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Abstract 

In the present paper, differentiation and integration of some generalized functions of Mittag-

Leffler type are considered. Also derived the relations that exists between this function and 

the operators of Riemann-Liouville fractional integrals and derivatives. Some special cases 

of derived results are discussed. Results derived in this paper are the extensions of the results 

given earlier by Haubold et al.[7], Kilbas et al.[1] and Saxena et al.[11]. 
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1- INTRODUCTION AND 

DEFINITIONS 

The various Mittag-Leffler functions 

discussed in this paper will be useful for 

investigators in various disciplines of 

applied sciences and engineering. The 

importance of Mittag-Leffler functions in 

physics is steadily increasing. It is simply 

said that derivations of physical 

phenomena from exponential behavior 

could be governed by physical laws 

through Mittag-Leffler functions (power 

law. Currently more and more such 

phenomena are discovered and studied. It 

is particularly important for the disciplines 

of stochastic systems, dynamical systems 

theory and disordered systems. Eventually, 

it is believed that all these new research 

results will lead to the discovery of truly 

non-equilibrium statistical mechanics. This 

is statistical mechanics beyond Boltzmann 

and Gibbs. This non-equilibrium statistical 

mechanics will focus on entropy 

production, reaction, diffusion, reaction-

diffusion,, and so forth, and may be 

governed by fractional calculus. Right 

now, fractional calculus and generalization 

of Mittag-Leffler functions are very 

important in research in physics. 

The Mittag-Leffler function [5, 6]  
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and its generalized form[3]  
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A generalization of (1.1) and (1.2) was introduced by Prabhakar [13] in terms of the series 

representation 

 

, )0)Re(,,,(   C                     3.1  

 

Where )(
n
is Pochammer’s symbol defined by   
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It is an entire function of order .)][Re( 1   

A generalization of (1.3) was defined by Sharma [9] as  
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Where 0)Re(,   C  and rja )( and rjb )( are the Pochammer symbols. The detailed 

information of this series is given in [9]. 

A generalization of (1.3) was defined by Sharma[10] as  
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Where 0)Re(,,   C  and rja )( and rjb )( are the Pochammer symbols. The detailed 

information of this series is given in [10]. 

Recently, a new generalization of (1.3) was defined by Sharma [8] as  
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Where 0)Re(,,,   C  and rja )( and rjb )( are the Pochammer symbols.The detailed 

information of this function is given in [8]. 

In the text, the following definitions [12] are needed: 

Left-sided Riemann-Liouville fractional integral  
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Right-sided Riemann-Liouville fractional integral  
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Left-sided Riemann-Liouville fractional derivative  
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Right-sided Riemann-Liouville fractional derivative  
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Where ][ denotes the maximal integer not exceeding   and }{  is the fractional part of  .  

2- RELATIONSHIP OF THE K-FUNCTION WITH ANOTHER SPECIAL 

FUNCTION 
From the definition (1.6), we will get the following relations: 

(i) If we set 1 ,  we get 
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where )(, xMr s
  is the generalized M-series introduced by Sharma and Jain[10].  

(ii) If we take 1  , we arrive at 
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where )(xMr s
  is the M-series given  by Sharma[9].  

 

(iii) If we put 0 sr , we arrive at 
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where )(, xE

  is the generalized Mittag-Leffler function given  by Prabhakar[13].  

(iv) If we put 1,0  sr , we arrive at 
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where )(, xE   is the generalized Mittag-Leffler function given  by Wiman[3].  

(v) If we put 1,0  sr , we arrive at 
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where )(xE  is the Mittag-Leffler function given  by Mittag-Leffler[5,6].  

 

(vi) If we put 1,0  sr , we arrive at 
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where e
x  is the exponential function given  in [5].  

3- DIFFERENTIATION AND INTEGRATION OF THE K- FUNCTIONS 

In this section differentiation and integration of the K-function (1.8) are presented in the 

forms of the theorem given below: 

Theorem 3.1 Let 0)Re(),Re(,Re(,0)Re(,,,,   nCa  then for Nn then 

there holds the relation:
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Proof: 

In view of definitions (1.6), we get the desired result. 

Theorem 3.2 Let 0)Re(,0)Re(),Re(,0Re(,0)Re(,,,,,,   vCva  then 

there hold the relations: 
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Proof: 

It can be made with the help of the Laplace transform formula 
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where .0)Re(,,0)Re(,0)Re(),Re(,0)Re(
)Re(/1

 


ass
 

where
12  sr
is the Wright function given in [7].

 
Remarks: If we set 0 sr in above theorems, we get the results given by Kilbas et al. [1].  

Special Cases 

The theorems derived  in the   section 3 

leads to the  differentiation and integration 

of  generalized  M-series[10],  M-series[9], 

generalized Mittag-Leffler 

function[3,6,13], Mittag-Leffler 

function[5,6] and exponential function[5] 

after implementing the necessary changes 

in the  values of  ,,, sr  and   as 

mentioned in the section 2. 
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