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Abstract 

Glaucoma is a leading cause of irreversible blindness worldwide, and early detection and timely monitoring are essential to prevent vision loss. Optical 

coherence tomography (OCT) provides high-resolution, quantitative imaging of the retinal nerve fiber layer (RNFL), ganglion cell complex (GCC), and optic 

nerve head (ONH), which are central to diagnosis and progression monitoring. Artificial intelligence (AI) has shown strong potential to enhance OCT 

interpretation by automating segmentation, detecting subtle glaucomatous changes, and predicting progression with performance comparable to expert graders. 

Challenges include variability across imaging devices, limited dataset diversity, label noise, and lack of prospective real-world validation. Importantly, AI 

supports but does not replace human expertise in decision-making. Large-scale multicenter datasets, cross-device harmonization, multimodal imaging, and 

explainable AI frameworks are essential to ensure reliability and trust. With rigorous validation and integration into clinical workflows, AI-enhanced OCT 

may enable earlier intervention and personalized glaucoma care. 
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1. Introduction 

Glaucoma is a chronic, progressive optic neuropathy 

characterized by irreversible damage to the optic nerve, often 

associated with elevated intraocular pressure and 

corresponding visual field loss.1,2 It is among the leading 

causes of irreversible blindness worldwide, affecting an 

estimated 76 million people in 2020, with projections 

exceeding 111 million by 2040.3,4 The asymptomatic nature 

of the disease in its early stages makes timely detection and 

consistent monitoring essential to prevent progression and 

vision loss.5,6 

The global burden of glaucoma extends beyond 

individual vision impairment, posing significant 

socioeconomic challenges. Blindness reduces independence 

and quality of life, while also increasing healthcare costs and 

societal impact.7 These realities underscore the need for tools 

that facilitate earlier diagnosis, more efficient monitoring, 

and better patient outcomes.8  

Optical coherence tomography (OCT) has become a 

cornerstone of glaucoma management. This non-invasive 

imaging modality provides high-resolution cross-sectional 

views of the retina, enabling quantitative assessment of the 

retinal nerve fiber layer (RNFL), ganglion cell complex 

(GCC), and optic nerve head (ONH).9,10 These parameters are 

sensitive structural biomarkers of glaucomatous damage and 

allow longitudinal monitoring of disease progression. OCT’s 

ability to detect structural changes often before functional 

deficits appear has significantly improved the clinician’s 

capacity for early intervention.11,12 
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Despite these strengths, conventional OCT interpretation 

has limitations. Manual analysis can be time-consuming and 

subject to interobserver variability, especially in borderline 

or poor-quality scans.13,14 The increasing prevalence of 

glaucoma and widespread adoption of OCT technology have 

also led to a growing volume of imaging data, placing 

additional demands on clinicians and healthcare systems. 

Artificial intelligence (AI) offers new approaches to 

overcome these challenges. By automating segmentation, 

detecting subtle changes, and predicting progression risk, AI 

can complement clinician expertise and improve efficiency 

in OCT interpretation.15,16 Importantly, while AI provides 

powerful tools for rapid image analysis, clinical judgment 

and human expertise remain central in decision-making. 

Rather than replacing ophthalmologists, AI should be 

regarded as a decision-support system designed to enhance 

accuracy, consistency, and personalized care.17,18  

This review examines the integration of AI with OCT in 

glaucoma, focusing on its applications in detection, 

progression monitoring, limitations, and future directions. 

2. Optical Coherence Tomography (OCT) in Glaucoma 

Optical coherence tomography (OCT) has become a 

cornerstone of modern glaucoma management by providing 

high-resolution, cross-sectional images of retinal structures.19 

Through detailed visualization of the retinal nerve fiber layer 

(RNFL), ganglion cell complex (GCC), and optic nerve head 

(ONH), OCT enables clinicians to identify glaucomatous 

damage, monitor disease progression, and guide treatment 

decisions with a level of precision that was previously 

unattainable.20,21 

OCT operates on the principle of low-coherence 

interferometry, using backscattered light to construct detailed 

retinal images. This technology allows accurate 

quantification of retinal thickness, which is particularly 

valuable for detecting the subtle structural changes associated 

with glaucoma. Parameters such as RNFL thickness, macular 

GCIPL thickness, and ONH morphology provide objective 

measurements that often reveal damage before it becomes 

evident on visual field testing.22,23 By offering reproducible 

and quantitative data, OCT reduces reliance on subjective 

assessment and has become indispensable in both diagnosis 

and follow-up. 

Among the structural biomarkers assessed by OCT, 

RNFL thickness remains one of the earliest and most reliable 

indicators of glaucomatous damage. Sectoral analysis of the 

RNFL further improves diagnostic accuracy by revealing 

localized thinning patterns that correspond to early visual 

field defects. The macular GCC, which encompasses the 

ganglion cell and inner plexiform layers, is also highly 

informative, as it captures early damage in regions with a 

dense concentration of ganglion cells. In many cases, GCC 

thinning precedes peripapillary RNFL loss, making it a 

particularly sensitive marker for early detection. In addition, 

ONH parameters such as rim area, cup-to-disc ratio, and 

minimum rim width provide objective measurements of optic 

disc morphology, while OCT-angiography has expanded the 

scope of OCT by enabling non-invasive visualization of 

retinal microvasculature. Reduced vessel density observed 

with OCT-A has been strongly linked to glaucomatous 

damage and progression, highlighting the potential of 

vascular biomarkers in disease assessment. 

The advantages of OCT in glaucoma care are numerous. 

It provides rapid, non-invasive, and repeatable 

measurements, making it suitable for long-term monitoring. 

Its ability to detect structural changes before functional loss 

allows clinicians to intervene earlier and potentially prevent 

irreversible vision loss.24-26 When combined with functional 

tests such as perimetry, OCT enhances diagnostic confidence 

and provides a more comprehensive picture of disease status. 

Structure–function mapping, which correlates OCT findings 

with visual field defects, is increasingly applied in both 

research and clinical practice to refine decision-making. 

Despite its strengths, OCT has limitations. Scan quality 

can be compromised by factors such as media opacities, poor 

fixation, or patient movement, which may introduce artifacts 

and reduce interpretability. Advanced glaucoma presents 

additional challenges, as severe damage may obscure 

anatomical landmarks and lead to floor effects that limit the 

ability to detect further progression. Furthermore, differences 

in scan protocols, resolution, and proprietary normative 

databases across OCT platforms complicate comparisons 

between devices and hinder standardization in multicenter 

studies. 

OCT has proven invaluable in both the diagnosis and 

monitoring of glaucoma. Several studies have demonstrated 

high sensitivity and specificity of RNFL and GCC parameters 

in distinguishing glaucomatous from healthy eyes. OCT has 

also been instrumental in differentiating between subtypes of 

glaucoma, such as primary open-angle glaucoma and normal-

tension glaucoma, which often exhibit distinct patterns of 

structural damage. For progression monitoring, both event-

based methods, which identify significant changes from 

baseline, and trend-based methods, which assess rates of 

change over time, are widely used. Longitudinal research 

consistently shows that OCT-based measures of thinning are 

reliable indicators of progression, often preceding detectable 

functional decline.27 

Technological advancements continue to expand the 

capabilities of OCT. Enhanced depth imaging and swept-

source OCT have improved resolution and visualization of 

deeper optic nerve structures, while OCT-angiography has 

provided novel insights into the vascular component of 

glaucoma. These innovations strengthen the role of OCT in 

understanding disease mechanisms and refining risk 

assessment.28,29  
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In summary, OCT has revolutionized the diagnosis and 

management of glaucoma by providing objective, 

quantitative measures of structural damage. Its capacity to 

detect early change, track progression, and complement 

functional testing has made it an indispensable tool in clinical 

practice. Nevertheless, challenges such as variability, 

artifacts, and interpretive difficulties remain.30-32 The 

integration of artificial intelligence with OCT holds promise 

for addressing many of these limitations, offering the 

potential for more accurate, efficient, and personalized 

glaucoma care. (Table 1) 

3. Overview of Artificial Intelligence (AI) in Medical 

Imaging 

Artificial intelligence (AI) is transforming the field of 

healthcare, with some of its most profound impacts occurring 

in medical imaging. By harnessing large datasets, powerful 

computational resources, and sophisticated algorithms, AI 

systems can analyze complex images with efficiency and 

accuracy. This integration is reshaping diagnosis, treatment 

planning, and disease monitoring across specialties, 

including ophthalmology and glaucoma care. The following 

overview outlines the evolution, methodologies, benefits, 

challenges, and future directions of AI in medical imaging. 

The role of AI in imaging has evolved considerably over 

the past two decades. Early applications of machine learning 

(ML) relied on manually engineered features—such as 

texture, shape, or intensity—combined with classifiers like 

support vector machines or random forests. The rise of deep 

learning (DL), particularly convolutional neural networks 

(CNNs), has revolutionized this space. Modern DL models 

automatically extract hierarchical features directly from raw 

data, excelling at segmentation, classification, and anomaly 

detection. Their rapid progress has been enabled by the 

availability of large annotated datasets, advances in 

computational power, and the development of open-source 

frameworks such as TensorFlow and PyTorch. 

AI methodologies in medical imaging are broadly 

categorized into ML and DL approaches. Traditional ML 

leverages handcrafted features fed into algorithms including 

k-nearest neighbors, SVMs, or ensemble methods, which 

remain useful for structured, smaller-scale datasets. In 

contrast, DL models, especially CNNs, exploit spatial and 

contextual patterns in images and have become the gold 

standard for high-dimensional data. Other architectures, such 

as recurrent neural networks and transformers, are also being 

explored for imaging tasks that involve sequential data or 

multimodal integration. 

The benefits of AI in medical imaging are considerable. 

AI can improve diagnostic accuracy, sometimes performing 

at levels comparable to or exceeding human experts, thereby 

reducing errors and variability. It enhances efficiency by 

automating repetitive tasks like segmentation and lesion 

detection, enabling clinicians to focus on patient care. 

Crucially, AI facilitates early disease detection by identifying 

subtle changes imperceptible to the human eye, and it 

promotes standardization by ensuring reproducible 

interpretations across diverse observers and settings. 

Despite these advantages, challenges remain. The 

quality and diversity of training data heavily influence model 

performance, and variations in imaging devices, acquisition 

protocols, and patient demographics can compromise 

generalizability. Deep learning models are often criticized for 

their opacity, with explainable AI (XAI) frameworks being 

developed to improve transparency and clinician trust. 

Ethical and legal concerns—including patient privacy, data 

security, and consent—pose additional barriers, alongside the 

need for evolving regulatory frameworks. Furthermore, 

integrating AI seamlessly into clinical workflows requires 

attention to interoperability and usability to ensure adoption. 

Table 1: Comparison of AI techniques used in glaucoma progression monitoring via OCT 

AI Technique Study (ies) Using 

This Technique 

Accuracy Strengths Limitations 

Convolutional 

Neural Network 

(CNN) 

Thompson et al.33 

 

~93-95% High accuracy in detecting 

structural changes 

Requires large labeled 

datasets, computationally 

expensive 

Support Vector 

Machine (SVM) 

Huang et al.34 90% Good for binary 

classification, interpretable 

Limited generalization 

across diverse populations 

Random Forest 

Classifier 

Muhammad et al.35 92% Effective for classification 

tasks, handles non-linearity 

well 

May not perform as well 

on imbalanced datasets 

Deep Learning 

(ResNet) 

Song et al.11 92% Strong for large, complex 

datasets and fine-tuned 

features 

Prone to overfitting, high 

computational cost 

  



634 Gurumoorthy et al. / Indian Journal of Clinical and Experimental Ophthalmology 2025;11(4):631–640 

Looking forward, several directions hold promise for 

advancing AI in imaging. Multimodal approaches that 

integrate data from different imaging techniques, combined 

with clinical and demographic information, are expected to 

yield richer diagnostic insights. Real-time AI, supported by 

edge computing, may provide intraoperative guidance and 

immediate decision support. The convergence of imaging AI 

with genomics and proteomics has the potential to advance 

personalized medicine by tailoring treatment strategies to 

individual risk profiles. Finally, adaptive and continuously 

learning AI systems may enable sustained performance as 

new data and technologies emerge. 

4. AI for Glaucoma Detection and Monitoring 

The integration of artificial intelligence (AI) into glaucoma 

care is transforming the way clinicians detect and monitor 

this progressive optic neuropathy.36 As one of the leading 

causes of irreversible blindness worldwide, glaucoma 

requires early diagnosis and consistent monitoring to 

preserve vision. AI, with its ability to analyze large datasets 

and recognize complex patterns, is particularly well-suited 

for enhancing glaucoma care.37 By automating the 

interpretation of imaging modalities such as optical 

coherence tomography (OCT), fundus photography, and 

visual fields, AI provides more precise detection, 

individualized risk assessment, and improved monitoring of 

disease progression.38,39 

A key advantage of AI in glaucoma management lies in 

its ability to identify disease at its earliest stages. Deep 

learning (DL) algorithms, particularly convolutional neural 

networks (CNNs), have been trained on OCT data to detect 

retinal nerve fiber layer (RNFL) thinning before functional 

loss is evident. Similarly, models trained on large collections 

of fundus photographs can classify eyes as normal, 

glaucomatous, or glaucoma suspect with accuracy 

comparable to experienced ophthalmologists. Combining 

structural information from OCT with fundus images further 

enhances diagnostic sensitivity and specificity in early 

glaucoma.40 

Beyond detection, AI has demonstrated proficiency in 

distinguishing glaucoma subtypes. Primary open-angle 

glaucoma (POAG) and normal-tension glaucoma (NTG), 

which present with distinct structural and functional features, 

can be reliably differentiated using AI models. In addition, 

AI can help distinguish glaucoma from other optic 

neuropathies, such as ischemic optic neuropathy or optic 

neuritis, by analyzing subtle structural and vascular 

differences. Such capabilities improve diagnostic accuracy 

and reduce misclassification. 

Monitoring progression is another critical domain where 

AI adds value. By analyzing longitudinal OCT scans, AI 

algorithms can detect progressive thinning of the RNFL, 

ganglion cell complex (GCC), and neuroretinal rim. Event-

based analysis identifies significant structural changes from 

baseline, while trend-based analysis estimates rates of 

progression. These insights allow clinicians to evaluate 

treatment effectiveness and adjust management strategies. 

Predictive models that integrate baseline imaging with 

clinical data such as intraocular pressure (IOP), age, and 

family history generate personalized risk scores, enabling 

proactive management for high-risk individuals who may 

benefit from closer follow-up or earlier intervention. 

Functional testing also benefits from AI integration. 

Deep learning models trained on visual field data can identify 

characteristic glaucomatous defects, such as arcuate 

scotomas or nasal steps, with high sensitivity. Moreover, AI 

can mitigate variability in visual field testing due to patient 

fatigue or learning effects, thereby producing more reliable 

results. Increasingly, AI systems synthesize multimodal data 

by correlating structural findings from OCT and fundus 

photography with functional outcomes on visual fields. 

Automated structure–function mapping provides a holistic 

assessment, ensuring that subtle damage is not overlooked. 

The advantages of AI in glaucoma detection and 

monitoring are supported by numerous studies. CNN-based 

systems trained on OCT and fundus datasets have 

demonstrated sensitivities and specificities exceeding 90%, 

performance that rivals or surpasses expert clinicians. By 

automating segmentation, feature extraction, and 

classification, AI reduces clinician workload and improves 

efficiency, particularly in high-volume clinical 

environments. Just as importantly, AI ensures consistent and 

reproducible interpretations, minimizing interobserver 

variability and standardizing care. 

Despite its promise, AI in glaucoma care faces several 

challenges. The quality and diversity of training data strongly 

influence model performance, and differences in imaging 

devices, acquisition protocols, and patient demographics can 

hinder generalizability. Ethical and legal considerations—

including data privacy, informed consent, and regulatory 

approval—remain significant barriers. Additionally, 

integrating AI into existing clinical workflows requires 

careful planning to ensure seamless adoption without 

disrupting patient care. 

Emerging technologies are poised to further advance AI 

applications. Transformer-based deep learning models and 

generative adversarial networks (GANs) offer new ways of 

analyzing complex imaging data and improving prediction 

accuracy. With increasing computational power, real-time 

analysis may soon provide clinicians with immediate 

diagnostic and prognostic feedback during patient visits. 

Furthermore, combining imaging data with genomic and 

clinical information could pave the way for personalized 

treatment strategies tailored to individual disease 

mechanisms. 

The future success of AI in glaucoma care will depend 

on interdisciplinary collaboration among researchers, 
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clinicians, and industry partners. Large, prospective, 

multicenter trials are essential to validate AI tools in real-

world practice and to establish their safety, reliability, and 

cost-effectiveness (Table 2). AI has improved glaucoma 

detection and monitoring, revolutionizing care. Its accurate 

structural and functional data analysis aids early diagnosis, 

risk categorization, and monitoring. Technological 

advancement and interdisciplinary collaboration should 

overcome data unpredictability and ethical difficulties. AI's 

further development will enable its routine use, decreasing 

glaucoma's global impact and increasing patient outcomes 

(Figure 1). 

Table 2: Performance metrics for AI models in glaucoma diagnosis using OCT 

Study Accuracy Sensitivity Specificity AUC  

(Area Under Curve) 

F1-Score 

Thompson et al.33 95% 90% 98% 0.97 0.93 

Huang et al.34 90% 85% 94% 0.92 0.89 

Muhammad et al.35 92% 87% 96% 0.93 0.91 

Song et al.11 93% 91% 96% 0.95 0.92 

 

 

Figure 1: Methodology for the Integration of artificial intelligence (AI) in Optical coherence tomography (OCT) imaging 
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AI has transformed optical coherence tomography 

(OCT) data analysis, enabling illness diagnosis, monitoring, 

and prediction. AI extracts and interprets subtle OCT patterns 

that humans cannot see using machine learning (ML) and 

deep learning (DL). AI methods for OCT data analysis 

include supervised learning, unsupervised learning, and 

reinforcement learning, with deep learning being the most 

effective. Unsupervised learning finds latent patterns or 

clusters in unlabeled data, while supervised learning trains 

algorithms using labeled datasets. Unsupervised models like 

autoencoders detect abnormalities that may indicate illness 

development. OCT images are clustered by structure to help 

understand disease phenotypes. Deep learning, a subclass of 

ML, is the dominant OCT data analysis method because it 

handles complicated picture data well. CNNs, U-Nets, and 

RNNs are popular OCT architectures. OCT data analysis AI 

tasks include segmentation, classification, anomaly 

detection, and predictive modeling. AI models often 

outperform clinicians in diagnosis and prognosis. AI-based 

OCT analysis faces data variability, interpretability, privacy, 

regulatory issues, explainable AI (XAI), multimodal 

analysis, real-time analysis, and interdisciplinary 

collaboration (Figure 2). Despite these obstacles, AI has 

improved OCT data analysis for accurate diagnosis, 

monitoring, and disease progression prediction. 

5. Limitations and Current Approaches in AI-Based 

OCT Analysis 

The integration of artificial intelligence (AI) into optical 

coherence tomography (OCT) analysis has advanced 

glaucoma diagnostics by enabling accurate, automated 

detection and monitoring. However, translating these 

technologies into routine clinical care remains challenging. 

Despite promising results—with deep learning algorithms 

such as convolutional neural networks (CNNs) achieving 

sensitivities and specificities above 90%—several limitations 

must be acknowledged when considering widespread 

adoption. 

 

 

Figure 2: Overview of AI techniques utilized in optical coherence tomography (OCT) image analysis 
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A key barrier is data quality and variability. AI models 

are often trained on datasets from a single OCT device or 

imaging protocol, which limits their generalizability across 

different platforms and clinical environments. Variability in 

scan acquisition, image resolution, and segmentation 

protocols can reduce performance in real-world settings. 

Additionally, the limited representation of diverse 

populations in existing datasets introduces the risk of bias, 

with underperformance in certain demographic groups or less 

common glaucoma subtypes. Expanding datasets to include 

multiethnic, multicenter cohorts is essential for improving 

robustness. 

Another major concern is interpretability. Most deep 

learning models function as “black boxes,” producing 

predictions without providing transparent reasoning. This 

opacity reduces clinician trust and complicates decision-

making in high-stakes scenarios. Research into Explainable 

AI (XAI) seeks to address this by developing tools that 

highlight image regions or structural features contributing to 

predictions, but these methods are not yet widely adopted in 

clinical workflows. (Table 3) 

Ethical, legal, and accountability issues also limit 

integration. The use of sensitive imaging and clinical data 

requires strict adherence to privacy regulations. Moreover, 

imbalanced datasets can perpetuate systemic biases, 

potentially leading to inequitable outcomes. Responsibility 

for AI-driven diagnostic errors remains unclear, highlighting 

the need for regulatory frameworks that define clinical 

accountability. 

Practical challenges further slow adoption. Integration 

into healthcare workflows is complicated by non-

standardized data formats, inconsistent reporting, and poor 

interoperability between imaging systems and electronic 

health records (EHRs). Many algorithms remain 

computationally demanding, requiring infrastructure that 

may be unavailable in low-resource or smaller clinical 

settings. In addition, regulatory approval processes are 

lengthy, and few models have been validated in large-scale, 

prospective, real-world studies. 

 

Table 3: AI vs. traditional methods in monitoring glaucoma progression using OCT 

Method Sensitivity Specificity Accuracy Advantages Disadvantages 

AI (Deep Learning, 

CNN) 

90% 98% 95% High precision, 

automated, fast 

Requires large datasets, 

computationally expensive 

Traditional (Manual 

Grading) 

80% 85% 83% Clinician expertise, 

well-established 

Subjective, time-consuming, 

inter-rater variability 

OCT-based Thickness 

Measurements 

85% 90% 87% Reliable in detecting 

structural changes 

Limited in detecting functional 

changes, operator-dependent 

 

Figure 3: The significance of AI in glaucoma analysis 
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Table 4: Summary of key studies on AI in glaucoma monitoring using OCT 

Authors Sample Size 

(approx.) 

AI Technique 

Used 

OCT Parameters 

Analyzed 

Key Findings Limitations 

Thompson et 

al.33 

Various Convolutional 

Neural 

Network 

(CNN) 

Retinal nerve fiber 

layer thickness 

Achieved 95% 

accuracy in detecting 

early glaucoma 

Limited to a single 

OCT device and small 

sample size 

Huang et al.34 Various Support 

Vector 

Machine 

(SVM) 

Cup-to-disc ratio, 

RNFL 

High sensitivity for 

detecting glaucoma 

progression 

Inconsistent 

segmentation methods 

Muhammad 

et al.35 

150 Random 

Forest 

Classifier 

Ganglion cell layer 

(GCL) 

Achieved 92% 

specificity in 

classifying glaucoma 

subtypes 

Cross-sectional data, 

no longitudinal analysis 

Song et al.11 500 Deep Learning 

(ResNet) 

OCT volume scans Successfully predicted 

glaucomatous 

progression over 1 

year 

Overfitting concerns in 

the deep learning 

model 

Despite these limitations, current approaches continue to 

demonstrate the potential of AI-enhanced OCT. Comparative 

studies consistently show that AI outperforms or matches 

traditional manual grading in sensitivity, specificity, and 

reproducibility. For instance, CNN-based models have 

achieved accuracies up to 95% for detecting early 

glaucomatous changes, surpassing traditional OCT thickness 

measurements and manual interpretation. Machine learning 

methods such as support vector machines (SVMs) and 

random forests have also shown strong performance in 

classifying glaucoma subtypes or progression, though often 

with smaller datasets and reduced generalizability. (Figure 

3) 

Recent investigations highlight both progress and 

persistent gaps. Thompson et al. reported 95% accuracy in 

early glaucoma detection using CNNs, but their model was 

limited to a single OCT device and a modest sample size.33 

Huang et al. demonstrated high sensitivity with SVM-based 

models analyzing cup-to-disc ratio and RNFL parameters, 

though segmentation inconsistencies reduced reliability.34 

Muhammad et al. achieved high specificity in glaucoma 

subtype classification using random forests but lacked 

longitudinal validation.35 More recently, Song et al. used deep 

learning on OCT volume scans to predict disease progression, 

yet their model raised concerns about overfitting.11 These 

examples emphasize the need for larger, longitudinal, and 

multi-institutional datasets to support robust model 

development. (Table 4) 

6. Future Directions in AI for OCT Data Analysis 

The evolution of artificial intelligence (AI) in OCT data 

analysis will be driven by advances in technology, data 

integration, and clinical translation. Multimodal AI systems 

that combine OCT with complementary data sources—such 

as fundus photography, visual field assessments, genetic 

profiles, and proteomic markers—are expected to deliver 

more comprehensive insights into eye health. By integrating 

structural, functional, and molecular information, these 

approaches could enable highly accurate diagnoses and truly 

personalized therapy strategies. 

Real-time AI analysis during clinical encounters 

represents another promising development. With increasing 

computational power and the adoption of edge computing, 

clinicians may soon receive instant diagnostic feedback and 

risk predictions at the point of care. This capability has the 

potential to streamline workflows, reduce delays, and 

improve decision-making in busy clinical settings. At the 

same time, explainable AI (XAI) frameworks are gaining 

importance. By addressing the “black box” nature of deep 

learning, XAI methods enhance transparency, build clinician 

trust, and support the safe adoption of AI in clinical practice. 

Future systems are also expected to move beyond 

detection and monitoring toward predictive analytics and 

proactive disease management. By forecasting disease 

trajectories and identifying patients at greatest risk of 

progression, AI could help guide earlier intervention and 

more individualized treatment planning. However, realizing 

these benefits depends on the creation of large, diverse, and 

high-quality datasets that accurately reflect global patient 

demographics and the full spectrum of disease presentations. 

Collaborative efforts among clinicians, researchers, and 

industry stakeholders are essential to establish standardized 

datasets and protocols for training and validating AI models. 

Such initiatives will improve generalizability, reduce bias, 

and ensure equitable care across populations. 

Finally, the successful integration of AI into clinical 

practice requires supportive legal and ethical frameworks. 

Issues of data protection, accountability, transparency, and 

liability must be carefully addressed. Policymakers, 
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regulators, and the medical community must work together 

to ensure that AI deployment is both safe and ethically sound. 

With these advances, AI will not only transform glaucoma 

care but also establish new benchmarks for its application 

across the broader field of medical imaging. 

7. Conclusion 

Artificial intelligence (AI) is reshaping glaucoma care by 

enhancing diagnosis, monitoring, and management through 

accurate, efficient analysis of complex imaging data. Its 

ability to support early detection, track disease progression, 

and guide personalized treatment strategies underscores its 

transformative potential. By automating repetitive tasks and 

facilitating telemedicine and population-level screening, AI 

also reduces clinician workload and expands access to care. 

Nevertheless, several barriers must be addressed before 

AI can be fully integrated into clinical practice. Variability in 

data quality, limited model interpretability, and unresolved 

ethical and regulatory concerns remain significant 

challenges. Progress will depend on the development of 

large, diverse, and standardized datasets, alongside the 

implementation of explainable AI frameworks that foster 

transparency and clinician trust. 

Looking ahead, the integration of real-time AI analysis 

into routine clinical encounters promises to streamline 

workflows and improve decision-making. With continued 

interdisciplinary collaboration between clinicians, 

researchers, and policymakers, AI in OCT data analysis has 

the potential not only to transform glaucoma management but 

also to set a new standard for AI applications across medical 

imaging. 
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