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ABSTRACT : In this paper we studied Bayesian aspect of small area estimation using Area level
model. We proposed and evaluated new prior distribution for the arealevel model, for the variance
component rather than uniform prior. The proposed model isimplemented using the M CM C method
for fully Bayesian inference. Laplace approximation is used to obtain accurate approximationsto the
posterior moments. We apply the proposed model to the analysisof horticultural dataand resultsfrom
the model are compared with frequestist approach and with Bayesian model of uniform prior in terms
of average relative bias, average squared relative bias and average absolute bias. The numerical
results obtained highlighted the superiority of using the proposed prior over the uniform prior.
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area estimation under an arealevel model with applicationsto horticultural survey data. Internat. Res. J. Agric.
Eco. & Sat., 9 (1) : 215-223, DOI : 10.15740/HAS/IIRJAES/9.1/215-223.

INTRODUCTION :

Model-based small area estimation methods have
beenwidely used in practice dueto theincreasing demand
for precise estimatesfor local regionsand various small
areas. It is now generally accepted that the indirect
estimates should be based on explicit model sthat provide
links to related areas through the use of supplementary
data such as census counts or administrative records;
see, for example (Rao, 2003 and Jiang and L ahiri, 2006)
for more discussion on model-based small areamethods.
Also, (Adam et al., 2013) summarise the main
methodological approaches to SAE and their linkages.
(Jiango et al., 2013) investigate two new approaches:
one relying on the work of Chambers, and the second
using the concept of conditional bias to measure the

influence of units in the population. (Chambers et al.,
2014) proposed two different analytical mean-squared
error estimators for the ensuing bias-corrected outlier
robust estimators. (Rao et al., 2013) they relaxed the
assumption of linear regression for the fixed part of the
model and replace it by aweaker assumption of a semi-
parametric regression. The model-based estimates are
obtained to improve thedirect design-based estimatesin
termsof precisonand reliability, i.e., smdler co-efficients
of variation (CVs). There are two broad classifications
for small area models: area level models and unit level
models. Arealevel modelsare based on areadirect survey
estimates and unit level models are based on individual
observations in small areas. In this paper we focus on
arealevel modelsthat borrow strength acrossregionsto
improve the direct survey estimates. Among the area

HIND AGRICULTURAL RESEARCH AND TRAINING INSTITUTE




Nageena Nazir, S. A. Mir and M. Igba Jeelani

level models, the Fay-Herriot model (Fay and Herriot,
1979) is a basic and widely used area level model in
practiceto obtain reliable modd -based estimatesfor small
areas. The Fay-Herriot model basically has two
components, namely, a sampling model for the direct
estimates and a linking model for the parameters of
interest.

The objective of this paper is to consider new
improved prior on hyperparameters of variance
component A of Area Level model and illustrate the
usefulness of this models through an application to
horticultural survey data. The paper is organized as
follows. In section 2, we first study area level models
including EBLUP estimators of arealevel model. Then
in section 3 we propose Bayesian formulation of area
level model with new prior for variance component A
and obtain HB inference for small area parameters
through theM CM C method using L apl ace approximation.
In section 4, we apply the proposed model to theanaysis
of small area data from the Horticultural Survey. We
compare the performance the proposed model i.e.
hierarchical Bayes estimate with the proposed prior
(HB_,) withthehierarchical Bayesestimatewith uniform
prior and EBLUP estimates to investigate the effects of
incorporating new prior on the area-specific random
effects. Bayesian model comparison and model fitanalysis
are also provided. Finally in section 5, we offer some
concluding remarks.

Area level model:

A basic area level model assumes that the small
area parameter of interest 0, is related to area specific
auxiliary datax, through alinear model:

0, =x;Bp+Vv;,i=12,..,m (1)

where m is the number of small areas, = (B,
Bz,...,Bp)'ispx 1 vector of regress on co-€fficients Further,
the V'S are area-specific random effects assumed to
be independent and identically distributed (iid) withE_
(v) =0,V _ (v)=A (= 0). Where E_ denotes the model
expectationand V_ themodel variance. Thisassumption
can bedenoted asv, ~iid (0,A). Normality of therandom
effect v. may also be included. The parameter A is a
measure of homogeneity of the areas after accounting
for the covariates x, . The arealevel model assumesthat
there exists a direct survey estimator y, for the small
area parameter 0, such that :

y =qg+e, i=12,..,m .. 2
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where, the e isthe sampling error associated with
the direct estimator y,. We also assume that the ’s are
independent normal random variableswithmean Ep (g |
0,) =0 and sampling varianceVp (e]6,)=D,,itisaso
customary to assume that sampling variances D, are
known.

EBLUP estimators of area level moded :
For the basic area level model defined above in
section (2) the BLUP estimator of 0, isgiven as:
0,=x, B+v, (0, X, B) = 7,0, +(1-7,)x; -(3)
where,

i " -
Yi:A"‘Di and E{zxi x;a’{l)i+,:\)} {inﬂif(l)ﬁA]J

The BLUP estimator is dependent on the variance
component A. However, replacing A with an
asymptotically consistent estimator A yieldsatwo stage
estimator. Thisestimator ¢, iscalled empirical BLUPor

EBLUP (Jiang and Lahiri, 2006). It will remain

approximately unbiased provided thedistribution of v, and

e are both symmetrical. This EBLUP estimator of 6, is
givenas:

6'. =% 0; +(|—';'i)x;[5 """ (4)

where, 7, and p, are the values of y,and 3, when A

isreplaced by A . The MSE of the BLUP estimator §,

can be obtained fromthe general resultsof M SE of mixed
effectsmodel or by direct calculation. It isgiven by :

MSE(D)=E(®,-0)' =g, (A)+gx(A) oo ©)
where,
AD, . ¥
gi(A)= D, +!.-’\ =1iD; and g.(4) =1 Ti)zx;[iaxixif{ui t A} X (6)

The second order M SE approximationi.e. EBLUP
estimate of s, is:

MSE@)=g,(A)+gy(A)gs(A) e (7)
where,
g (A=DID A VY (8)

Now regarding the estimation of MSE (s, ) the
estimator of MSE isgiven by:

mse (0,)=g,(A)+g,(A)+28,(A) ... 9)

Bayesian formulation of area level model :
Thearealevel model, extensively used in the small
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areaestimation literature, consistsof twolevels. InLevel
1, asampling model capturesthe sampling variability of
the regular survey estimatesy, of true small areameans
0,.InLevel 2, alinking model relatesthetrue small area
means 0, to ap x 1 vector of known covariates x; ,

0, | B, A ~N(xp,A), i=1,2,..,m ... (10)

In the above model, B isap x 1 vector of unknown
regression co-efficients and A is an unknown variance
component. The sampling variances, D,’s are assumed
to be known, though in practice they are estimated by
some suitable method.

In the Bayesian analysis, 0, is estimated by its
posterior mean E (6, | y) and the associated uncertainity
ismeasured by the posterior variance, V (0,|y). Insmall
area estimation, usually the main objective is to draw
inferences about the high-dimensiona parameters, i.e.
0,. However, as an intermediate step, estimation of the
low-dimensional parameters3 and A, usually referredto
as hyperparameters, is also of importance. In the
Bayesianimplementation of the arealevel model, aprior
distribution, often a vague or noninformative prior, is
assumed on the hyperparameters. i.e.

p(bA)al bATRX[LY] ... (1)

Theprior distribution (11) for the hyperparameters
is simple to interpret and is often recommended. The
uniform prior for A is non-informative and yields a
posterior distribution of A for which themodeisidentical
totheresidua maximumlikelihood (REML) estimator of
A (Harville, 1977 and Berger, 1985).

When the hyperparameters 3 and A are known, the
posterior distribution of 0, is normal with mean and
variance given by:

E®; |y, AB)=(1-B)y, +Bxp ... (12)

V(| y;»AB)=D,(1-B)
(A+D;)
shrinksthedirect estimatesto aregression surface. Note
that the right hand side of (12) is essentially the best
predictor (BP) of 0, , being the conditional mean of 0, ,
given data, assuming known hyperparameters. Under the
Bayesian approach, to estimate 0, along with areliable
measure of precision, we need to obtain E (0, |y) and V
(0,]y) . Tothisend, wefirst find the conditional posterior
digtributionof 3, givenA, and thenthe posterior digtribution
of A.

When A isknown, the uniform prior on 3 in RP, the

where, Bi= is the shrinkage factor which

p-dimensional real space, yieldsthe following posterior
distributionsfor g and 0, :

BlY.A~NIB,. X, -(14)

0, |y, A~N[(1-B,)y; + BxB,.D,(1-B,) + B’x, Y, x| ----(15)

Where’ ';.-\ :(xl“'l.-\x) |(x-‘“,.:\“_,)‘£:\ :{XI“J.-\X) ! Wlth WA:
diag [/(A+D)], X is the m x p matrix of area-level
covariatesandy isthemx 1 vector of small areadirect

estimates. The subscript A in both g, and W, indicates

the dependence of the terms on A. In practice, the
variance component A is unknown. In an empirical best
linear unbiased prediction (EBLUP) or empirical Bayes
approach, no prior distributionisassumed on the variance
component A, which is estimated using some suitable
classical method. Three most common methods of
variance component estimation are widely used in the
small area estimation. These are analysis of variance
(ANOVA, Prasad and Rao, 1990), the method of
moments (Fay and Herriot, 1979; Pfeffermann and
Nathan, 1981 and Dattaet al ., 2005) and likelihood-based
method. All of these methods can produce unreasonable
estimate of A i.e. they can produce negative or zero

estimate of A for agiven dataset. When A-¢, we come

up with several unreasonable implications on the
estimators and its measure of uncertainty (Bell, 1999).
That is why we intend to implement our proposed
Bayesian model, which involvesnew prior onA, starting
from the choice p(a)=Apx'w, x|z by simple approximations,
motivated from the application of Laplace’s method to
ratio of integrals. To thisend, note that for the balanced

casei.e. whenthe sampling variancesareequal (D =D, i),
we have:

P(A) sAs[0,]

A
P
(A+Dy"?

Our choice of prior for theunequal variance caseis
heuristically motivated by the equal sampling variance
case. If we replace D, i =1,...m by a particular
representative value d; (say, the median of D) W, in

| " |l.'3

and then p(A) becomes Aelo], Simplifying it

(A+d,)"
further, we obtain
A & v
T GYES Wa-‘\ €0 (16)

Notethat the prior proposed in (16) does not depend
ontheindividual sampling variance, Di unlike (Datta et
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al., 2005). Weusethenotation P, (A) for thisprior, since
itismotivated from the adjustment term given by (Li and
Lahiri, 2008).

The posterior momentsof 3, and 6, under the priors
described above, are not in a closed-form, but can be
obtained either by numerical integration or by Monte Carlo
Markov Chain (MCMC) method (Spiegelhalter et
al.,1997). We have written a programme, using the
R2JAGS package in R (R Development Core Team,
2008), that alowsthe hierarchical Bayesanaysisfor our
new prior using the MCMC method the codes for the
model are givenintheintroduction chapter. But itsslow
computation speed does not permit its evaluation by
repeated use in simulation. Thus, for convenient
implementation and eval uation of our hierarchical Bayes
method, we approximate the posterior moments of 3, and
0, using Laplace’s method.

L aplace approximation :

Laplace’s method is a technique of classical applied
mathematics and very useful for asymptotic evaluation
of integrals. This remarkable method provides accurate
approximations to the posterior means and variances of
any real function of parameter vector 0 in Bayesian
analysis. Posterior moments can be expressed as ratio
of integrals and the application of Laplace’s method to
ratio of integral sleadsto accurate approximation for the
posterior moments. Thismethod hasbeen applied by many
authorsin the context of Bayesian analysis(Tierney and
Kadane, 1986; Tierney et al., 1989; Kass and Staffey,
1989; Butar and Lahiri, 2002 and Datta et al., 2005).
Following (Kass and Staffey, 1989) the first order
approximation to the posterior mean and variance of
under the arealevel model described abovein section-2
isgiven by:

G(A)=EO |y, A)=(1-B)y, +Bxp, o (17)
and
h(A)=VO|y,A)=D,(1-B)+Bx; T, x, . (18)

Using iterative expectation techniqueon E(0,]y,, ),
we write the first order approximation to the posterior
mean 6, of as:

E©,|y)=E{g(A)y}=E@,|y,A)+Om") .. (19)
Using similar iterative expectation and variance

techniqueonV(6,|y,A) , thefirst order approximation to
the posterior variance can be written as:

V(0,|y)=Efh,(A) |y} +V{g,(A) |y}
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. . - ;
[\-"[[lily'.,-\]+0[m ‘)]+ {E [9i|-‘"""]}'\-.ii_+0(“‘ 9 ....(20)
L [

=D;(1- Bi)"‘ﬁizx; Z_'\ X;

X By A D VB, )+ Om (2D

where, g, and t; areb, and x, evaluated at

Aju= ‘;B—A‘ . Thefirst order approximation of the posterior
variance given by (21) has three clearly defined terms.
Thefirstterm, T, = D, (1-B,), measures the uncertainty

in the model for estimating O, , the second term, T, =

fif X, 2., X; , measuresthe uncertainty in the estimation of
3 and the third term,

Ta:{y; X, B+ (A+D; Xu(, V(B |y)+O(m ")

accounts for the uncertainty in estimating A. In many
applications, thethird termisquite small and oftenignored
(Bell, 1999). Kass and Staffey (1989) emphasized the
importance of thethird termintheir dataanalysis. They
considered the standard form for thefirst order Laplace
approximation under asimilar kind of model asarealevel
model, but with uniform prior for the variance component,
under the label CIHM (conditionally independent
hierarchical models).

Numerical illustration:

In this section, we compare frequentist and
Bayesian approaches with our proposed Bayesian
method. The conceptual difference between afrequentist
and a Bayesian analysis are avoided by studying the
frequentist properties of the estimators under two
approaches. Thefrequentist propertiesof estimatorsare
derived from the distribution of the estimators under
repeated simulations of observations following the
statistical model with known hyperparameters. We
investigate the small sample (m = 12) frequentist
properties of our proposed prior p, (A) inestimatingA,
B,and0,i=1,...,m, usingaMonte Carlo simulation study.
In the tables, we denote the hierarchical Bayes methods
resulting from p, (A) by HB . Thisis generic and is
used for estimation of any parameter. The hierarchical
Bayes methods are approximated using the Laplace
approximation aready discussed. For inference about the
small areameans 6, we compare our Bayesian estimator
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with empirical best linear unbiased predictors using
REML and Heirarchical Bayes (uniform gamma prior)
estimators of A. The values of D, are assumed to be
know for all 12 small area. They are actually obtained as
variances of direct estimator.

Data collected through pilot survey conducted by
the Division of Agri-Statistics on estimation of areaand
yield of appleindistrict Baramullahas been used for the
purposeof our proposed small areaestimation. Thedigtrict
Baramullacomprisesof 12 blocksviz., Zanigeer, Boniyar,
Tangmarg, Wagoora, Sopore, Baramulla, Uri, Pattan,
Rohama, Singphora, Rafiabad and Kunzer. Each block
consists of different number of villages. A fixed number
of fivevillageswere selected at random from each block
by simple random sampling. The data set was named
apple-1 for analysis and modeling in R/SAS software’s.
It has 61 rows and 7 columns. The columns names are
blocks, N, n, yield, area, trees, actua yield for names of
blocks, total number of villagesin each block, number of
villages selected from each block, yield of apple from
each selected village in metric tons, area under apple
orchards and total number of apple treesin each of the
selected village, actual yield obtained as per census
records. This data set has been used for unit level
estimation.

Comparison of different estimators :

The performance of different estimatorsisexamined
from the accuracy of the point estimates. This is
considered through therel ative biasand absoluterelative
biasof different estimators. The different estimatorsare
compared according to four different criteria
recommended by the panel on small area estimates of
population and income set up by the United States
committee on National Statistics (1978); Datta et al.
(2002) and Ghosh et al. (1996). We compare different
estimators on the basis of averagerelative bias, average
squared relative bias, average absolute bias and average
squared deviation. Suppose act, denotes the true value
of the variable for the ith small area and est, is any
estimate of act i=1,2,...,m. Then average relative bias:

ARB = %

m i=1

est; — act,

act,

average squared relative bias:

; 1 m
ASRB = — 3
m i-i

\2
est, —act, |

| acty

average absolute bias:
AAB=L E|cs!.i —act|

mi=i
average squared deviation :
ASD :Li{esii acli)z

mi=1

Now using the abovefour criteriaon the apple data
set already discussed in chapter-1. A Comparison of HB
estimates using proposed prior with EBLUP estimates
and HB estimateswith uniform prior is made using above
discussed four different criteriaand isreported in Table
1

Itisclear from the Table 1 that hierarchical Bayes
estimate with the proposed prior i.e. HB performed
significantly better than the hierarchical Bayes estimate
with uniform prior and EBLUP estimatesin terms of all
the four criterion. This motivates us to argue that our
proposed prior is superior even in the cases where the
standard hierarchical Bayes estimate with uniform prior
seems appropriate. Also theaveragerelativeerror is2.51

... .. .. . compared to 3.53 per cent for HB
and 4.71 per cent for EBLUP.

Now an empirical comparison of EBLUP and HB
estimateswith uniform and proposed prior for al thesmall
areas separately are made using per cent absoluterelative
bias (ARB) and absolute bias (AB) and the results are
depictedin Table 2.

FromthevauesintheTable2itisevident that HB
appears to be agood compromise as it exhibits smaller
errorsand alower incidence of extreme error than either
of theHB or EBLUP estimates. Thusit can be concluded
that in terms of ARB and AB the performance of the
HB,, isthe best.

Fig.1 shows the comparison of the values of per
cent relative bias and absolute bias for EBLUP,

Tablel: Comparison estimatesusing different criteria

Criteria

i ARB ASRB ABS ASD

EBLUP 0.047 0.0051 78.34 16444.12
HB 0.0353 0.0037 62.59 12517.53
HB 0.0251 0.0029 47.42 9642.63
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hierarchical Bayes and proposed Heirarchical Bayes Fig.1 plotsthe values of per cent ARB and AB of

(HB, ).

EBLUR, hierarchical Bayes and proposed Heirarchical
Bayesagainst small areas. Significant digparity isobserved

Table2: Empirical comparison of estimators

Estimators EBLUP HB HB..
Small areas ARB AB ARB AB ARB AB
1 0.79 2372 0.51 1531 0.24 7.25
2 1.20 8.13 0.55 3.85 0.28 1.95
3 218 1257 0.77 443 0.14 0.81
4 2.32 20.25 141 12.33 0.10 0.9
5 4.23 155.43 3.64 133.99 2.37 87.14
6 3.37 24.04 1.83 13.01 0.06 0.41
7 3.37 18.76 1.10 6.83 0.07 0.433
8 16.81 285.17 13.50 228.96 12.27 208.06
9 16.33 293.04 15.57 279.34 14.18 254.43
10 2.08 36.25 1.57 27.39 0.29 4.99
11 2.00 48.11 0.76 18.3 0.11 253
12 2.23 14.58 112 7.33 0.02 0.1
Aver age relative bias comparison for EBLUP, heirarchical bayes (HB) and proposed HB
) ~
el © = EBLUP ARB%: | Dist. FroposedHB ARB%-eblupARBY
o — X HEIRARCHICAL BAYES ARB%
.% .| 4 PROPOSED HB ARB%
T
) <
3 :
g ™ i
< L
s * i %
[} — —
=}
s % i A
T T T T T T
2 6 8 10 12
Small areas
Averagerelative bias comparison for EBLUP, heirarchical bayes (HB) and proposed HB
g 8 .
Ko = EBLUP AAB | - Dl*EﬂCE Proposed HB AAB-EBLUP AAB
© - X HEIRARCHICAL AAB i‘ =
= A PROPOSED HB AAB
g 8 |
- N
Q.) —
5
g 8
k]
g B ]
E o - X X X X % x i 2
T T T T T T
2 6 8 10 12
Small areas
Fig. 1 : Comparison of per cent average relative bias and absolute bias for EBLUP, HB and HB,
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among the three estimators. HB | performed better by
providing thelowest value of both per cent ARB and AB
for each of the small areas compared EBLUP and
hierarchical Bayes.

Mean square error (M SE) of estimators of variance
components for 12 small areas are reported below in
Table 3.

FromtheTable 3itisclear that on the basis of MSE
the performance of HB | is better than EBLUP and HB
for all the small areas. Or in other word we can
emphatically say that theHB, | isthe best techniquethan
the other two. The value of mse obtained by HB , isas

low as 28.19, compared to 30.05 and 60.03 in HB and
EBLUP, respectively.

Table4 reportsthe EBLUP, HB and HB | estimates
and their associated standard errors for all the 12 small
areas separately. It is clear from the table that HB |
estimates are better than HB and EBLUP estimates. In
terms of standard error also HB |, performed better than
the HB and EBLUP estimatesfor all the 12 small areas.
Also we can see from the results that the estimates of
theyield obtained by HB, | techniqueare very much closer
totheactual value of yield obtained.

Fig.2 plots the point estimates of 6, against the

Table3: MSE of estimatorsof variance components

R Edtimators EBLUP HB HB |,
1 6381.78 5919.82 5128.00
2 631.16 552.19 506.88
3 158.44 128.81 109.52
4 118.45 95.21 82.64
5 10394.80 8848.25 7931.26
6 60.03 30.05 20.19
7 145.26 110.61 95.82
8 1578.17 1265.80 1080.61
9 312.97 208.01 165.87
10 783.00 700.00 650.18
11 1099.67 995.87 806.51
12 148.28 134.21 108.31
Table4: EBLUP and HB estimates and associated standard errors

Estimators EBLUP HB HB | Actual value
Small aress Estimate SE Estimate SE Estimate SE Yidd
1 3030.52 79.14 3022.11 76.28 3014.05 70.91 3006.8
2 690.81 25.04 695.09 23.45 696.96 22.40 698.94
3 563.97 125 572.11 11.34 575.73 10.46 576.54
4 854.19 10.87 862.11 9.75 873.54 9.09 874.44
5 3521.17 99.22 3542.61 88.57 3589.46 81.43 3676.6
6 736.84 7.71 725.81 5.48 713.21 5.01 712.8
7 639.94 12.02 628.01 10.51 621.613 9.78 621.18
8 1981.31 35.80 1925.10 34.14 1904.20 3131 1696.14
9 1501.70 9.22 1515.35 8.37 1540.30 8.11 1794.74
10 1777.11 27.77 1768.25 26.45 1745.85 25.49 1740.86
11 2355.29 32.46 2385.10 31.39 2405.93 28.39 2403.4
12 638.62 12.17 645.87 11.58 653.10 10.40 653.2
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small areas and aso provides a comparison of these
valueswith the actual value of yield obtained in each of
the small area.

Fig.2displaysEBLUP, HB and HB | estimatesand
their deviation from the actual mean. Here we can see
that the values of 0, obtained by HB, | are more closer to
actual values as compared to HB and EBLUP. Thus, for
the plot a so we conclude that among the three techniques
discussed the HB, | is the best technique for obtaining
the estimates.

Table 5 repots the rel ative contribution of the three

Compasion of EBLUP, HB and HB, , with actual value

Value estimates
500 1000 1500 2000 2500 3000
1

Small areas

Fig. 2: EBLUP, HB and HB , estimates compared to the true
means

terms to the posterior variance of 0, obtained using the
prior p, (A). The three columns T, T, T, exhibits the
relative contribution of term1, term 2, term 3, respectively.
From the values in the table we conclude that the
contribution of the term which accounts for the
uncertainty in estimating the variance component is
substantially small relativeto thefirst term which accounts
for the uncertainty in the model in estimating the small
area means.

Conclusion:

In this paper Bayesian implementation of area
level model is carried out and new prior is proposed
on the variance component A. Besides being simple,
this prior has two main advantages. It removes the
possibility of yielding zero estimatesfor the variance
component; the popular choice of uniform prior on A
suffers from this drawback if posterior mode is
considered asan estimator. Thisprior also enjoys good
small sample frequentist properties; real agricultural
study resultsjustify this conclusion. Also, in order to
have closed form expressions of the posterior mean
and variance of the true small area mean, Laplace
approximation to ratio of integrals, following Kassand
Steffey (1989) isbeing used. Toillustrate the method
numerically a real data set on apple has been used
and the results showed that the Bayes estimators (with

Table 5: Relative contribution of the threetermsto the posterior varianceof 6; using prior P, (A) ONA

Small areas Tll(gil) Tzz(giz) T?,S(gs)
1 4678.13 160.58 125.85
2 504.15 0.5500 1.10
3 108.85 0.0054 0.1031
4 81.64 0.0075 0.0571
5 6851.22 521.01 281.34
6 24.85 0.0023 0.0147
7 94.82 0.0066 0.0768
8 1030.61 15.18 17.59
9 164.55 0.0322 0.0601
10 643.11 195 2.70
11 785.10 544 5.01
12 106.31 0.0066 0.0900

! Uncertainty in the model in estimating d;
2 Uncertainty in estimating co-efficient b

3 Uncertainty in model in estimating the variance component A
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new prior) of small area means have good frequentist
properties such as MSE and ARB as compared to
other traditional methods viz., Direct, Synthetic and
Composite estimators.
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