

i
1i Dγ

AD

AD
(A)g 


  and i

1m

1i
i

'
ii

'
i

2
i2i xA/(Dxxx)γ(1(A)g



 



  .(6)

The second order MSE approximation i.e. EBLUP
estimate of iθ

~  is :

(A)g(A)g(A)g)θ(MSE 3i2i1ii ˆ                       ......(7)

where,

)A(VA)(DD(A)g 3
i

2
i3i

ˆ                                  ......(8)

Now regarding the estimation of MSE ( iθ
~ ) the

estimator of MSE is given by:

)A(2g)A(g)A(g)θ(mse 3i2i1ii
ˆˆˆˆ                 .....(9)

Bayesian formulation of area level model :
The area level model, extensively used in the small
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area estimation literature, consists of two levels. In Level
1, a sampling model captures the sampling variability of
the regular survey estimates y

i
 of true small area means


i
 . In Level 2, a linking model relates the true small area

means 
i
 to a p x 1 vector of known covariates x

i
 ,

m1,2,...,iA),β,N(x~Aβ,|θ '
ii                    .... (10)

In the above model,  is a p x 1 vector of unknown
regression co-efficients and A is an unknown variance
component. The sampling variances, D

i
’s are assumed

to be known, though in practice they are estimated by
some suitable method.

In the Bayesian analysis, 
i
 is estimated by its

posterior mean E (
i
| y) and the associated uncertainity

is measured by the posterior variance, V ( 
i
| y). In small

area estimation, usually the main objective is to draw
inferences about the high-dimensional parameters, i.e.


i
. However, as an intermediate step, estimation of the

low-dimensional parameters  and A, usually referred to
as hyperparameters, is also of importance. In the
Bayesian implementation of the area level model, a prior
distribution, often a vague or noninformative prior, is
assumed on the hyperparameters. i.e.

p (A)1; (,A) Rp x [1,]       .....(11)
The prior distribution (11) for the hyperparameters

is simple to interpret and is often recommended. The
uniform prior for A is non-informative and yields a
posterior distribution of A for which the mode is identical
to the residual maximum likelihood (REML) estimator of
A  (Harville, 1977 and Berger, 1985).

When the hyperparameters  and A are known, the
posterior distribution of 

i
is normal with mean and

variance given by:

βxB)yB(1β)A,y,|(θE '
iiiii                .....(12)

)B(1DB)A,,y|θV( iiii                                   .....(13)

where, )D(A

D
B

i

i
i 
  is the shrinkage factor which

shrinks the direct estimates to a regression surface. Note
that the right hand side of (12) is essentially the best
predictor (BP) of 

i
 , being the conditional mean of 

i
 ,

given data, assuming known hyperparameters. Under the
Bayesian approach, to estimate 

i
 along with a reliable

measure of precision, we need to obtain E ( 
i
| y) and V

(
i
| y) . To this end, we first find the conditional posterior

distribution of, given A, and then the posterior distribution
of A.

When A is known, the uniform prior on  in Rp, the

p-dimensional real space, yields the following posterior
distributions for  and 

i
 :

],βN[~Ay,|β AA ˆ                       ....(14)

]xxB)B(1D,βxB)yBN[(1~A,y|θ iA
'
i

2
iiiA

'
iiiiii  ˆ   ....(15)

where, 1
A

'
AA

''1
A

'
A X)W(Xy),W(XX)W(Xβ  ˆ  with WW

A
=

diag [1/(A+D
i
)], X is the m x p matrix of area-level

covariates and y is the m x 1  vector of small area direct

estimates. The subscript A in both
Aβ̂  and WW

A
 indicates

the dependence of the terms on A. In practice, the
variance component A is unknown. In an empirical best
linear unbiased prediction (EBLUP) or empirical Bayes
approach, no prior distribution is assumed on the variance
component A, which is estimated using some suitable
classical method. Three most common methods of
variance component estimation are widely used in the
small area estimation. These are analysis of variance
(ANOVA, Prasad and Rao, 1990), the method of
moments (Fay and Herriot, 1979; Pfeffermann and
Nathan, 1981 and Datta et al., 2005) and likelihood-based
method. All of these methods can produce unreasonable
estimate of A i.e. they can produce negative or zero

estimate of A for a given data set. When 0A ˆ , we come
up with several unreasonable implications on the
estimators and its measure of uncertainty (Bell, 1999).
That is why we intend to implement our proposed
Bayesian model, which involves new prior on A, starting
from the choice p(A)=A|X’WAX|1/2 by simple approximations,
motivated from the application of Laplace’s method to
ratio of integrals. To this end, note that for the balanced

case i.e. when the sampling variances are equal i)D,(Di  ,
we have:

][0,A,
D)(A

A
p(A) p/2 


 

Our choice of prior for the unequal variance case is
heuristically motivated by the equal sampling variance
case. If we replace D

i
, i =1,...m by a particular

representative value d
0
 (say, the median of D

i
) W

A
 in

and then p(A) becomes ][0,A,
)d(A

|XX|
p/2

0

1/2





. Simplifying it

further, we obtain

][0,A,
)d(A

A
(A)p

p/2
0

LL 


                             .....(16)

Note that the prior proposed in (16) does not depend
on the individual sampling variance, Di unlike (Datta et
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al., 2005). We use the notation P
LL

(A) for this prior, since
it is motivated from the adjustment term given by (Li and
Lahiri, 2008).

The posterior moments of 
i
 and 

i
 under the priors

described above, are not in a closed-form, but can be
obtained either by numerical integration or by Monte Carlo
Markov Chain (MCMC) method (Spiegelhalter et
al.,1997). We have written a programme, using the
R2JAGS package in R (R Development Core Team,
2008), that allows the hierarchical Bayes analysis for our
new prior using the MCMC method the codes for the
model are given in the introduction chapter. But its slow
computation speed does not permit its evaluation by
repeated use in simulation. Thus, for convenient
implementation and evaluation of our hierarchical Bayes
method, we approximate the posterior moments of

i
 and


i
 using Laplace’s method.

Laplace approximation :
Laplace’s method is a technique of classical applied

mathematics and very useful for asymptotic evaluation
of integrals. This remarkable method provides accurate
approximations to the posterior means and variances of
any real function of parameter vector  in Bayesian
analysis. Posterior moments can be expressed as ratio
of integrals and the application of Laplace’s method to
ratio of integrals leads to accurate approximation for the
posterior moments. This method has been applied by many
authors in the context of Bayesian analysis (Tierney and
Kadane, 1986; Tierney et al., 1989; Kass and Staffey,
1989; Butar and Lahiri, 2002 and Datta et al., 2005).
Following (Kass and Staffey, 1989) the first order
approximation to the posterior mean and variance of
under the area level model described above in section-2
is given by:

A
'
iiiiii βxB)yB(1A)y,|E(θ(A)g ˆ                   .......(17)

and

iA
'
i

2
iiiii xxB)B(1DA)y,|V(θ(A)h                ......(18)

Using iterative expectation technique on E( 
i
| y

i
, ),

we write the first order approximation to the posterior
mean 

i
of as:

)O(m)Ay,|E(θy}|(A)E{gy)|E(θ 1
iii

 ˆ              ......(19)

Using similar iterative expectation and variance
technique on V( 

i
| y

i
, A) , the first order approximation to

the posterior variance can be written as:

y}|(A)V{gy}|(A)E{hy)|V(θ iii 

  







 


 )O(m

i

1
A)}y,|(θ{E)O(m)Ay,|V(θ 2

0

2
AAi

'1
i ˆ

ˆ   ....(20)

  )O(my)|V(BuxD(Aβxy

xxB)B(1D

1
i

2

AA
'
iiA

'
ii

iA
'
i

2
iii


 



ˆ

ˆ

ˆ

ˆ

....(21)

where,
iβ̂  and A

Σ ˆ  are 
i
 and AΣ  evaluated at

A
β

u;A A





ˆˆ  . The first order approximation of the posterior

variance given by (21) has three clearly defined terms.
The first term, T

1
 = D

i
 (1-B

i
), measures the uncertainty

in the model for estimating 
i
 , the second term, T

2
 =

iA
'
i

2
i xxB ˆ

ˆ   , measures the uncertainty in the estimation of

 and the third term,

T3=
  )(mOy)|V(BuxD(Aβxy

1
i

2

A A

'
iiA

'
ii


  ˆ

ˆ
,

accounts for the uncertainty in estimating A. In many
applications, the third term is quite small and often ignored
(Bell, 1999).  Kass and Staffey (1989) emphasized the
importance of the third term in their data analysis. They
considered the standard form for the first order Laplace
approximation under a similar kind of model as area level
model, but with uniform prior for the variance component,
under the label CIHM (conditionally independent
hierarchical models).

Numerical illustration:
In this section, we compare frequentist and

Bayesian approaches with our proposed Bayesian
method. The conceptual difference between a frequentist
and a Bayesian analysis are avoided by studying the
frequentist properties of the estimators under two
approaches. The frequentist properties of estimators are
derived from the distribution of the estimators under
repeated simulations of observations following the
statistical model with known hyperparameters. We
investigate the small sample (m = 12) frequentist
properties of our proposed prior p

LL
 (A) in estimating A,

B
i
 and 

i
, i=1,...,m, using a Monte Carlo simulation study.

In the tables, we denote the hierarchical Bayes methods
resulting from p

LL
 (A) by HB

LL
. This is generic and is

used for estimation of any parameter. The hierarchical
Bayes methods are approximated using the Laplace
approximation already discussed. For inference about the
small area means 

i
we compare our Bayesian estimator
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with empirical best linear unbiased predictors using
REML and Heirarchical Bayes (uniform gamma prior)
estimators of A. The values of D

i
 are assumed to be

know for all 12 small area. They are actually obtained as
variances of direct estimator.

Data collected through pilot survey conducted by
the Division of Agri-Statistics on estimation of area and
yield of apple in district Baramulla has been used for the
purpose of our proposed small area estimation. The district
Baramulla comprises of 12 blocks viz., Zanigeer, Boniyar,
Tangmarg, Wagoora, Sopore, Baramulla, Uri, Pattan,
Rohama, Singphora, Rafiabad and Kunzer. Each block
consists of different number of villages. A fixed number
of five villages were selected at random from each block
by simple random sampling. The data set was named
apple-1 for analysis and modeling in R/SAS software’s.
It has 61 rows and 7 columns. The columns names are
blocks, N, n, yield, area, trees, actual yield for names of
blocks, total number of villages in each block, number of
villages selected from each block, yield of apple from
each selected village in metric tons, area under apple
orchards and total number of apple trees in each of the
selected village, actual yield obtained as per census
records. This data set has been used for unit level
estimation.

Comparison of different estimators :
The performance of different estimators is examined

from the accuracy of the point estimates. This is
considered through the relative bias and absolute relative
bias of different estimators. The different estimators are
compared according to four different criteria
recommended by the panel on small area estimates of
population and income set up by the United States
committee on National Statistics (1978); Datta et al.
(2002) and Ghosh et al. (1996). We compare different
estimators on the basis of average relative bias, average
squared relative bias, average absolute bias and average
squared deviation. Suppose act

i
 denotes the true value

of the variable for the ith small area and est
i
 is any

estimate of act
i
 i=1,2,...,m. Then average relative bias:







m

1i i

ii

act

actest

m

1
ARB

average squared relative bias:
2

m

1i i

ii

act

actest

m

1
ASRB  







 




average absolute bias:

 


m

1i
ii actest

m

1
AAB

average squared deviation :

 
2m

1i
ii actest

m

1
ASD  



Now using the above four criteria on the apple data
set already discussed in chapter-1. A Comparison of HB
estimates using proposed prior with EBLUP estimates
and HB estimates with uniform prior is made using above
discussed four different criteria and is reported in Table
1.

It is clear from the Table 1 that hierarchical Bayes
estimate with the proposed prior i.e. HB

LL
 performed

significantly better than the hierarchical Bayes estimate
with uniform prior and EBLUP estimates in terms of all
the four criterion. This motivates us to argue that our
proposed prior is superior even in the cases where the
standard hierarchical Bayes estimate with uniform prior
seems appropriate. Also the average relative error is 2.51
p e r  c e n t  w i t h  H B

LL
compared to 3.53 per cent for HB

and 4.71 per cent for EBLUP.
Now an empirical comparison of EBLUP and HB

estimates with uniform and proposed prior for all the small
areas separately are made using per cent absolute relative
bias (ARB) and absolute bias (AB) and the results are
depicted in Table 2.

From the values in the Table 2 it is evident that HB
LL

appears to be a good compromise as it exhibits smaller
errors and a lower incidence of extreme error than either
of the HB or EBLUP estimates.  Thus it can be concluded
that in terms of ARB  and AB the performance of the
HB

LL
 is the best.
Fig.1 shows the comparison of the values of per

cent relative bias and absolute bias for EBLUP,

Table 1 : Comparison estimates using different criteria
 Criteria

Estimates
ARB ASRB ABS ASD

EBLUP 0.047 0.0051 78.34 16444.12

HB 0.0353 0.0037 62.59 12517.53

LLHB 0.0251 0.0029 47.42 9642.63
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Table 2: Empirical comparison of estimators

EBLUP HB HBLL
Estimators

Small areas ARB AB ARB AB ARB AB

1 0.79 23.72 0.51 15.31 0.24 7.25

2 1.20 8.13 0.55 3.85 0.28 1.95

3 2.18 12.57 0.77 4.43 0.14 0.81

4 2.32 20.25 1.41 12.33 0.10 0.9

5 4.23 155.43 3.64 133.99 2.37 87.14

6 3.37 24.04 1.83 13.01 0.06 0.41

7 3.37 18.76 1.10 6.83 0.07 0.433

8 16.81 285.17 13.50 228.96 12.27 208.06

9 16.33 293.04 15.57 279.34 14.18 254.43

10 2.08 36.25 1.57 27.39 0.29 4.99

11 2.00 48.11 0.76 18.3 0.11 2.53

12 2.23 14.58 1.12 7.33 0.02 0.1
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Fig. 1 : Comparison of per cent average relative bias and absolute bias for EBLUP, HB and HBLL

hierarchical Bayes and proposed Heirarchical Bayes
(HB

LL
).

Fig.1 plots the values of  per cent ARB and AB of
EBLUP, hierarchical Bayes and proposed Heirarchical
Bayes against small areas. Significant disparity is observed
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Table 3 : MSE of estimators of variance components

 Estimators
Small areas

EBLUP HB LLHB

1 6381.78 5919.82 5128.00

2 631.16 552.19 506.88

3 158.44 128.81 109.52

4 118.45 95.21 82.64

5 10394.80 8848.25 7931.26

6 60.03 30.05 20.19

7 145.26 110.61 95.82

8 1578.17 1265.80 1080.61

9 312.97 208.01 165.87

10 783.00 700.00 650.18

11 1099.67 995.87 806.51

12 148.28 134.21 108.31

Table 4 : EBLUP and HB estimates and associated standard errors

EBLUP HB LLHB Actual valueEstimators
Small areas Estimate S.E Estimate S.E Estimate S.E Yield

1 3030.52 79.14 3022.11 76.28 3014.05 70.91 3006.8

2 690.81 25.04 695.09 23.45 696.96 22.40 698.94

3 563.97 12.5 572.11 11.34 575.73 10.46 576.54

4 854.19 10.87 862.11 9.75 873.54 9.09 874.44

5 3521.17 99.22 3542.61 88.57 3589.46 81.43 3676.6

6 736.84 7.71 725.81 5.48 713.21 5.01 712.8

7 639.94 12.02 628.01 10.51 621.613 9.78 621.18

8 1981.31 35.80 1925.10 34.14 1904.20 31.31 1696.14

9 1501.70 9.22 1515.35 8.37 1540.30 8.11 1794.74

10 1777.11 27.77 1768.25 26.45 1745.85 25.49 1740.86

11 2355.29 32.46 2385.10 31.39 2405.93 28.39 2403.4

12 638.62 12.17 645.87 11.58 653.10 10.40 653.2

among the three estimators. HB
LL

 performed better by
providing the lowest value of both per cent ARB and AB
for each of the small areas compared EBLUP and
hierarchical Bayes.

Mean square error (MSE) of estimators of variance
components for 12 small areas are reported below in
Table 3.

From the Table 3 it is clear that on the basis of MSE
the performance of HB

LL
 is better than EBLUP and HB

for all the small areas. Or in other word we can
emphatically say that the HB

LL
 is the best technique than

the other two. The value of mse obtained by HB
LL

 is as

low as 28.19, compared to 30.05 and 60.03 in HB and
EBLUP, respectively.

Table 4 reports the EBLUP, HB and HB
LL

 estimates
and their associated standard errors for all the 12 small
areas separately.  It is clear from the table that HB

LL

estimates are better than HB and EBLUP estimates. In
terms of standard error also HB

LL
 performed better than

the HB and EBLUP estimates for all the 12 small areas.
Also we can see from the results that the estimates of
the yield obtained by HB

LL
 technique are very much closer

to the actual value of yield obtained.
Fig.2  plots the  point estimates of 

i
 against the

Hierarchical bayes small area estimation under an area level model with applications to horticultural survey data

215-223



HIND AGRICULTURAL RESEARCH AND TRAINING INSTITUTE
Internat. Res. J. Agric. Eco.& Stat., 9 (1) Mar., 2018 :222

Compasion of EBLUP, HB and HB
LL

 with actual value

Small areas
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Fig. 2 : EBLUP, HB and HBLL estimates compared to the true
mea ns

30
00

Table 5 : Relative contribution of the three terms to the posterior variance of iθ  using prior )(APLL  on A

Small areas )( 1
1

1 igT )( 2
2

2 igT )( 3
3

3 igT

1 4678.13 160.58 125.85

2 504.15 0.5500 1.10

3 108.85 0.0054 0.1031

4 81.64 0.0075 0.0571

5 6851.22 521.01 281.34

6 24.85 0.0023 0.0147

7 94.82 0.0066 0.0768

8 1030.61 15.18 17.59

9 164.55 0.0322 0.0601

10 643.11 1.95 2.70

11 785.10 5.44 5.01

12 106.31 0.0066 0.0900
1

Uncertainty in the model in estimating i
2

Uncertainty in estimating co-efficient 
3

Uncertainty in model in estimating the variance component A

small areas and also provides a comparison of these
values with the actual value of yield obtained in each of
the small area.

Fig.2 displays EBLUP, HB and HB
LL

 estimates and
their deviation from the actual mean. Here we can see
that the values of 

i
 obtained by HB

LL
are more closer to

actual values as compared to HB and EBLUP. Thus, for
the plot also we conclude that among the three techniques
discussed the HB

LL
 is the best technique for obtaining

the estimates.
Table 5 repots the relative contribution of the three

terms to the posterior variance of 
i
 obtained using the

prior p
LL

(A). The three columns T
1
, T

2
, T

3
 exhibits the

relative contribution of term1, term 2, term 3, respectively.
From the values in the table we conclude that the
contribution of the term which accounts for the
uncertainty in estimating the variance component is
substantially small relative to the first term which accounts
for the uncertainty in the model in estimating the small
area means.

Conclusion:
In this paper Bayesian implementation of area

level model is carried out and new prior is proposed
on the variance component A. Besides being simple,
this prior has two main advantages. It removes the
possibility of yielding zero estimates for the variance
component; the popular choice of uniform prior on A
suffers from this drawback if posterior mode is
considered as an estimator. This prior also enjoys good
small sample frequentist properties; real agricultural
study results justify this conclusion. Also, in order to
have closed form expressions of the posterior mean
and variance of the true small area mean, Laplace
approximation to ratio of integrals, following Kass and
Steffey (1989) is being used. To illustrate the method
numerically a real data set on apple has been used
and the results showed that the Bayes estimators (with
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new prior) of small area means have good frequentist
properties such as MSE and ARB as compared to
other traditional methods viz., Direct, Synthetic and
Composite estimators.
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