

Short Communication

Bortezomib in hematology: A short communication

Iffat Jamal^{1*}

Dept. of Pathology (Hematology Section), Indira Gandhi Institute of Medical Sciences, Patna, Bihar, India

Received: 15-03-2025; **Accepted:** 28-03-2025; **Available Online:** 01-05-2025

This is an Open Access (OA) journal, and articles are distributed under the terms of the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License](#), which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprint@ipinnovative.com

Bortezomib, a revolutionary proteasome inhibitor, has redefined therapeutic strategies in hematological malignancies. As the first-in-class agent targeting the 26S proteasome, it selectively inhibits proteasomal degradation of ubiquitinated proteins, leading to an accumulation of misfolded proteins and subsequent induction of apoptosis in malignant cells. This mechanism has proven particularly effective in hematological cancers characterized by high protein turnover and proteotoxic stress.

1. Mechanism of Action

Bortezomib inhibits the chymotrypsin-like activity of the 20S core of the proteasome, disrupting protein homeostasis. This inhibition triggers a cascade of cellular events, including:

1. Accumulation of pro-apoptotic factors (e.g., NOXA).
2. Inhibition of anti-apoptotic pathways (e.g., NF-κB signaling).
3. Increased oxidative stress, particularly in plasma cells, which are inherently sensitive to proteasome inhibition due to their high rate of immunoglobulin production.

2. Applications in Hematology

2.1. Multiple myeloma (MM)

Bortezomib is a cornerstone in the treatment of MM. It is used in newly diagnosed, relapsed, and refractory settings. Its efficacy has been demonstrated in various combinations, including:

1. VRD (Bortezomib, Lenalidomide, and Dexamethasone): A standard regimen for newly diagnosed patients.
2. CyBorD (Cyclophosphamide, Bortezomib, and Dexamethasone): Commonly used for transplant-eligible patients.

Clinical trials have shown that bortezomib enhances overall response rates (ORR), progression-free survival (PFS), and overall survival (OS). Its role in reducing bone disease and improving renal function in MM patients further underscores its importance.

2.2. Mantle cell lymphoma (MCL)

Bortezomib is approved for the treatment of relapsed/refractory MCL. By inhibiting NF-κB activation—a pathway critical for MCL cell survival—bortezomib induces apoptosis and enhances chemotherapy sensitivity. Studies have demonstrated ORR of up to 33% in refractory cases, highlighting its role as a valuable salvage therapy.

2.3. AL amyloidosis

In systemic light-chain (AL) amyloidosis, bortezomib's ability to rapidly reduce free light chain production improves organ function and hematological responses. Combination regimens, such as CyBorD, are widely used.

2.4. Other hematological disorders

Emerging evidence suggests potential benefits of bortezomib in:

Corresponding author: Iffat Jamal
Email: iffatjamal111@gmail.com

1. Waldenström's Macroglobulinemia: It disrupts IgM production and induces apoptosis.
2. Peripheral T-cell Lymphomas: Investigational studies show promising outcomes.
3. Hematopoietic Stem Cell Transplantation (HSCT): As a part of conditioning regimens, it may prevent graft-versus-host disease (GVHD) by modulating immune cell activity.

2.4.1. Adverse effects and management

While bortezomib is highly effective, its use is associated with specific adverse effects:

1. Peripheral Neuropathy: The most common dose-limiting toxicity. Switching to subcutaneous administration and weekly dosing schedules has significantly reduced its incidence.
2. Thrombocytopenia: Caused by transient suppression of platelet production, usually reversible.
3. Gastrointestinal Toxicity: Including diarrhea, nausea, and constipation.

Other less common adverse events include fatigue, herpes zoster reactivation (preventable with antiviral prophylaxis), and hepatotoxicity.

3. Resistance Mechanisms

Resistance to bortezomib poses a significant challenge in clinical practice. Mechanisms of resistance include:

1. Mutations in the β 5 subunit of the proteasome, reducing drug binding.
2. Upregulation of anti-apoptotic pathways, such as BCL-2.
3. Enhanced proteasome activity via compensatory mechanisms.

To overcome resistance, newer proteasome inhibitors (e.g., carfilzomib, ixazomib) and combination therapies targeting parallel pathways are being developed.

4. Future Directions

The success of bortezomib has spurred extensive research into proteasome inhibition. Current areas of exploration include:

1. Next-Generation Proteasome Inhibitors: Agents such as carfilzomib (irreversible inhibitor) and ixazomib (oral formulation) offer advantages in terms of efficacy and patient convenience.
2. Combination Therapies: Synergistic combinations with immunomodulatory drugs, monoclonal antibodies (e.g., daratumumab), and histone deacetylase inhibitors are under investigation.
3. Expanding Indications: Clinical trials are assessing its efficacy in non-malignant hematological conditions, such as autoimmune cytopenias.

5. Conclusion

Bortezomib has revolutionized the treatment of hematological malignancies, particularly multiple myeloma and mantle cell lymphoma. Its unique mechanism of action and broad applicability have made it an indispensable agent in hematology. While challenges such as adverse effects and resistance remain, ongoing research continues to refine its use, improve patient outcomes, and expand its therapeutic potential.

6. Conflict of Interest

None.

References

1. Rajkumar SV, Kumar S. Multiple myeloma: diagnosis and treatment. *Mayo Clin Proc.* 2016;91(1):101-19.
2. Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, et al. Improved survival in multiple myeloma and the impact of novel therapies. *Blood.* 2008;111(4):2516-20.
3. Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T, et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. *N Engl J Med.* 2005;352(24):2487-98.
4. Cavo M, Pantani L, Petrucci MT, Patriarca F, Zamagni E, Donnarumma D, et al. Bortezomib-thalidomide-dexamethasone is superior to thalidomide-dexamethasone as consolidation therapy after autologous hematopoietic stem cell transplantation in patients with newly diagnosed multiple myeloma. *Blood.* 2012;120(1):9-19.
5. Neben K, Lokhorst HM, Jauch A, Bertsch U, Hielscher T, Holt B, et al. Administration of bortezomib before and after autologous stem cell transplantation improves outcome in multiple myeloma patients with deletion 17p. *Blood.* 2012;119(4):940-8.

Cite this article Jamal I. Bortezomib in hematology: A short communication. *IP J Diagn Pathol Oncol.* 2025;10(1):49-50.