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ABSTRACT 

Computer methods can now be used on almost every stage of drug development, but the most common areas 

of computers application are virtual screening and lead generation/optimization stages. Accurate prediction of the 

protein-ligand binding affinities is a crucial step in the structure-based drug design approach. Current algorithms and 

tools for binding energy calculation that are used upon the development of new drug candidates with an emphasize 

on underlying principles, advantages and limitations, software and general considerations in the selection of specific 

methods are discussed in the paper. 

Four main classes of currently available physics-based computer methods (molecular docking, end point / 

approximate free energy, relative binding free energy, and absolute binding free energy) are reviewed in details. 

Molecular docking approaches are the method of choice to filter out compounds-nonbinders, but they are not accurate 

enough to predict binding affinity. The end point methods are more physically rigorous and closer to real free energy 

calculations, but they are more computationally-intensive and not predictive for some types of proteins. Relative 

binding free energy methods take into account conformational and entropic contributions, thus offering more 

accurate predictions. However, they have high computational requirements and can be used only to compare related 

ligands or receptors. The extremely computational-dependent method of absolute binding free energy calculation is 

the most powerful approach, giving predictions with good correlations to experimental binding affinities. 

KEY WORDS: Binding Energy, In Silico Tools, Computer-Aided Drug Design, Free Energy Calculation, Ligand 

Binding Thermodynamics. 

1. INTRODUCTION 
Rational structure-based computer-aided modeling of protein-ligand interactions is now a key component in 

modern drug discovery paradigm (Charifson,1997). It is widely accepted that computational methods have played 

an extremely important role in the design process for a growing number of marketed drugs, and in the development 

of new drug candidates (Mobley & Dill 2010). Moreover, by the aid of computer-aided drug design (CADD), the 

cost of drug development could be reduced by up to 50% (Tan, 2010).  

Computer methods can now be used on almost every stage of drug development, but the most common areas 

of computers application are virtual screening and lead generation/optimization stages (Xiang, 2012). Virtual 

screening methods, which are designed for searching large libraries of compounds in silico, are widely used within 

the drug R&D industry and play an indispensable role in modern CADD efforts. These methods usually give a much 

higher hit rate than the traditional high throughput screening (HTS) (Tang, 2006) and the hits from VS appear more 

drug-like than the ones from HTS (Shekhar, 2008). At the same time, there is concern that VS methods may have 

reached a limit in effectiveness (Schneider, 2010). Current virtual screening methods are not very effective in 

selecting molecules that are actually active against the selected target molecule, although they are undoubtedly useful 

in eliminating some inactive compounds (Chodera, 2012). Limitations of the VS methods come from a variety of 

approximations used to allow large numbers of compounds to be screened quickly, often neglecting statistical 

mechanical and chemical effects for computational efficiency (Chodera, 2012), thus leading to the inaccuracies in 

the estimation of protein-ligand binding energy. 

Lead optimization is another crucially important step (Keseru & Makara, 2006) among all of the stages of 

drug discovery process. From the computational side, the key step in lead optimization process is an accurate 

prediction of the protein-ligand binding affinities (Jorgensen, 2009), since it is currently accepted that the biological 

activity of a compound is closely related to the affinity of the compound to macromolecular receptor (Gohlke & 

Klebe, 2002). Unfortunately, available methods for binding affinity estimation do not possess enough balance 

between calculation efficiency and reliability, and in a typical situation the most accurate methods are the most time 

consuming, while the fastest algorithms usually are not very rigorous and accurate (Xiang, 2012). 

In this review we are going to discuss current approaches and tools for binding energy calculation that are 

used upon the development of new drug candidates with an emphasize on underlying principles, advantages and 

limitations, software and general considerations on the selection of specific methods for different users. 

Computational Approaches to Binding Energy Prediction: Currently available physics-based computer methods 

can be grouped in at least four different classes. Below are listed from the fastest to slowest, and from the least 
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physical to most physical (Fig.1) (Mobley & Dill 2010).  

Fast molecular docking methods, including those implemented in common software like Auto Dock, DOCK, 

Glide, FlexX, GOLD etc. 

Approximate free energy / end point methods, in which the motions of protein and solvent are taken into 

consideration with less number of approximations. Such methods as MM-PBSA and MM-GBSA belong to this group 

of methods. 

Relative binding free energy (RBFE) approaches, which include full protein and solvent motions, but which 

require prior knowledge of the similar structure of a complex of the protein with a ligand (‘template’). 

Absolute binding free energy (ABFE) methods, which are the most computationally-expensive, but which 

include the physics in the most rigorous way that is currently achievable (Worth, 2009). Free energy perturbation 

(FEP) algorithm can be classified into this group. 

Below we will discuss and take a closer look at each of the above mentioned groups of methods. 

Molecular Docking: Molecular docking is probably the most popular method used in a structure-based drug design. 

As an illustration it can be mentioned that 88% of drug discovery-related publications for 2008 year cite different 

docking tools (Mobley & Dill, 2010). The term ‘docking’ emerged in the late 1970s, and on that time it was treated 

as a method for refinement of complex structure models through optimization of the relative orientation of fixed 

binding partners (de Ruyck, 2016). At the moment, docking can be defined as a technique aimed at finding the correct 

conformation (so called ‘pose’) of a ligand and its’ receptor. The idea behind this technique is to generate a 

comprehensive set of conformations of the receptor complex, assess them quantitatively, and then to rank them 

according to their stability and affinity (Lopez-vallejo, 2011). 

 
Figure.1. Schematic representation of the available methods for binding energy calculation in computer 

aided drug design 

 It should be noted that reconstruction of the conformational space available in a receptor-ligand complex 

is a sophisticated task, which needs some degree of approximation in order to have adequate computational 

requirements. On the basis of approximation level all methods of docking can be grouped in three categories (Holtje, 

2008), rigid docking – the simplest approach, when both protein and its’ ligand are treated as rigid bodies; semi 

flexible docking – protein treated as a rigid body, while ligand is conformationally flexible; flexible docking – the 

most complex approach, when the conformational flexibility of macromolecule (at least part of it) and ligand is taken 

into account. 

Molecular docking programs use special scoring functions to estimate the binding energetics of the predicted 

ligand-receptor complexes (Ferreira, 2015). Prediction of the binding energy is performed through evaluation of the 

most important physical-chemical phenomena involved in protein-ligand binding, such as intermolecular 

interactions, desolvation and entropic effects. So, it can be said that a greater number of physical-chemical parameters 

corresponds to the greater accuracy of the scoring function (Jain 2006). Unfortunately, computational costs increase 

proportionally to the number of variables, so ideal scoring function should render a balance between accuracy and 

speed (Ferreira, 2015). 

Docking scoring functions are usually classified in three groups: empirical, force field-based, and 

knowledge-based (Kitchen, 2004). 

Empirical scoring functions use different dependencies of properties that are important for ligand binding 

(such as ionic and a polar interactions, hydrogen bonds, desolvation and entropic effects) to construct a complex 

equation predicting energy of protein-ligand binding. A series of protein-ligand complexes with known binding 

affinities is used as a training set to perform a multiple linear regression analysis. Then statistical model generates 

weight constants, which are used as coefficients adjusting the terms of the equation.  

Limitations: high dependence on the quality of initial data used to develop the model; empirical functions are 
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expected to work better for proteins similar to those used in the training group.  

Examples of empirical scoring functions (Ferreira 2015; Li, 2014): Auto Dock Score, Chem PLP, Chem 

Score, Fresno, F_Score, GlideScore-SP/XP, HYDE, Jain, LigScore2, London-dG, LUDI1/LUDI2/LUDI3, SFC 

score, PLP, X_Score. Common software using empirical scoring functions: Auto Dock, FlexX, Glide, Surflex etc. 

Force field-based scoring functions estimate the binding energy by summing the contributions of non-bonded 

(van der Waals and electrostatic interactions described by Lennard-Jones potential and Coulomb law, respectively) 

and bonded (angle bending, bond stretching, dihedral variation) terms in a complex equation. The classical 

mechanics equations are used to calculate the energy related to each of the above mentioned terms. 

Limitations: entropic contribution to the binding energy is not taken into consideration or assessed inaccurately, 

since there is no appropriate physical model to describe it. Moreover, there is a problem with desolvation energy 

estimation because the solvent is not explicitly considered. Large and polar molecules usually get the best score for 

enthalpic interaction (Holtje, 2008). 

Examples of force field-based scoring functions (Ferreira, 2015; Li, 2014): Auto Dock, DOCK, Gold Score, 

ICM, Ligand Fit, Medusa Score, Molegro function, SYBYL G- and D-Score. Common software using empirical 

scoring functions: Auto Dock, DOCK, Gold, Molegro Virtual Docker etc. 

Knowledge-based scoring functions use pairwise energy potentials of known ligand-receptor complexes to 

obtain a master equation. These potentials are formed by taking into account the frequency with which two different 

atoms are found within a given distance in the structural dataset. The different types of interactions observed in the 

dataset are classified and weighted according to their frequency of occurrence. The final score is given as a sum of 

these individual interactions. Solvation and entropic contributions are considered in implicit form. This type of 

scoring functions offers a good balance between accuracy and speed (Gohlke, 2002; Hendlich, Klebe 2000). 

Examples of knowledge-based scoring functions (Ferreira, 2015; Li, 2014): Drug Score, Motif Score, 

PMF_Score, PESD_SVM, Pose Score, RF_Score, SMoG. Common software using knowledge-based scoring 

functions: SYBYL. 

Due to limitations in each group of scoring functions, the simultaneous use of different scoring 

methodologies has been increasingly employed as a way to obtain a consensus scoring (Charifson, 1999). This 

approach is very promising, since such scoring functions combine the advantages and have less limitations of each 

specific method. Although there is evidence that consensus scoring is beneficial (Oda, 2006), in the case of solvated 

and highly flexible macromolecules such functions may not improve accuracy (Englebienne and Moitessier 2009). 

Examples of consensus scoring functions (Ferreira, 2015). CONSENSUS-DOCK, GFscore, MultiScore, SeleX-CS, 

SCS etc. Common software using consensus scoring functions: ConsDock, VoteDock etc. 

Comparative assessment of scoring functions: Due to the popularity of molecular docking methods, many 

comparative assessments of scoring methods have been carried out in the past years (Li 2006; Jaeger, 2005; Humblet 

2009; Skolnick, 2008; Rognan 2004). The most frequently tested software has been DOCK, GLIDE, GOLD, 

FLEXX, and ICM. The most recent and comprehensive assessment of the scoring functions implemented in common 

molecular docking software was performed in 2013 by Li, within the frame of so called ‘critical assessment of scoring 

functions’ (CASF) project (Li, 2014). This project was initiated in 2007, when 16 popular scoring functions were 

tested on 195 diverse protein−ligand complexes from the PDB bind database. Lately, in the CASF-2013, 20 scoring 

functions were tested, including LigScore2, PLP1/PLP2, PMF, Jain, LUDI1/2/3, GoldScore, ChemScore, 

GlideScore-SP/XP, ChemPLP, ASP, G-Score, D-Score, ChemScore, ∆SAS etc. (Li, 2014). These scoring functions 

were tested in four aspects: scoring power (the ability to produce binding scores in a linear correlation with 

experimental binding data), ranking power (the ability to correctly rank the known ligands of the same target protein 

by their binding affinities when the precise binding poses of these ligands are given), docking power (the ability to 

identify the native binding pose among computer- generated decoys), and screening power (the ability to identify the 

true binders to a given target protein among a pool of random molecules) (Li, 2014). 

Briefly, it was shown that scoring functions perform well upon the prediction of native binding pose (two-

thirds of the scoring functions were able to produce success rates over 60%, and few of them – around 80%), but 

have problems with ranking (35-58% success rates) and binding energy estimation (correlation coefficients between 

0.22 and 0.61) of ligands. The following scoring functions were able to rich the correlation coefficient with 

experimentally-determined binding energy more than 0.5: X-Score, ∆SAS, Chem Score, Chem PLP, PLP1,                  

G-SCORE, ASP, ASE, D-SCORE, and Alpha-HB (Li, 2014). 

As a conclusion, it can be said that docking algorithms are not enough accurate to predict binding affinities. 

Typically, they are not able to discriminate between drugs that differ by less than one order of magnitude in affinity 

(by < 6 kJ/mol in ∆Gbind) (Genheden & Ryde 2015). But because of its speed, docking approaches are the method of 

choice to filter out compounds that are likely nonbinders and to identify native-like poses (Mobley & Dill 2010). 

Approximate Free Energy Methods: These methods are based on sampling of the end states only, that is, the 

complex and the free protein and ligand. These methods are therefore called end point methods (Genheden & Ryde 
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2015). The most simple approximate method of binding free energy estimation is the linear-response approximation 

(LRA), in which the electrostatic free energy change is estimated on the basis of electrostatic interaction energy 

between the ligand and the surroundings (protein or solvent), standard simulations of the complex and the ligand, 

and simulations, in which the charges of the ligand have been zeroed (Tao, 2000). This method was used in the past 

to assess solvation free energies, but not binding free energies, since it lacks a non-polar part (Genheden & Ryde 

2015). 

In the 1990s Aqvist, developed more physically robust method on the basis of the LRA, which is currently 

known as linear interaction energy (LIE) method (Samuelsson, 1994). The main consideration of the LIE method is 

that only convergent averages of the interaction energies between the ligand and its surroundings need to be evaluated 

to obtain an estimate of binding free energies (de Amorim, 2008). The master LIE equation is based on the 

electrostatic and van der Waals interaction energies for the ligand, which are calculated from the molecular dynamics 

(MD) or Monte Carlo (MC) simulations. Two separate MD/MC simulations need to be carried out, one with the 

ligand free in solution and one where it is bound to the solvated receptor. Soon after the implementation of LIE 

method, several linear response models for estimation of absolute free energies of binding based on the changes in 

electrostatic and van der Waals energies and size effects were proposed (de Amorim, 2008). 

Schutz and Warshel (2001), have devised a similar algorithm called semi-macroscopic protein-dipoles 

Langevin-dipoles method within a LRA (PDLD/s-LRA/b), in which the polar part is taken from the LRA and the 

non-polar part is calculated from LIE (Tao, 2000). 

The most widespread end point methods currently are molecular mechanics with Poisson-Boltzmann (or 

Generalized Born) and surface area salvation (MM-PBSA / MM-GBSA). These algorithms use a continuum solvent 

model to replace the water by treating it as a continuous medium (implicit solvent model), thus reducing 

computational cost of the original LIE model (de Amorim, 2008). This approach allows us to obtain the average 

solvation properties of water without averaging over the interactions of thousands of real water molecules, which in 

simulations is connected to large fluctuations in solute-solvent and solvent-solvent energies (Aqvist 2006). Ligand-

solvent interaction energies can be calculated accurately through solution of the Poisson–Boltzmann equation, or 

approximately by using the generalized Born theory. Since the generalized Born model is less computationally-

intensive, it is more popular for MD simulations (Khandogin, 2008). Fortunately, a lot of improvements have been 

applied to generalized Born models, and now they are capable of reaching the same level of accuracy as Poisson-

Boltzmann models (Aqvist 2003). These methods have been used in a range of settings, including protein design, 

protein-protein interactions, conformer stability and re-scoring (Genheden & Ryde 2015). 

In MM-PBSA approach, the free energy of a state, that is, P (free protein), L (free ligand) or PL (complex) 

is estimated from the following sum:  

G = Ebond + Eel + EvdW + Gpol + Gnpol – TS, 

Where Ebond, Eel and EvdW are standard molecular mechanics energy terms from bonded, electrostatic and van 

der Waals interactions, Gpol and Gnpol are the polar and non-polar contributions to the salvation free energies. Polar 

term is calculated by solving of Poisson-Boltzmann (MM-PBSA) or generalized Born equation (MM-GBSA), while 

nonpolar term is obtained from a linear relation to the solvent accessible surface area (Genheden & Ryde 2015). The 

methods involve several huge approximations, for example, a questionable entropy, lacking the conformational 

contribution and missing effects from binding-site water molecules. Moreover, the methods often overestimate 

differences between sets of ligands. However, since MM-PBSA & MM-GBSA invest more effort in sampling and 

entropies, they are closer to a true free energy calculation than docking (Mobley & Dill 2010). 

Average free energy of unbound ligand (GL), unbound protein (GP) and the complex (GPL) is usually 

estimated from the separate MD or MC simulations for each of them. This approach is called three-average MM-

PBSA (3A-MM-PBSA). However, it is more common to simulate only the complex (PL) and create the ensemble 

average of the unbound receptor and ligand by simply removing the appropriate atoms; such approach is called one-

average MM-PBSA (1A-MM-PBSA). In a typical scenario, the simulations used to estimate the energy terms employ 

explicit solvent models, but since implicit solvent models (GBSA/PBSA) are used, later all solvent molecules are 

deleted from each trajectory snapshot. It was also suggested that MM-PBSA calculations can be based only on single 

minimized structures instead of a large number of MD/MC-trajectory snapshots (Genheden & Ryde 2015). And in 

practice, minimized structures often give results comparable with those obtained with MD/MC-simulations (Shen, 

2014). At the same time, the results of such calculations are strongly dependent on the starting structure and ignore 

the dynamic effects. 

Software implementation of the MM-PBSA & MM-GBSA methods. The MM-PBSA approach was 

originally developed for the AMBER software, and currently is available for free in the Amber Tools. During the 

past decade, automatic scripts were also created for popular free simulation packages Desmond, NAMD and 

GROMACS, as well as for APBS software (Genheden & Ryde 2015). 

Assessment of the accuracy of end point methods: LIE and MM/PBSA have been compared several times, but the 
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results depend on the tested system. Genheden & Ryde showed that LIE is 2-7 times more efficient than MM-PBSA, 

owing to the time-consuming entropy estimate (Genheden and Ryde 2011). At the same time, MM-PBSA was shown 

to have better overall performance than MM-GBSA (Homeyer, 2014). However, surface generalized Born model 

(SGB) of continuum solvent with LIE algorithm was able to reach high correlation (r2 = 0.72-0.81) with experimental 

binding data (Moro 2007). It is also recommended to use Onufriev, model of GB when exactly MM-GBSA 

calculations should be conducted (Onufriev, 2004). Schutz and Warshel compared the PDLD/s-LRA/b, LIE and 

MM-PBSA methods, and found that the former was the most accurate of them (Schutz, Warshel 2001). MM-PBSA 

was found to be more accurate and less computationally-demanding than LRA (Genheden, Ryde 2012). Upon 

comparison with alchemical perturbation methods, MM-PBSA is comparable (Guimaraes 2011; Laitinen, 2004), 

worse (Gouda, 2003) or even better (Bea, 2001), depending on the study and the system. 

Poor precision is one of the main problems of the MM-PBSA & MM-GBSA methods, thus sometimes 

making them useless upon comparison of ligands with similar affinities. For example, the standard deviation of 

∆Gbind over the 20 snapshots is 47-62 kJ/mol for MM-PBSA method (Genheden & Ryde 2015). MM-PBSA has 

severe convergence problems, requiring many independent simulations to yield a good precision. The problem with 

the precision is usually solved by calculating only interaction energies, studying as many MD-snapshots as possible, 

and using several independent simulations (Genheden & Ryde 2015).  

Generally, the accuracy of end point methods (correlation coefficients compared with experiments of r2 = 

0.0-0.9, depending on the protein) is usually better than for molecular docking, but worse than for alchemical 

perturbation algorithms (Genheden & Ryde 2015). According to an expert opinion of Genhenden & Ryde, end point 

methods (particularly, MM-PBSA) may be useful to improve the results of docking and virtual screening or to 

understand observed affinities and trends. However, they are not accurate enough for later states of predictive drug 

design. 

Relative and Absolute Binding Free Energy Methods: All methods described in previous sections of the paper 

rely upon a variety of approximations, neglecting or considering in a simplified form statistical mechanical and 

chemical effects to increase calculation speed. Free energy methods offer a way to incorporate these effects to 

quantitatively compute accurate binding affinities (Chodera, 2012). Such algorithms as thermodynamic integration 

(TDI) and free energy perturbation (FEP) are usually the most accurate, but are also more time consuming than the 

end point or docking approaches (Homeyer, 2014). These methods are usually called alchemical methods, since 

instead of simulating the binding/unbinding processes directly, which would require a simulation many times the 

lifetime of the complex, the ligand is alchemically transmuted into either another chemical species or a noninteracting 

molecule through intermediate, possibly nonphysical stages (Chodera, 2012). 

Alchemical free energy methods can be used to compute either relative binding affinities (a difference 

between two or more related ligands) or absolute binding affinities (for an individual ligand to a receptor). Free 

energy calculations that use straightforward MD simulations generally suffer from slow exploration along many 

conformational degrees of freedom, which introduces difficult sampling issues for both absolute and relative free 

energy calculations. Absolute free energies cover a much larger dynamic range of binding affinities, so that 

experimental error is a much smaller fraction of this range. Interpretation of failure is also easier, as it is clear which 

compounds differ from experiment; with relative free energies, it is often not clear whether the calculation for one 

or both compounds suffer from pathologies (Chodera, 2012). 

TDI has the advantage that the precision of binding free energy predictions can be increased by subsequently 

including additional intermediate states (Michel & Essex, 2010), so this approach offers the opportunity to start 

calculations at the lower level of precision and only perform sampling where necessary. This is valuable because of 

the inverse relationship between accuracy and required computing time, which requires one to find an optimal 

balance between prediction quality and computational demand (Homeyer, 2014). TDI transformations of one ligand 

into another are usually conducted through simulations at discrete n steps. The free energy difference ∆G for the 

transformation is calculated by integration over the average potential functions of the two states at each n step. To 

determine the difference in the binding free energy ∆∆G between two ligands, transformations are performed for 

both the complex-bound ligands and the solvated ligands. ∆∆G is calculated as the difference between the respective 

free energies: ∆∆G = ∆Gbound – ∆Gsolvated (Homeyer, 2014). 

FEP simulations rooted in statistical mechanics provide an avenue to incorporate missing effects into the 

calculations, e.g., conformational sampling, explicit solvent, and the shift of protonation states upon binding, but 

they generally require extensive computational resources and expertise (Christ, 2010). FEP methodology has been 

known for more than 20 years currently, but its impact on drug discovery is being recognized (Acevedo, 2012). The 

main problem for implementing FEP as a routine technique in CADD is obtaining reliable ∆G estimates for complex 

bimolecular systems within a reasonable computational time. FEP approach uses the classic Zwanzig expression to 

relate the free energy difference by constructing a nonphysical path connecting the desired initial and final state of a 

system. For relative free energies of binding, single or double topology perturbations can be made to convert one 
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ligand to another (Kollman,1993). In principle, both topology methods should provide results of equal precision; 

however, it has been reported that the single topology approach is more efficient than the dual topology for all but 

very long simulations (Pearlman 1994).  

Configurations of ligands are generated using MD or MC simulations with the appropriate Boltzmann 

weights (Acevedo, 2012). The total free energy change is computed by summing the incremental free energy changes 

in each FEP window (window – MD or MC simulation at one point along the mutation coordinate, which transforms 

two ligands). The difference in free energies of binding for the ligands X and Y then is calculated from ∆∆Gbind = 

∆GX – ∆GY = ∆GF – ∆GC. Two series of mutations are performed to transform X to Y unbound in water and 

complexed to the protein which yields ∆GF and ∆GC. A successful FEP protocol in drug discovery is to replace each 

hydrogen of a promising scaffold with 10 small groups that have been selected for difference in size, electronic 

character, and hydrogen-bonding patterns (Jorgensen, 2009). 

Software implementation of the RBFE & ABFE methods. All popular software packages for molecular 

simulations are currently equipped with the tools for alchemical free energy calculations. Among them are AMBER, 

CHARMM, GROMACS, Desmond, NAMD etc. Given that free energy calculations rely on sophisticated algorithms 

requiring a lot of scripts, configuration files and separate simulations, software for automation and simplification of 

such calculations is of a big need. Fortunately, there are such tools as CHARMM-GUI Ligand Binder (Jo, 2013) and 

FESetup (Loeffler, 2015) that provide users a suitable interface and examples of necessary files to perform 

convenient FEP/MD simulations, thereby permitting an accelerated throughput of RBFE/ABFEE computations 

while decreasing the possibility of human errors. 

A major problem with free energy methods is their high computational cost. It is nearly impossible to perform 

such class of calculations (even for small proteins) without access to modern supercomputers. Moreover, some 

programs (like Desmond) even won’t run on clusters without a GPU. So, researchers are strongly encouraged to get 

an access to modern GPU-equipped supercomputing facilities before starting the projects involving RBFE / ABFE 

calculations. 

Assessment of the accuracy of alchemical free energy methods: These methods were treated as very promising in 

the late 1980s and early 1990s following their introduction, but this enthusiasm was quickly diminished when it 

became evident that some of the early successes were due either to luck or bias. However, during past years, 

numerous methodological advances have sparked a new wave of enthusiasm (Chodera, 2012). 

Common practice for estimation of the performance of alchemical free energy calculations is a comparison 

of the predicted binding energies with experimental affinity measurements, obtained by ‘wet-lab’ (biophysical or 

enzymatic) assays (Holdgate, Anderson, Edfeldt, Geschwinder 2010). However, a lot of issues should be taken into 

account upon comparison of predicted energy with experimental data (Brown, 2009). 

Assessments of the alchemical free energy methods have largely focused on a few model receptor systems 

(Chodera, 2012). FK506 binding protein 12 (FKBP12) is one of the most intensively studied models (Fujitani, 

Tanida, Matsuura 2009). Predicted binding affinities vary between studies by up to 2–3 kcal/mol, and even minor 

details such as the need for an inhomogeneous dispersion correction to account for the differing density of van der 

Waals sites in the protein and solvent can result in deviations of up to 1 kcal/mol (Shirts, 2007). 

The serine protease trypsin has also been investigated in a number of recent RBFE and ABFE calculation 

studies. Predicted free energies relative to unsubstituted benzamidine ligands ranged from -2.1 to +0.17 kcal/mol, 

while experimentally determined free energies ranged from -0.64 to +0.91 kcal/mol (Villa, 2003). More recent small 

study involving AMOEBA polarizable force field revealed an improved agreement with experiment, with an average 

error less than 0.5 kcal/mol (Jiao, 2009). 

Hydrophobic cavity mutant (L99A) of T4 lysozyme is the most popular model system for ABFE calculations 

in recent years that has been nontrivial for free energy methods to quantitatively predict affinity (Mobley, 2007). 

Current force fields allowed researchers to obtain RMSE in computed binding free energies around 1–2 kcal/mol. 

Calculations for a double mutant (L99A + M102Q) gave similar accuracy with RMSE of 1–2 kcal/mol (Gallicchio, 

2010). 

In one of the largest recent studies the efficiency of nearly-automated free energy calculations on 92 ligands 

binding to five different targets was assessed (Christ & Fox 2013). Agreement with experiment was found to be 

system-dependent ranging from excellent (RMSE around 0.9 kJ/mol) to mediocre (RMSE = 4.7-8.7 kJ/mol). When 

analyses were restricted to free energy calculations with sample standard deviations below 1 kJ/mol, agreement with 

experiment improved (RMSE = 0.8-6.9 kJ/mol). 

Unfortunately, despite many studies dealing with the improvement of current methodology, we still have a 

very limited idea about when alchemical free energy methods can currently be expected to perform well (Chodera, 

2012). For example, conformational changes slow enough to present sampling difficulties can affect calculated 

binding affinities to a significant degree, and it is nearly impossible to know when these issues will appear (Boyce, 

2009). Even in favorable cases, care must be taken to sample all relevant ligand binding modes, as these can 
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sometimes change in unexpected ways upon scaffold modification during lead optimization stage (Mobley & Dill 

2010). At the same time, errors can be in the 1–2 kcal/mol range in computed binding free energies (Mobley, 2007; 

Boyce, 2009; Gallicchio, 2010) or sometimes even better (Jiao, 2009). 

As a conclusion, it can be said that alchemical free energy methods are the most physically rigorous and 

relatively more accurate than other methods described in previous chapters. However, high computational demands, 

complexity of performance and need for high expertise do not allow these methods to supply the place of molecular 

docking. At the same time, RBFE & ABFE methods can be utilized in lead optimization in drug discovery efforts 

(Zeevaart, 2008). 

2. CONCLUDING REMARKS 

Initially, drug discovery was carried out using trial and error experimental techniques. But recent advances 

in CADD allow the targeted design of drugs for a chosen proteins, shortening the development cycle of new drugs 

and reducing the overall expenditures on development (Lionta, 2014). Extensive involvement of modern methods 

not only will reduce the number of false positive compounds, it may facilitate more rapid completion of difficult 

drug design projects, with potentially superior molecules as an end result (Wang, 2015). 

As was mentioned in the text, accurate prediction of the protein-ligand binding affinities is a crucial step in 

the structure-based drug design approach. Technically speaking, accurate calculation of binding affinity differences 

and absolute free energy of binding for CADD purposes is a feasible and realistic task. It is important to keep in 

mind that the free energy of binding is not driven by a single conformation, but rather by the free energy landscape, 

and the entropic contribution to binding thermodynamics is not observable in single bound structures (Mobley & 

Dill 2010). Different approaches described above take this fact into account with a various number of physical details. 

Molecular docking methods are usually not enough accurate to predict binding energy, but because of the high speed 

it is the most widely and commonly used approach. It is especially effective for filtering out compounds that are 

likely non-binders and for identifying native-like poses of ligands. End point methods are able to perform more 

extensive conformational sampling, but they are much more computationally-intensive. These methods are not 

suitable for virtual screening task because of low speed, and are less physically rigorous than alchemical methods to 

accurately predict binding energy. RBFE & ABFE prediction methods are the most sophisticated currently, since 

they treat fully free energies associated with conformational changes and entropies. Up to date, the most powerful 

and accurate approach (with good correlations to experimental binding affinities and with lowest RMSE) is the 

alchemical calculation of absolute binding free energy. At the same time, this approach has extremely high 

computational costs. For example, in order to compute the ABFE for just one ligand to the target protein can cost 

dozens of CPU days. 

According to the literature data and own experience of the author, the best approach in CADD currently is a 

combination of different methods. Virtual screening of large libraries of small molecules can still be effectively 

performed by molecular docking only. At the same time, lead optimization task should be carried out with more 

physically rigorous methods, of which alchemical calculations (FEP or TDI) are the most accurate and sophisticated. 

Such combined approach can dramatically reduce the number of false-positives and, thus, to shorten the total number 

of compounds that should be tested in ‘wet-lab’ conditions to just a hundred or two. 

At the same time, there are still a lot of limitations and drawbacks in each of the methods that were described 

in the text. First of all, none of the methods can be used in automatic mode as a ‘black box’; each of them requires 

some expertise, experience and manual intervention. And this is especially the case for alchemical free energy 

methods, which in principle cannot be run automatically, even with the most up-to-date software tools. Novel 

programs for automating the preparation of systems using ‘best practices’ methodology are needed (Chodera, 2012). 

Secondly, the most rigorous and precise methods are highly computationally-dependent and need modern 

supercomputers for effective work. Fortunately, it is not a problem for the most of laboratories. At the same time, 

high computational cost of calculations hinders the use of best practices in a high throughput manner (e.g. for virtual 

screening). Thirdly, there are a lot of chemical and statistical mechanical effects in the protein-ligand binding that 

need to be taken into account upon calculations. Among them is conformational entropy, protein flexibility, multiple 

conformations, change of protonation states, differences in solvation etc. (Chodera, 2012; Mobley & Dill 2010). 

Fourthly, there are numerous examples where sampling has lead to an improved understanding of the limits of force 

field accuracy. Thus, better and more precise force fields are needed. Fortunately, there are several novel polarizable 

force fields (AMOEBA, CHARMM) with promising initial results for proteins (Jiao, 2009). Moreover, force field 

parameters for all of the chemical species present in the complex (protein, ligand, cofactors, solvent) must be 

generated or assigned from a database, and this process is complex and time-consuming, thus limiting its adoption 

in pharma (Chodera, 2012). 

Unfortunately, it is impossible to cover all the issues related to computer-aided prediction of binding free 

energy in one review. For further details one can read some excellent recent papers (Mobley & Dill 2010; Christ & 

Fox 2013; Xiang, 2012; Homeyer, 2014; Wang, 2015; Chodera,. 2012). 
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