

Editorial

Beyond the stapes: The future of otosclerosis management

Karthikeyan Padmanabhan^{1*}

Dept. of ENT and Head & Neck Surgery, Mahatma Gandhi Medical College and Research Institute, Pillayarkuppam, Puducherry, India.

Received: 06-10-2025; Accepted: 25-10-2025; Available Online: 27-10-2025

This is an Open Access (OA) journal, and articles are distributed under the terms of the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License](#), which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprint@ipinnovative.com

1. Introduction

Otosclerosis is a localized osteodystrophy of the otic capsule that causes fixation of the stapes footplate, resulting in progressive conductive or mixed hearing loss. It is unique to the human temporal bone and involves abnormal bone resorption and deposition around the fissula ante fenestram. Histologically, the disease progresses through an otospongiotic (active) phase followed by a sclerotic (inactive) phase.

Far-advanced otosclerosis (FAO) represents the end stage of the disease, where extensive cochlear involvement produces profound mixed or sensorineural hearing loss, with air conduction thresholds exceeding 85–90 dB HL and bone conduction thresholds over 60–70 dB HL.

Historically managed by stapedotomy or stapedectomy, otosclerosis research is now shifting toward understanding molecular triggers, genetic susceptibility, and regenerative potential. The ultimate challenge for future research lies in translating these scientific innovations into durable, individualized clinical outcomes.¹

2. Molecular and Genetic Advances

Genetic factors play a pivotal role in the development of otosclerosis. Genome-wide association studies have identified susceptibility loci on chromosomes 6p21.33 (COL1A1, TGF β 1) and 15q25–26, suggesting that altered collagen synthesis² and disrupted bone matrix regulation contribute to disease onset. Building on these findings, future

research aims to develop polygenic risk models capable of predicting individual susceptibility before symptoms appear.

Transcriptomic studies of otosclerotic lesions have also shown increased expression of osteoprotegerin, RANKL, and BMP2, highlighting active inflammatory and bone remodelling pathways.³ These discoveries support the exploration of targeted molecular therapies—such as bisphosphonates, RANKL inhibitors, and cathepsin K inhibitors—to modulate aberrant osteoclast activity and potentially slow disease progression.

3. Advances in Imaging and Computational Modeling

Recent advances in material science have revolutionized prosthesis design. Titanium and nitinol implants provide lightweight strength, excellent biocompatibility, and reduced risk of incus trauma, leading to improved hearing outcomes. Ongoing research explores bioactive coatings like hydroxyapatite and graphene oxide to promote osseointegration and prevent extrusion.

The use of 3D printing now allows customized, patient-specific prostheses, though long-term durability data remain limited⁴. Emerging innovations such as micro-electromechanical (MEMS) and magnetically driven systems aim to deliver direct mechanical stimulation to the oval window, paving the way for future “smart prostheses” with real-time performance monitoring.

*Corresponding author: Karthikeyan Padmanabhan
Email: karthikent73@gmail.com

4. Innovations in Prosthesis and Biomaterials

Advances in material science have driven significant progress in prosthesis design. Modern titanium and nitinol devices offer optimal stiffness, low weight, and high biocompatibility, reducing incus trauma and improving long-term hearing outcomes. Bioactive coatings such as hydroxyapatite and graphene oxide to enhance osseointegration and minimize extrusion risk.

Additive manufacturing enables 3D-printed, patient-specific prostheses that replicate individual ossicular anatomy, though further validation of their long-term stability is needed. Emerging technologies include semi-implantable and active systems—such as microelectromechanical (MEMS) and magnetically driven implants—that can directly stimulate the oval window and may eventually evolve into “smart prostheses” capable of real-time vibration monitoring and performance calibration.

5. Pharmacologic and Regenerative Research

Pharmacologic modulation of otosclerosis has re-emerged with a molecular focus. Beyond traditional sodium fluoride and bisphosphonates, new agents targeting osteoprotegerin/RANKL signaling are being explored to stabilize bone metabolism. Selective estrogen receptor modulators may also limit hormonally mediated exacerbations in predisposed women.^{5,6}

Regenerative approaches represent a paradigm shift. Mesenchymal stem cells combined with osteoinductive scaffolds have demonstrated potential for reconstructing damaged otic capsule bone in experimental models. Bioengineered collagen-hydrogel composites containing growth factors such as BMP2 and TGF β 3 may one day promote controlled bone remodeling at disease sites. Additionally, induced pluripotent stem cell-derived inner-ear organoids offer a translational platform to study otic capsule remodeling and drug responsiveness.

6. Artificial Intelligence and Predictive Otology

AI applications in otology extend beyond imaging. Machine-learning algorithms can now analyze large datasets to predict postoperative hearing gain, assess prosthesis performance, and identify patients at risk of delayed sensorineural decline. These predictive tools enhance clinical decision-making and support long-term follow-up strategies.

AI-assisted navigation systems are under development to enhance intraoperative precision. Real-time feedback on instrument proximity to the oval window could minimize mechanical or thermal trauma, improving safety during laser-

assisted procedures. AI models will become more accurate and integral to evidence-based otosclerosis management.

7. Research Priorities and Collaborative Outlook

Establishing international registries for audiologic and imaging data will standardize outcome assessment and facilitate large-scale analysis. Collaborative multicenter trials comparing prosthesis materials, laser systems, and regenerative techniques are essential to validate laboratory findings. Bioinformatics platforms link genotype, phenotype and clinical outcome. Interdisciplinary cooperation among otologists, biomedical engineers, and computational scientists will accelerate clinical adoption of emerging technologies.

8. Conclusion

The trajectory of otosclerosis research is shifting from mechanical correction to molecular prevention and technological augmentation. As innovation advances, the future goal is not merely to restore hearing but to biologically and digitally reconstruct auditory function—transforming otosclerosis from a surgically managed condition into a scientifically modifiable one.

9. Conflict of Interest

None.

References

1. D'Amato R, Cianfriglia F, Cecchini G. Stapes prostheses in otosclerosis surgery: materials, design innovations, and future perspectives. *Actuators*. 2025;14(5):502. <https://doi:10.3390/act14100502>
2. Quesnel AM. Temporal bone histopathology of otosclerosis and sensorineural hearing loss. *Otol Neurotol*. 2018;39(1):90-8.
3. Cureoglu S, Baylan MY, Paparella MM. Cochlear otosclerosis. *Curr Opin Otolaryngol Head Neck Surg*. 2010;18(5):357-62. <https://doi:10.1097/MOO.0b013e32833d11d9>
4. Ricci G, Della Volpe A, Caporali M. Treatment of far-advanced otosclerosis: stapedotomy plus hearing aids as an alternative to cochlear implantation. *Healthcare*. 2023;11(6):676. doi:10.3390/healthcare11050676
5. Wegner I. et al. Safety and efficacy of stapedotomy: a systematic review and meta-analysis. *Laryngoscope*. 2016;126(7):1538-45.
6. Boyev KP. Use of lasers in otosclerosis surgery. *Otolaryngol Clin North Am*. 2018;51(2):387-99. <https://doi:10.1016/j.otc.2017.11.009>.

Cite this article: Padmanabhan K. Beyond the stapes: The future of otosclerosis management. *IP Indian J Anat Surg Head, Neck Brain* 2025;11(1):53-54.