

Case Report

A rare case of infantile systemic hyalinosis: Clinical, histopathological, and genetic insights

Ananda Kesavan TM^{1*}, Litta Paul¹, Betsy Ambooken²

¹Dept. of Pediatrics, Government Medical College, Thrissur, Kerala, India

²Dept. of Dermatology, Government Medical College, Thrissur, Kerala, India

Abstract

Infantile systemic hyalinosis (ISH) is a very rare autosomal recessive disorder with histopathologic hallmark of diffuse deposition of hyaline in connective tissues, leading to its varied clinical manifestations and poor prognosis. We report a case of a 5-month-old boy, born as second child to third degree consanguineous parents, who presented with painful joint contractures, and skin hyperpigmentation. Skin biopsy showed amorphous hyaline deposits, and clinical exome sequencing result came as *ANTXR2* mutation, in homozygous state confirming the diagnosis. This case report discusses the clinical features, with a special focus on its histopathological and genetic underpinnings. This report adds to the scant literature on ISH, highlighting the significance of genetic testing for exact diagnosis and the necessity for novel treatment approaches.

Keywords: Infantile systemic hyalinosis, Hyaline deposition, Joint contracture, Skin nodule

Received: 07-09-2025; **Accepted:** 08-10-2025; **Available Online:** 28-11-2025

This is an Open Access (OA) journal, and articles are distributed under the terms of the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License](https://creativecommons.org/licenses/by-nc-sa/4.0/), which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprint@ipinnovative.com

1. Introduction

Infantile systemic hyalinosis (ISH) is an uncommon autosomal recessive condition resulting from mutations in the *ANTXR2* gene, which causes widespread hyaline deposition in connective tissues.¹ It usually manifests in the initial months of life with painful joint stiffness, skin nodules, gingival hypertrophy, failure to thrive, and recurrent infections, often leading to death by age 2 years.² The condition is part of the hyaline fibromatosis syndrome spectrum.

Two types of the disease spectrum are recognized in the medical literature: ISH and JHF. Juvenile hyaline fibromatosis represent a milder disease.³ ISH is distinguished by an earlier onset, more progressive and severe course, and death in early childhood.⁴ Recent studies show mutations in the capillary morphogenesis protein 2 (GMC2) causative of both JHF and ISH.⁵ ISH has a higher prevalence in Middle Eastern and North African populations, often linked to consanguinity.⁶ This case report describes a 5-month-old male with ISH, confirmed by a novel *ANTXR2* mutation, and provides a comprehensive review of its clinical, histopathological, and genetic features.

2. Case Presentation

A 5-month-old boy, born out of consanguineous marriage, third degree relatives, presented to our tertiary care center with a history of progressive painful joint stiffness, hyperpigmented skin lesions, and failure to thrive. This was their second child with a normal elder sibling. The family history was unremarkable for genetic disorders, and the child's elder sibling was healthy.

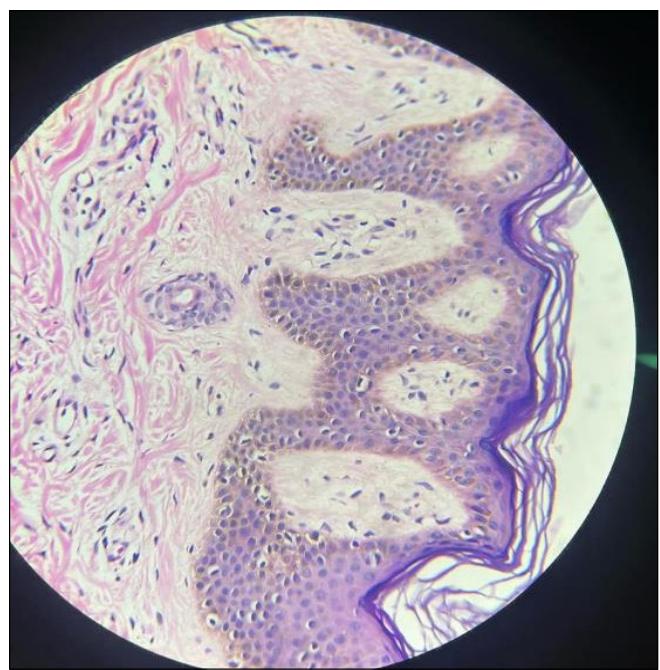
Mother had regular antenatal visits and antenatal period was normal. Child was delivered at term with a birth weight of 2.5 kg, by normal vaginal delivery. Child was breastfed soon after birth and postnatal period was uneventful and hence discharged on PND5. Within the first month of life, the mother noted excess cry during handling, limited limb movements, and progressive skin darkening over joints. By 3 months, the infant developed multiple hyperpigmented, lesions over the knuckles, knees, and ankles, and clawing of hands due to contractures. Child was feeding well at breast but had poor weight gain.

Physical examination revealed an apathetic child. The skin was thickened with multiple hyperpigmented papulonodular

*Corresponding author: Ananda Kesavan TM


Email: dranandiap@gmail.com

lesions, particularly over bony prominences. (Figure 1) There was no history of recurrent loose stools. There was clawing of fingers and toes. Abdominal was distended with mild hepatosplenomegaly. Child had underweight and stunting.


Figure 1: Image shows characteristic hyperpigmentation over knuckles, with extension of metacarpophalangeal joints and flexion of interphalangeal joints due to skin thickening. There is significant thickening of skin over bony prominences

Laboratory findings included normal hemoglobin level, slightly low serum albumin, normal ESR, normal Ca/P/ALP. Abdominal ultrasound showed no major abnormalities, and skeletal X-rays revealed osteopenia and periosteal reaction. (Figure 2)

Figure 2: X-ray shows osteopenia with joint contractures

A skin biopsy from an ankle lesion demonstrated amorphous, Periodic Acid Schiff (PAS)-positive hyaline deposits in the dermis. (Figure 3) Molecular DNA sequencing identified deletion in exon 1 of the *ANTXR2* gene establishing the genetic basis of the disease.

Figure 3: Skin biopsy showing mild atrophy of epidermis. Eosinophilic hyaline material is seen filling papillary dermis causing flattening of suprapapillary dermis. Special stains PAS was positive, alcian blue negative and congo red negative

3. Management and Outcome

Management was supportive, focusing on symptom relief. Physiotherapy was initiated to address joint contractures, but progress was limited due to severe pain. Child succumbed to sudden death while at home at 6 months of age. Prenatal genetic counselling advised for parents for next pregnancy.

4. Discussion

ISH is characterized by diffuse hyaline deposition in multiple tissues, the skin, intestine, muscles, and endocrine glands, leading to a constellation of debilitating symptoms.⁷ The *ANTXR2* gene, located on chromosome 4q21.21, encodes a transmembrane protein critical for extracellular matrix assembly. Mutations disrupt this process, causing hyaline accumulation. The clinical presentation in this child aligns with previous reports, which describe joint contractures, skin nodules, as hallmark features.⁸ Some reports have described intrauterine growth retardation and decreased fetal movements in children with ISH.

Children with ISH present in infancy itself, with a predominant symptom of pain while handling and decreased spontaneous movements. Skin shows skin thickening and hyperpigmentation with some pearly papules seen predominantly on face, scalp and neck. A perianal examination often shows fleshy nodules in perianal region. There is increased risk of bone fractures due to generalized osteopenia. These children are intellectually normal.

Recurrent infections are a major cause of mortality, often due to restricted chest wall movement.⁹ This condition has a progressive course and children rarely survive beyond second birthday. Mortality occurs from pneumonia or severe diarrhea.

Histopathologically, PAS-positive hyaline deposits are diagnostic, as confirmed in our patient. The overlap between ISH and JHF has led to the proposed term “hyaline fibromatosis syndrome,” with ISH representing the severe end of the spectrum. The absence of effective treatments remains a significant challenge. D-penicillamine has shown limited success in improving joint mobility by inhibiting collagen maturation, but its efficacy is inconsistent.¹⁰ Surgical interventions for nodules are often futile due to recurrence.

Genetic counseling is critical, particularly in populations with high consanguinity, to inform families of recurrence risks. Our case underscores the need for early genetic testing to confirm the diagnosis and prognosticate despite the lack of curative therapies. There is a scope for future research on elucidating the mechanisms of immune dysfunction and exploring targeted therapies to mitigate hyaline deposition.

5. Conclusion

This case of ISH, confirmed by a novel *ANTXR2* mutation, illustrates the devastating clinical course of this rare disorder. The patient’s presentation with severe joint contractures, skin lesions and coupled with histopathological and genetic findings, reinforces the diagnostic criteria for ISH. The lack of effective treatments highlights the need for research into novel therapeutic strategies. Early genetic testing is essential for diagnosis and counseling, particularly in high-risk populations. This report contributes to the literature on ISH and highlights the importance of multidisciplinary care in addressing its complex manifestations.

6. Source of Funding

None.

7. Conflict of Interest

None.

References

1. El-Kamah GY, Fong K, El-Ruby M, Afifi HH, Clements SE, Lai-Cheong JE, et al. Spectrum of mutations in the *ANTXR2* (*CMG2*) gene in infantile systemic hyalinosis and juvenile hyaline fibromatosis. *Br J Dermatol.* 2010;163(1):213–5. <https://doi.org/10.1111/j.1365-2133.2010.09769.x>
2. Al-Mubarak L, Al-Makadma A, Al-Khenaizan S. Infantile systemic hyalinosis presenting as intractable infantile diarrhea. *Eur J Pediatr.* 2009;168(3):363–5. <https://doi.org/10.1007/s00431-008-0760-8>
3. Nofal A, Sanad M, Assaf M, Nofal E, Nassar A, Almokadem S, et al. Juvenile hyaline fibromatosis and infantile systemic hyalinosis: A unifying term and a proposed grading system. *J Am Acad Dermatol.* 2009;61(4):695–700. <https://doi.org/10.1016/j.jaad.2009.01.039>
4. Mantri MD, Pradeep MM, Kalpesh PO, Pranavinh RJ. Hyaline fibromatosis syndrome: A rare inherited disorder. *Indian J Dermatology.* 2016;61(5):580.
5. Madke B, Kharkar V, Mahajan S, Chikhalkar S, Khopkar U. Infantile systemic hyalinosis: A case report and review of literature. *Indian Dermatol Online J.* 2010;1(1):10–3. <https://doi.org/10.4103/2229-5178.73250>
6. Aghighi Y, Bahremand S, Nematollahi LR. Infantile systemic hyalinosis: Report of three Iranian children and review of the literature. *Clin Rheumatol.* 2007;26(1):128–30. <https://doi.org/10.1007/s10067-005-0124-y>
7. Mohammed SE, Mohammed MM, Saeed M, Zahrani DA, Alasmari BG. Infantile Systemic Hyalinosis: A Case Report and Literature Review. *Cureus.* 2023;15(10):e46519. <https://doi.org/10.7759/cureus.46519>
8. Lindvall LE, Kormeili T, Chen E, Ramirez MCM, Grum-Tokars V, Glucksman MJ, et al. Infantile systemic hyalinosis: Case report and review of the literature. *J Am Acad Dermatol.* 2008;58(2):303–7. <https://doi.org/10.1016/j.jaad.2007.06.008>
9. Klebanova Y, Schwindt C. Infantile systemic hyalinosis: A case report of compromised cellular and humoral branches of the immune system leading to infections. *Pediatr Asthma Allergy Immunol.* 2009;22(3):127–30. <https://doi.org/10.1089/pai.2009.0011>
10. Shin HT, Paller A, Hoganson G, Willner JP, Chang MW, Orlow SJ. Infantile systemic hyalinosis. *J Am Acad Dermatol.* 2004; 50(2):61–4. [https://doi.org/10.1016/s0190-9622\(03\)02798-1](https://doi.org/10.1016/s0190-9622(03)02798-1)

Cite this article: Kesavan TMA, Paul L, Ambooken B. A rare case of infantile systemic hyalinosis: Clinical, histopathological, and genetic insights. *IP Int J Med Paediatr Oncol.* 2025;11(3):76–78.