

Review Article

A review on comparing various test methodologies and target types for measuring near point of convergence

Shamit Pal¹, Priye Suman Rastogi¹, Ravi Ranjan², Gaurav Dubey^{3*}, Om Shankar Kamat⁴, Souvik Chattpadhyay⁵

¹Dept. of Ophthalmology, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India

²Dept. of Ophthalmology, Faculty of Medicine, Uttar Pradesh University of Medical Sciences, Saifai, Uttar Pradesh, India

³Dept. of Optometry, Uttar Pradesh University of Medical Sciences, Saifai, Uttar Pradesh, India

⁴Dept. of Ophthalmology, Maharishi Markandeshwar Institute of Medical Sciences & Research (MMIMSR), Ambala, Haryana, India

⁵Dept. of Optometry, Dr. B.C. Roy Academy of Professional Courses, Durgapur, West Bengal, India

Abstract

This study aims to evaluate the variability in near point of convergence (NPC) break and recovery values across different methodologies and populations to improve the understanding of convergence insufficiency (CI) diagnosis. It seeks to analyze the influence of factors such as age, font size, repetition, and testing distance on NPC values. Additionally, the study highlights the inconsistencies in assessment methodologies currently used in CI diagnosis, which can affect the reliability and accuracy of NPC measurements. Convergence insufficiency (CI) is a common vergence anomaly, affecting 0.85-13% of the population. Prolonged near work can lead to excessive accommodation and vergence, resulting in diminished binocular functions and symptoms such as asthenopia, headaches, and eyestrain. A comprehensive literature review from sources such as PubMed, PubMed Central, and ResearchGate revealed significant variations in NPC values. Despite being a widely used diagnostic tool, NPC assessment lacks standardized protocols. The variability in NPC break and recovery values across different studies suggests inconsistencies in testing methods, including differences in target characteristics, age groups, and testing conditions. There is a need for a more standardized approach to improve the reliability and clinical applicability of NPC measurements. The lowest break value recorded was 5 cm using a 9-point font size objective, whereas the highest recovery point reached 15.03 cm with a long scale and accommodative target in individuals aged <5 to 85 years. These findings underscore the need for standardized NPC assessment protocols to enhance the accuracy of CI diagnosis and management.

Keywords: Near point of convergence, Methodologies, Target selection, Break and recovery values.

Received: 09-05-2024; **Accepted:** 20-02-2025; **Available Online:** 16-12-2025

This is an Open Access (OA) journal, and articles are distributed under the terms of the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License](#), which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprint@ipinnovative.com

1. Introduction

Convergence is the only conscious disjunctive fusional movement that can be triggered by intention, differential stimulus, or accommodation. Convergence insufficiency (CI) is the most prevalent vergence anomaly, with rates ranging from 0.8% to 13% in various studies.¹⁻⁶

Near point of convergence (NPC) refers to the highest amplitude of convergence or the nearest point at which a person can sustain picture fusion. It consists of two phases: the break point occurs when an object approaches a subject

slowly and the subject experiences diplopia and the recovery point arises when the target moves gradually and the object is seen plainly.⁷⁻¹⁰

Patients who read frequently on their smartphones, tablets, and computers may experience ocular conditions related to near work that needs to be examined.¹¹ Excessive accommodation and vergence at near work can result in a decline in binocular functions, such as diminished fusional vergence, as well as symptoms such as Asthenopia, headache

*Corresponding author: Gaurav Dubey

Email: gauravopto25@gmail.com

and eyestrain, loss of concentration, or intermittent diplopia.¹² NPC is a useful sign for diagnosing CI and distinguishing between symptomatic and asymptomatic instances.¹³

During an eye exam, near point of convergence (NPC), horizontal phoria, and fusional vergence are frequently measured to diagnose binocular anomalies.¹⁴ 36% of the studies included a receding near point of convergence as a crucial diagnostic criterion.¹⁵ Evidence suggests that NPC was employed in making the diagnosis of convergence insufficiency by 93.8% of optometrists assessed and that the most commonly utilized single diagnostic criteria was the NPC, with 35% of the clinicians indicating that one criterion was sufficient to diagnose convergence insufficiency.¹⁶

The research on near point of convergence from 1886 to 2023 has identified several gaps that need for further investigations with standardized methodologies and measurements in various settings, including clinical, educational, and hospital contexts, as well as surveys on large

and diverse populations to improve our understanding of the near point of convergence and its implications for different age groups. Additionally, there is a need for consensus on test methodologies, target selection, and standardized measurements for break and recovery values in near point of convergence studies. Therefore to acquire information about the numerous test procedures and types of targets in NPC, we study various databases to determine the relevancy of our objective.

2. Materials and Methods

The search for the relevant journal was carried out referring through many different records such as: PubMed, PubMed Central, ResearchGate, and form other internet sources.

2.1. Study selection

Our study included various test methodologies and types of targets used in near point of convergence measurement. For this the detailed information regarding the selection of papers and other categories is described in **Table 1**.

Table 1: Study selection of NPC

Study year	Study Design	Age group	Settings	Context
1886-2023	Cross sectional Study, Descriptive mixed model study, Retrospective Study, Descriptive study, Correlational study, Systematic review, Meta-analysis.	Reviewed in less than 5-85 year old age group	Elementary School Children's, Clinical settings, Surveys on small and large Population, Hospital settings.	Near point of convergence, Test Methodologies, Target selection, Break and recovery values Measurements.

Table 2: Synopsis of studies regarding evidences on various methodologies and target selection for NPC measurements

Reference	Publication type	Methodology	Break	Recovery	Target selection	Recommended
Duane A.A ¹⁷	Clinical review	Clinical sample of 8-12-year-old children with near-extrinsic exophoria and one clinical sign of CI,	7.5cm	-	Pen-Point, Fine dots, Dots on a large card	NPC more prevalent than a diminished Positive Fusional Convergence (PFC) (27% vs. 17%).
Siderov and colleagues ¹⁸	Cross sectional study	Study on (n=28) subjects of 20-85 years old into (n=14) presbyopic group, (n=14) younger non-presbyopic group.	NPC (break) was significantly less remote than the NPC (recovery).		NPC was measured to the nearest 0.5 cm using three targets: the RAF rule, the sharpened tip of a pencil and the tip of the examiner's index finger.	NPC measured using the RAF rule, remains consistent for subjects with minimal accommodation, with a slight accommodative influence in non-presbyopic subjects.

Table 2 Continued...

Scheiman M et al ¹⁹	Comparative study	(n=175) subjects with normal binocular vision and (n=38) subjects with convergence insufficiency	5cm	7cm	Accommodating target, penlight 10 repetitions, and penlight with red and green glasses.	Regular assessing NPC using an AT, and if, borderline, then test should be repeated with PRGG.
Hamed MM et al ¹³	Cross sectional study	(n=124) of age group 19-30 years were divided into symptomatic and asymptomatic group	71.4% of symptomatic participants had an NPC > 9.5 cm	small isolated letter "E" of approximately 20/30 size on a metal rod was used		NPC is helpful in the differentiation of symptomatic from asymptomatic subjects.
Mucha A et al ²⁰	Cross sectional study	(n=64) patients aged 13.9 ± 2.5 years and seen approximately 5.5 ± 4.0 days after a sport-related concussion, and 78 controls were administered	5cm	5.8cm	9-point font size objective, the battery-powered Bernell Vergel™ (Mishawaka, IN)	Pursuit eye movements and NPC distance, along with saccades, should be included in the ocular motor assessment of concussions.
Jung UN et al. ¹⁴	Descriptive Study	136 elementary school children, aged 8–13 years, were assessed	Maximum in 9yrs (6.44 ± 1.90)cm	Maximum in 9yrs (9.25 ± 2.08) cm	Standard push-up techniques using a fixation stick (Bernell, Mishawaka, IN, USA).	No statistically significant correlations between the school childrens' ages and NPC
Tiwari N ²¹	Retrospective Study	(N=130) subjects of age 20-35yrs were examine to see the impact of therapy on computer users suffering from convergence insufficiency	13.81cm	15.03cm	A long scale and an object Pen-accommodative target	CI can be caused by long hours of work, headaches, or strains, and early diagnosis is crucial for effective treatment and symptom alleviation.
Hashemi H, Pakazad R et al. ²²	Cross sectional study	Study involved (n=3851) Iranian rural population subjects (n=3314 responses) age group <5-70 yrs. to determine the distribution of NPC by age, sex, and refractive error over one year.	NPC was 8.42 ± 2.94 cm in whole population		Best optical correction: 6/12 single target on a Gulden fixation stick held at midline measured 5 times	The study found a higher NPC break point, with age being the most significant factor affecting it, suggesting accurate measurements can aid in diagnostic and treatment interpretation.
Hashemi H et al ²	Cross sectional study	(n=1,357) subjects were analyzed in 18->30 yr age group	7.25	7.48	Accommodative target (near Snellen chart), push-up method and an Astron Accommodative Rule (Gulden Ophthalmics, Elkins Park, PA).	The study found lower NPC values in this age group, suggesting clinicians should consider age and sex when evaluating CI symptoms and binocular vision dysfunctions, and the Hofstetter formula.

Table 2 Continued...

Baskaran AA et al ²³	Cross sectional study	Asymptomatic Subject Study <ul style="list-style-type: none"> • 60 asymptomatic subjects (18-25 years) • Grouped into emmetropes, myopes, and hypermetropes. 	[6.37±0.7 using PR in (Myopes) [10.30±1.45 Using RG in Hypermetropes]	[8.70±1.97] using PR in Myopes) [13.13±1.20 5 Using RG test in Hypermetropes.	Royal Air Force (RAF) rule, Pencil Rule (PR) and penlight with red green glasses (RG) using standard techniques.	RG yields more receded results in hypermetropes. PR test yields better results in myopes.
Wijayati, M.P. ²⁴	Correlational study	<ul style="list-style-type: none"> • Majority female (56%). • Age range: 7-24 years. • Median activity: 78 hours/week. • Myopic parent: 27.2%. 	r = -0.332, p<0.001	r = -0.335, p<0.001).	-	NPC Correlation Inversely Influences Myopia Progression
Bandhu S D et al ²⁵	Cross sectional study	The study aimed to measure NPC in a North-western Indian population to determine their association with IPD. In young adults of 18-22 years age group.	Overall response 6.14-7.02cm (Male-female)	Push-up method with the Royal Air Force (RAF) Rule measured 3 times	Weak Correlation Between NPC and IPD.	

*AT: Accommodative target; PRGG: Penlight with red and green glasses; PR: Pencil rule

3. Discussion

In this article, we review on various test methodologies and types of targets used in near point of convergence measurement. Duane AA defines the maximum power of convergence as the angle created by two optical lines when both eyes are turned to their full extent or the closest possible convergence point.¹⁷ This location is known as the fusion near point of convergence or simply the near point of convergence. He explained that in adults, a discrepancy of 1.5-2" is considered normal. Children have a stronger point of convergence, and the distance between them may not exceed 1". It is considered that a gap of less than 1" shows excessive convergence power, whilst one of more than two and a half inches implies inaccuracy.

Near point of convergence break and recovery assessment is a crucial component of a standard eye exam for the diagnosis and treatment of CI. When one or both eyes deviate from fixation, or when both eyes re-establish triangulation on the target, the examiner records the objective values of break and recovery to binocularly. The nearest 0.5 cm is used to measure all reading.^{18,26}

Research suggests repeating the near point of convergence (NPC) test for diagnosing convergence insufficiency, but there is no consensus on the frequency.

Some researchers propose a protocol of 10 repetitions. Bandhu et al.²⁵ suggest that three repetitions yield better results using an RAF rule. However, one study reported that NPC break and recovery values do not significantly differ when measured multiple times during the same testing session.

3.1. NPC measurements in Children (<5yrs to 18) yrs.

According to Hasehmi and Pakzad, children under 5 years have an NPC of 5.63±1.90, whereas those aged 6-20 years have an NPC of 6.61±2.60.²² Hayes discovered NPC values of 3.3, 4.1, and 4.3 cm in kindergarten, third, and sixth grade students. In a study by Rouse and Borsting, the average age was 13.9±2.5 years, with an NPC break of 5 and a recovery of 5.8 cm.¹² Jung UN observed an NPC break of 6.44 ± 1.90 and recovery of 9.25 ± 2.08 (cm) in a 9-year-old cohort.¹⁴ Chen reported 1.9 cm in the age range of 1-18 years. Maples found an average NPC break of 5.0 cm or less in elementary school children. Jiménez et al. reported an average NPC break of 5.2 cm using a penlight.²⁸

3.2. NPC measurements in adults (19-85) years

Siderov observed that NPC (break) was substantially less remote than NPC (recovery) in 20-85 years,¹⁸ while Hamed MM reported that 71.4% of symptomatic participants had an NPC >9.5±4.5 cm in 19-30 years of age.¹³ Furthermore,

Tiwari N's study demonstrated an NPC break of 13.81cm and a recovery of 15.03cm in the 20-35 age range.²¹ Hashemi and Pakzad found NPC values of 8.32 ± 2.45 (21-30 years) and 10.44 ± 3.07 cm (>70 years).²² Hashemi and Pakbin discovered an NPC break of 7.25 and recovery of 7.48 in 18-30 years.² Baskaran AA reported an NPC break of 6.37 ± 0.74 cm and recovery of 8.70 ± 1.97 cm in myopes.²³

The literature found in convergence insufficiency measurements, target selections, assessment, and treatments are inconsistent. Cooper and Jamal reviewed NPC, a clinical examination with varying methodologies.³⁰ Variables like size, measurement point, speed of movement, and patient's response contribute to expansive pass/fail standards, as suggested by various sources.^{17,29,31}

Our study reviews on various target selection methods for NPC assessment, including Royal Air force, pencil tip, pencil rule, Penlight, Tip of examiner index finger, penlight with red and green glasses, Bernell Vergel™, Pen accommodative target, Push up methods, Gulden fixation stick. We found that the target had a concentration on the least break value of (5cm) using 9-point font size objective, the battery-powered Bernell Vergel™ (Mishawaka, IN) and maximum value of (13.81cm) using a long scale and Pen accommodative target. On the other hand the highest recovery point reviewed was (15.03cm) using Long scale and accommodative target and least was (5.8cm) cm using 9-point font size objective, the battery-powered Bernell Vergel™ (Mishawaka, IN). Maples and Hoenes suggest an NPC break score of 5 cm or more should differentiate symptomatic from less symptomatic pupils.⁹ von Noorden et al defined an exceedingly close near point of conversion (NPC) as <5 cm, while an NPC >10 cm is defective.³² In 36% of 58 studies, a decreased NPC was a crucial diagnosis.¹⁵

A study conducted by Adler et al. utilizes a penlight, pencil rule, fingertip, and line on a card to analyze NPC in various age groups from 6-30 years.³³ Scheiman et al. investigated NPC using accommodative target with a single 20/30 letter on 175 optometry students of age group 22-37 year age group and yield a statistically significant difference between the target types.¹⁹ The Pennsylvania optometric association developed a plastic washable near-point test card (1955) measuring 7.5 inches by 5 inches. The card features figures, reading material, and illiterate E's on one side and grids in circles (vertical and horizontal) on the other. This is a sort of target selection that is read in concept, but there is no evidence to prove its reliability. In contrast, Bandhu SD utilizes the Royal Air Force scale, and the distance IPD was measured using a ruler and auto-refractometer in his cross-sectional study on NPC and their association with IPD in a North-western Indian population aged 18-22 years.²⁵ The correlation between IPD and NPC was low (0.18).

4. Limitation

The review highlights the need for standardization in measuring NPC and the importance of considering the limitations of various methodologies and target types. Future studies should aim to address these limitations and provide a more comprehensive understanding of NPC and its role in diagnosing and managing convergence insufficiency.

5. Conclusion

Regular NPC assessments are essential for diagnosing CI. Studies indicate that using a long scale and accommodative target results in higher NPC values compared to other methods. NPC evaluation should account for factors such as age, interpupillary distance, repetition, and text size. Research shows that convergence declines after 20–40 years, emphasizing the need to consider age differences in assessments. Further studies are needed to compare the effects of target repetitions, testing distance, and font sizes across different age groups and individuals with high near-work demands. Additionally, there is a need to standardize NPC assessment protocols, investigate age-related changes, evaluate the impact of near work, integrate technological advancements, and optimize target characteristics to enhance diagnostic accuracy.

6. Source of Funding

None.

7. Conflict of Interest

None.

References

1. García-Muñoz Á, Carbonell-Bonete S, Cantó-Cerdán M, Cacho-Martínez P. Accommodative and binocular dysfunctions: prevalence in a randomised sample of university students. *Clin Exp Optom.* 2016;99(4):313–21. <https://doi.org/10.1111/cxo.12376>
2. Hashemi H, Pakbin M, Ali B, Yekta A, Ostadimoghaddam H, Asharrous A, et al. Near points of convergence and accommodation in a population of university students in Iran. *J Ophthal Vis Res.* 2019;14(3):306–14. <https://doi.org/10.18502/jovr.v14i3.4787>
3. Hashemi H, Nabovati P, Khabazkhoob M, Ostadimoghaddam H, Doostdar A, Shiralivand E, et al. The prevalence of convergence insufficiency in Iran: a population-based study. *Clin Exp Optom.* 2017;100(6):704–9. <https://doi.org/10.1111/cxo.12522>
4. Hoseini-Yazdi SH, Yekta A, Nouri H, Heravian J, Ostadimoghaddam H, Khabazkhoob M. Frequency of convergence and accommodative disorders in a clinical population of Mashhad, Iran. *Strabismus.* 2015;23(1):22–9. <https://doi.org/10.1111/cxo.12522>
5. Hussaindeen JR, Rakshit A, Singh NK, George R, Swaminathan M, Kapur S, et al. Prevalence of non-strabismic anomalies of binocular vision in Tamil Nadu: report 2 of BAND study. *Clin Exp Optom.* 2017;100(6):642–8. <https://doi.org/10.1111/cxo.12496>
6. Lara F, Cacho P, García A, Megías R. General binocular disorders: prevalence in a clinic population. *Ophthalmic Physiol Opt.* 2001;21(1):70–4.
7. Sterner B. Ocular accommodation: studies of amplitude accommodation, insufficiency and facility training in young schoolchildren [Paper]. Department of Ophthalmology Institute of

Clinical Neuroscience, Goteborg University, Sweden; 2014. Available from: <https://gupea.ub.gu.se/handle/2077/16186>.

8. Abraham NG, Srinivasan K, Thomas J. Normative data for near point of convergence, accommodation, and phoria. *Oman J Ophthalmol.* 2015;8(1):14–8. <https://doi.org/10.4103/0974-620X.149856>.
9. Maples WC, Hoenes R. Near point of convergence norms measured in elementary school children. *Optom Vis Sci.* 2007;84(3):224–8. <https://doi.org/10.1097/OPX.0b013e3180339f44>.
10. Pilgrim CB. *Near point of convergence - a comparison of four different target types* [Degree project work]. Linnaeus University, Sweden; 2010. Available from: <http://lnu.diva-portal.org/smash/record.jsf?pid=diva2%3A323304&dswid=-2735>.
11. Trieu LH, Lavrich JB. Current concepts in convergence insufficiency. *Curr Opin Ophthalmol.* 2018;29(5):401–6. <https://doi.org/10.1097/ICU.0000000000000502>.
12. Rouse MW, Borsting E, Deland PN. Reliability of binocular vision measurements used in the classification of convergence insufficiency. *Optom Vis Sci.* 2002;79(4):254–64. <https://doi.org/10.1097/00006324-200204000-00012>.
13. Hamed MM, David AG, Eskandari M. The relationship between binocular vision symptoms and near point of convergence. *Indian J Ophthalmol.* 2013;61(7):325–8. <https://doi.org/10.4103/0301-4738.97553>.
14. Jung JU, Park IJ, Jang JY. The distribution of near point of convergence, near horizontal heterophoria, and near vergence among myopic children in South Korea. *Taiwan J Ophthalmol.* 2016;6(4):187–92. <https://doi.org/10.1016/j.tjo.2016.07.001>.
15. Daum KM. Characteristics of convergence insufficiency. *Optom Vis Sci.* 1988;65(6):426–38. <https://doi.org/10.1097/00006324-198806000-00002>.
16. Rouse MW, Hyman L, Hussein ME. Convergence Insufficiency and Reading Study Group (CIRS). How do you make the diagnosis of convergence insufficiency?: survey results. *J Optom Vis Dev.* 1997;28:91–7.
17. Duane AA. A new classification of motor anomalies of the eye based upon physiological principles. *Ann Ophthalmol Otolaryngol.* 1897;247–60.
18. Siderov J, Chiu SC, Waugh SJ. Differences in the nearpoint of convergence with target type. *Ophthalmic Physiol Opt.* 2001;21(5):356–60. <https://doi.org/10.1046/j.1475-1313.2001.00609.x>.
19. Scheiman M, Gallaway M, Frantz KA, Peters RJ, Hatch S, Cuff M, et al. Nearpoint of convergence: test procedure, target selection, and normative data. *Optom Vis Sci.* 2003;80(3):214–25. <https://doi.org/10.1097/00006324-200303000-00011>.
20. Mucha A, Collins MW, Elbin RJ, Furman JM, Troutman-Enseki C, DeWolf RM, et al. A brief vestibular/ocular motor screening (VOMS) assessment to evaluate concussions: preliminary findings. *Am J Sports Med.* 2014;42(10):2479–86. <https://doi.org/10.1177/0363546514543775>.
21. Tiwari N, Paul U, Paritekar P. Retrospective study of effect of therapy on computer vision syndrome patients having convergence insufficiency. *Kerala J Ophthalmol.* 2017;29:97–101. https://doi.org/10.4103/kjo.kjo_77_17.
22. Hashemi H, Pakzad R, Yekta A, Asharrous A, Aghamirsalim M, Ostadimoghaddam H, et al. The distribution of near point of convergence in an Iranian rural population: a population-based cross-sectional study. *Saudi J Ophthalmol.* 2019;33(2):148–52. <https://doi.org/10.1016/j.sjopt.2019.02.009>.
23. Baskaran AA, Britto T, Sowdher RT, Thomas PA. Agreement between three methods for measuring near point of convergence among patients with different refractive errors. *Saudi J Ophthalmol.* 2021;35(1):15–20. <https://doi.org/10.4103/1319-4534.325776>.
24. Wijayati MP, Triningrat AAMP, Pemayun CD, Handayani AT, Suryathi NMA, Surasmiati NMA. Correlation near point of convergence and amplitude accommodation with school myopia progression at near activity in Badung Regency. *Open Access Maced J Med Sci.* 2022;10(B):1195–1201.
25. Bandhu SD, Pawar SA, Garg S, Yukta G, Rahman MHU. The distribution of near point of convergence, near point of accommodation and their association with interpupillary distance in young adults: a cross sectional study. *IP Int J Ocul Oncol Oculoplasty.* 2023;9(3):122–5. <https://doi.org/10.18231/j.ijoo.o.2023.027>
26. Sharma IP. RAF near point rule for near point of convergence: a short review. *Ann Eye Sci.* 2017;2(3):16. <https://doi.org/10.21037/aes.2017.02.05>
27. Hayes GJ, Cohen BE, Rouse MW, De Land PN. Normative values for the nearpoint of convergence of elementary schoolchildren. *Optom Vis Sci.* 1998;75(7):506–12. <https://doi.org/10.1097/00006324-199807000-00019>
28. Jiménez R, Pérez MA, García JA, González MD. Statistical normal values of visual parameters that characterize binocular function in children. *Ophthalmic Physiol Opt.* 2004;24(6):528–42. <https://doi.org/10.1111/j.1475-1313.2004.00234.x>.
29. Chen AH, O'Leary DJ, Howell ER. Near visual function in young children: part I: near point of convergence; part II: amplitude of accommodation; part III: near heterophoria. *Ophthalmic Physiol Opt.* 2000;20(3):185–98.
30. Cooper J, Jamal N. Convergence insufficiency: a major review. *Optometry (St Louis).* 2012;83(4):137–58.
31. Wright JD Jr, Boger WP 3rd. Visual complaints from healthy children. *Surv Ophthalmol.* 1999;44(2):113–21.
32. von Noorden GK, Campos EC. Eye examination - II. In: Binocular vision and ocular motility: theory and management of strabismus. 6th ed. St. Louis, MO: Mosby; 2002. p. 207.
33. Adler PM, Clegg M, Viollier AJ, Woodhouse JM. Influence of target type and RAF rule on the measurement of near point of convergence. *Ophthalmic Physiol Opt.* 2007;27(1):22–30. <https://doi.org/10.1111/j.1475-1313.2006.00418.x>.

Cite this article: Pal S, Rastogi PS, Ranjan R, Dubey G, Kamat OS, Chattopadhyay S. A review on comparing various test methodologies and targets types for measuring near point of convergence. *Indian J Clin Exp Ophthalmol.* 2025;11(4):625–630.