CODEN [USA]: IAJPBB ISSN: 2349-7750 INDO AMERICAN JOURNAL OF # PHARMACEUTICAL SCIENCES http://doi.org/10.5281/zenodo.1243885 Available online at: http://www.iajps.com Research Article # SOCIOECONOMIC AND DEMOGRAPHIC FACTORS LEADIN G TO NON-COMPLIANCE TOWARDS ANTI-TUBERCULOUS TREATMENT **Dr. Sameer Ahmed, Dr. Muhammad Taha, Dr. Tabeer Fatima**Department of Community Medicine, Gujranwala Medical College, Gujranwala. ## Abstract: The incidence of Tuberculosis (TB) has revived and has become one of the emergent cause of tension in the healthca re sector specially in the tropical countries causing huge number of deaths. Non-adherence to the TB control progra ms is also one of the serious issues. A cross-sectional research determined for the investigations of the restricted compliance with anti-TB treatment in the patients of TB was conducted in 2015 targeting the Gujranwala. Research sample was 200 patients including 100 TB cases with default treatment record and remaining hundred were treatment compliers. Interviews were conducted for the collection of data and also consulted the clinical investigations. Every patient showed an improvement, adverse drug effects and significant non-compliance reasons. Awareness in the patients is very much required about the duration of treatment and outcomes if treatment is not completed. Serious patients should be treated by keeping them under supervision so that adverse effect managed effectively. There is need to improve the diagnostic capability of health care centers so that patients were properly diagnosed and treated. # **Corresponding author:** Dr. Sameer Ahmed, Department of Community Medicine, Gujranwala Medical College, Gujranwala. Please cite this article in press Sameer Ahmed et al., Socioeconomic and Demographic Factors Leading To Non-C ompliance towards Anti-Tuberculous Treatment, Indo Am. J. P. Sci, 2018; 05(05). # **INTRODUCTION:** Tuberculosis (TB), highly contagious, ubiquitous, chr onic granulomatous infection of the bacteria that lead s to ultimate adults to death all over the world. The n ew face of this disease has returned to the world with even bitter results. Almost one third of the total inhab itants of the world are directly affected of this disease. This incidence is adding 8 million every year and per annum deaths attributed to TB are 2 million (WHO, 2003). After AIDS the second common most deadly disease is TB [1]. Countries like India and Pakistan it has become endemic and also resurgent in the developed nations linked with the incidence of HIV. In reference to the African countries there is a strong link bet ween TB and HIV, its rate in South Africa and neigh boring countries has exceeded up to sixty percent [2]. Mortality range has been observed in the range of 50 – 80 percent in the individuals not managed for smear positive and inconsistent cases were 30% that has be en decreased with the TB control programs as five percent through DOT and programs of the TB control through various organizations. All TB forms, cases of infections and mortality in the population of 100,000 [3]. The age of the majority was in the range of 15 – 49 years in the total of 5 – 6 million. Asia and South A frica are most affected cases as their prevalence is 33 percent all over the globe. However, in the estimates of 2003, Sub-Saharan Africa incidence was double as the incidence of South-East Asia, observed as 290 – 350 cases in the total population of 100,000 [1, 3]. M. tuberculosis is an airborne, highly contagious, slo w-growing, Gram-positive aerobic rod-shaped acid-fa st bacillus disease. There is high content of lipid in the walls of the cell that allows the survival of the bacte ria in the macrophages. Many common drugs are also resisted through this barrier [4, 5]. Primary host of this bacteria is human. Airborne disse mination is the way of disease spread through nuclei droplet of diameter $1-5~\mu m$ carrying droplets of M. t uberculosis for one infected person to another. The in fectious nuclei droplet is lodged and inhaled in alveol i in distal airways. After that M. tuberculosis is carrie d by alveolar macrophages, which initiates an events cascade resulting in the shape of successful infection containment or development in the shape of active di sease. Active disease risk development changes according to infection time, age and host immunity; howev er, disease life-time risk for recently affected young i s estimated ten percent [1, 6, 7]. Along with all known factors most important is the unsolved TB challenge its control and complete treatment. Treatment is considered complete if the drugs are complete taken as prescribed by the physicians. TB c an be worse if the treatment is not properly complied with and it may cause resistance to drugs. Drug resist ance is another hindrance in the treatment of TB. Fox (1983) states that over the world the compliance of TB is estimated as low as forty percent in the under-de veloped countries and also considered as the major ca use of the failure of treatment. Management is critical in the compliance assurance in the presence of chem otherapy full course. Recommended course rate by WHO is 85% in the diagnosed cases (1992). For the full achievement the compliance is required to be in the rage of 85 – 90 percent. Poor compliance factors study therefore becomes important and drug resistance is responsible for the aband oned and poor compliance that also increases the TB disease. Reported factors linked with the compliance are DOTs and combined regimen of short courses (Freeman, 1972; Feinstein et al, 1959; Stradling 1970; C haulet et al, 1967; Strong, 1970; Albert et al, 1976). The incidence of TB in Pakistan has been observed as 231 / 100,000 and per year new cases diagnosed with TB are 420,000. Another research also studies the non-compliance of the treatment and its associated factors, attitude and knowledge that may possibly influence the TB treatment compliance particularly in Pakistan. Other countries have also studies the same subject in the setting of their population but still there is a need to conduct certain research studies on the aspects including culture, socio-economic status, and demography, level of knowledge, side effects tolerance and drugs used. The outcomes may differ from region to region but possible solutions can be identified through these research studies and they may also in the disease spread control. Intervention measures can also be planned through the se studies. #### **MATERIALSAND METHODS:** # Study design Design of the research was cohort and retrospective. Data was gathered through a form and cohort of the p atients of TB who attended any healthcare facility for treatment in the time period of Apr, 2015 to June, 20 15 was also considered. #### **Study location** Study was held in TB clinic of Gujranwala. Gujranwa la is a city in Pakistan's Punjab province. In the light of census (1998) the population of Gujranwala was 3, 400,940 people and urban ratio was observed as 50.1 7%. This makes it an advanced district of Punjab and its present population is 4,308,905 [4]. # Sampling method Research included 200 patients including 100 with de fault and 100 with complete treatment from the Gujra nwala TB clinics in the period 1st Apr, 2015 to June, 2015. ## Definition of data for analysis Standard definition of WHO were used for the classification of TB, its treatment and registration (2003) and (International Union Against Lung and TB Disease, 1996). ## **Data collection** We retrospectively reviewed TB clinical records and registers were consulted to record the data of 200 pati ents (100 successfully completed their treatment and 100 defaulted) TB patients of all age treated in TB cli nic Gujranwala between 1st April, 2015 and June 201 5. Assistance and support of TB control Officer was e xtended by his office at Gujranwala, through his supp ort we were coordinating with the TB control progra m supervisor and also had an access to all the related record. We gathered all the required information fro m the registers and records and collected it on the pre -designed form. Our research questions required data about the demographic background, person, risk facto rs of TB, treatment, condition and associated outcom es. Abstraction form was completed by the health trai ned staff and verification was carried out in order to c onfirm completion by the supervisors who collected t he data about TB. #### **Inclusion criteria** - 1). Cohort group patients were made a part of the rese arch diagnosed with TB and also treated for the TB di sease within the settings and framework of TB clinics of Gujranwala from April June, 2015. Treatment o utcomes were also considered. - 2). All those patients were made a part of the research who completed their treatment. 3). All the defaulted patients who did not managed to complete and left clinic and not visited again were int erviewed at their home or through different means of communications. #### **Exclusion criteria** - 1) Very severe cases close to death. - 2) Transferred to another clinic or city. - 3) Default cases which don't have any communication. #### Data analysis For the description of the features of the patients we measured median and proportions. Chi Square test w as used for the comparison of categorical variables. Medians were compared for the continuous variables. Association between p-value and categorical variable es was made through Chi-Square test and presented t he data in tables and graphs with significant p-value as (0.05) #### **RESULTS:** In the total research sample patients were under treat ment in the Guiranwala TB clinics from April – June. 2015. Among these patients 105 male cases (52.5%) were also included. The participants were divided int o 3 groups. First group contained participants below 20years, second contained between 20 to 39years and third group contained 40 & above (mean 37.2 ± 16.3 years). Default was highest 55.4% among the ages ra nge 20 to 39 years followed by young age group i.e. b elow 20 years 48.6%. This was not statistically signif icant (p = 0.41). In the female and male default patien ts no difference was observed as (51.6% versus 48.6 %, p-value = 0.671). Age and sex distribution is show n in Table – I and other socio-economic status of part icipants. Table 2 presents the demographic status agai nst their percentage for default and success cases. Th e rest of the variables are presented in Table I, II and III. **Table – I:** Socio-Demographic Status of the Participants | Mean ± SD | k – 1. Socio-Demograpine Statu | 37.2 ±16.3 | | | |---------------------|--------------------------------|------------|------------|--| | Details | | Number | Percentage | | | Age (Years) | Below 20 | 35 | 17.5 | | | | 20-39 | 83 | 41.5 | | | | 40 & above | 82 | 41 | | | Sex | Male | 105 | 52.5 | | | | Female | 95 | 47.5 | | | Occupation | No work | 36 | 18 | | | | Housewife | 63 | 31.5 | | | | Student | 25 | 12.5 | | | | Unskilled worker | 76 | 38 | | | Marital status | Married | 137 | 68.5 | | | | Unmarried | 63 | 31.5 | | | Education | Illiterate | 99 | 49.5 | | | | Under matric | 51 | 25.5 | | | | Matric & above | 50 | 25 | | | Type of Family | Nuclear | 25 | 12 | | | | Joint | 176 | 88 | | | | 3 and less | 12 | 6 | | | Family size | 4 to 5 | 62 | 31 | | | | 6 to 7 | 84 | 42 | | | | More than 7 | 42 | 21 | | | Dood history of ATT | No | 171 | 85.5 | | | Past history of ATT | Yes | 29 | 14.5 | | Table – II: Socio-educational characteristics of sampled population | Details | | Default (100) | | Successful (100) | | P value | |-------------------------|------------------|---------------|------------|------------------|------------|---------| | | | Number | Percentage | Number | Percentage | | | Family Size | 3 and less | 3 | 25 | 9 | 75 | 0.193 | | | 4 to 5 | 28 | 45.2 | 34 | 54.8 | | | | 6 to 7 | 46 | 54.8 | 38 | 45.2 | | | | More than 7 | 23 | 54.8 | 19 | 45.2 | | | Education | Illiterate | 39 | 39.4 | 60 | 60.6 | 0.011 | | | Under matric | 32 | 62.7 | 19 | 37.3 | | | | Matric & above | 29 | 58 | 21 | 42 | | | Occupation | No Work | 17 | 7.2 | 19 | 52.8 | 0.407 | | | House wife | 35 | 55.6 | 28 | 44.4 | | | | Student | 19 | 36 | 16 | 64 | | | | Unskilled Worker | 39 | 51.3 | 37 | 48.7 | | | Previous history
ATT | No | 88 | 51.5 | 83 | 48.5 | 0.315 | | | Yes | 12 | 41.4 | 17 | 58.6 | | Table – III: Difference in sociodemographic Characteristics affecting the completion of treatment | Characteristics | | Default (n=100) | | Successful (n=100) | | P Value | |-----------------|------------|-----------------|------------|--------------------|------------|---------| | | | Number | Percentage | Number | Percentage | | | Age | Below 20 | 17 | 48.6 | 18 | 51.4 | 0.41 | | | 20 to 39 | 46 | 55.4 | 37 | 44.6 | | | | 40 & above | 37 | 45.1 | 45 | 54.9 | | | Gender | Male | 51 | 48.6 | 54 | 51.4 | 0.671 | | | Female | 49 | 51.6 | 46 | 48.4 | | | Marital Status | Married | 65 | 74.4 | 72 | 52.6 | 0.287 | | | Unmarried | 35 | 55.6 | 28 | 44.4 | | | Family type | Nuclear | 8 | 33.3 | 16 | 66.7 | 0.082 | | | Joint | 92 | 52.3 | 84 | 47.7 | | ## **DISCUSSION:** Numerous studies have demonstrated that low socioe conomic group of TB patients having low income are more likely to be non-compliant for treatment. Educa tion is also a major factor for noncompliance [1-5]. For the improvement of the health centers awareness and education is required at community level for all c hronic illnesses specially TB in its management and t reatment [6-23]. Central practices should be the targ et of the health education specially focusing on the no n-adherence of the treatment. The age group in the ra nge of 20 - 39 was highly affected as (55.4%). Howe ver, no significant involvement was observed in term s of sex, society role and sexual behavior. Higher rate was observed in the patients of extrapulmonary TB, after that another higher incidence was observed for n egative pre-treatment sputum smear microscopy and pulmonary TB. These outcomes have been same as o bserved for both the said groups other research studie s. However, treatment was more likely to be complet ed by the PTB smear positive cases due to the factor of symptomatic and severe disease. Default rate was r epeatedly observed in the first two weeks, as the ther apy was intensive as clinically represented. Higher ra te of prevalence can also be attributed to the incidenc es of house deaths, occurring in the extensive phase o f the disease. It may also be linked with the incidence of hope but later the occurrence of sudden death. Ac cording to Michael (2004), PTB and extrapulmonary TB become fatal at their last stage. TB cases also req uire clinical investigation of HIV in Gujranwala TB c linics. There was not association of the clinic distance from the patient's house; whereas, few of the researc h studies consider it a relevant factor. DOT method o n the national level specifies the disease in the perspe ctive of location and patient's residence. In the availa bility of healthcare center near to the residence increa ses the utilization of the intensive therapy phase. Dist ant hospitals for the treatment are not an issue in this research and in our selected population. It also indicat es that fast fading of the TB has become a stigma in t hese communities. Limitations of the research includ e its design as retrospectively only the available data can be analyzed, for detailed explorations there is a n eed of the TB compromised treatment assessment. #### **Conclusion:** Research was aimed at the identification and categori zation of the factors responsible for non-compliance a mong the patients of TB for DOT program. Different variable was classified to study each factor individual ly. The result obtained were that age and sex were not significant i.e. age and sex does not affect complianc e for DOT. Socioeconomic factors were significant a nd these factors affected compliance i.e. those who w ere socio-economically low were more likely to show non-compliance. Independent verification of the data accuracy was not possible as additional data was req uired for this purpose. Every patient's detail was not available in the research, which is also beyond the co ntrol of the research and our scope. Defaulter's factor was also difficult to address. There were incomplete records for the patients in TB clinic. Some patients w ere in cooperative for interview. Illiterate patients we re difficult to handle and interview. The TB clinic sh ould have been received an official letter to acknowle dge them to help the investigators in completing their research and to obtain full cooperation from patients. Home visits through national program can be helpful for the close monitoring of the patients to decrease th e default cases and smear positive patient's observati ons. We need to place various strategies in place for t he identification of default patients and failure risks. For the reduction of the default rate strict observation and monitoring is required specially for default patie nts, which will ultimately reduce the awareness gap a nd reduce non-adherence of the treatment. # **REFERENCES:** - Barn TS, Gunreberg C, Chamroonsawasdi K, Bam DS, Aslberg O, Kasland O, Shiyalap K, Srisorrachatr S (2006). Factors affecting patient adherence to Dots in urban Kathmaradu. Int J. Tubarching Dis., 10(3): 270-276. - Castelnuovo B (2010). A review of compliance to anti tuberculosis treatment and risk factors for defaulting treatment in Sub Saharan Africa. Afr. Health Sci., 10(4): 320-324. - 3. Chaulet P (1990). Compliance with chemotherapy for tuberculosis. Responsibilities of the Health Ministry and of physicians. Bull. Int. Union Tuberc. Lung Dis., 66: 33–35. Corbett EL, Watt CJ, Walker N, - Maher D, Williams BG (2003). The growing burden of tuberculosis: Global trends and interaction with the HIV epidemic. Arch. Int. Med., 163: 1009–1021. Datiko DG, Yassin MA, Chekol LT, Kabeto LE. - Lindtjørn B (2008). The rate of TB-HIV coinfection depends on the prevalence of HIV infection in a community. BMC Public Health, 8: 266. doi: 10.1186/1471-2458-8-266. Dean GL, Edwards SG, Ives NJ. - Matthews G, Fox EF (2002). Treatment of tuberculosis in HIV-infected persons in the era of highly active anti-retroviral therapy. AIDS, 16: 75–83. Dheda K, Lampe FC, Johnson MA, Lipman MC (2004). Outcome of HIV-associated tuberculosis in the era of highly active anti-retroviral therapy. J. Infect. Dis., 190: 1670–1676. - Dodor EA (2004). Tuberculosis treatment default at the communicable diseases unit of Effia Nkwanta Regional Hospital: A 2yrs experience Int. J. Tuberc. Lung Dis., 8(ii): 1337-1341. Dodor EA. - 8. Afenyadu GY (2005). Factors associated with TB treatment default and completion at the Effia-Nkwanta Regional Hospital in Ghana Trans. R. Soc. Trop. Med. Hyg., 99(11): 827-832. Dooley KE, Lahlou O, Ghali I, Knudsen J, Elmessaoudi MD, Cherkaoui I, El Aouad R (2011). Risk factors for tuberculosis treatment failure, default, or relapse and outcomes of retreatment in Morocco. BMC Public Health, 28(11): 140. - 9. El-Sony AI, Khamis AH, Enarson DA, Baraka O, Mustafa SA, Bjune G (2002). Treatment results of DOTS in 1797 Sudanese tuberculosis patients with or without HIV co-infection. Int. J. Tuberc. Lung Dis., 6: 1058–1066. - 10. Farah MG, Tverdal A, Steen TW, Heldal E, Brantsaeter AB, Bjune G (2005). Treatment outcome of new culture positive pulmonary tuberculosis in Norway. BMC Public Health, 5: 14. doi: 10.1186/1471-2458-5-14. - Federal Ministry of Health (2005). National Tuberculosis and Leprosy Control Programme. 2006-2010 Strategic Plan for Tuberculosis Control Programme in Nigeria. - 12. Getahun H, Maher D (2000). Contribution of 'TB clubs' to tuberculosis control in a rural district in Ethiopia. Int. J. Tuberc. Lung Dis., 4: 174–178. - Glynn TR Warndorff DK, Fine PE, Munthali MM Sichone W, Ponnigheus JM (1998). Measurement and determinants of tuberculosis outcome in Karonga District, Malawi. Bull. World Health Organ., 76(3): 295-305. - 14. Grzybowski S, Enarson DA (1978). The fate of cases of tuberculosis under various treatment programmes. Bull. Int. Union Tuberc., 53: 70–75. - 15. International Union Against Tuberculosis and Lung Disease (1996). Tuberculosis guide for low income countries. 4. Pairs, IUATLD. - 16. Kassu A, Mengistu G, Ayele B, Diro E, Mekonnen F, Ketema D, Moges F, Mesfin T, Getachew A, Ergicho B, Elias D, Wondmikun Y, Aseffa A, Ota F (2007). HIV and intestinal parasites in adult TB patients in a Teaching Hospital in Northwest Ethiopia. Trop. Doct., 37: 222–224. - Kilpatrick GS (1987). Compliance in relation to tuberculosis. Tubercle, 68: 31–32. Michael KW, Belachew T, Jira C (2004). Tuberculosis defaulters from the "dots" regimen in Jimma zone, southwest Ethiopia. Ethiop. Med. J., 42: 247–253. - 18. Mukadi YD, Maher D, Harries A (2001). Tuberculosis case fatality rates in high HIV prevalence populations in sub-Saharan Africa. AIDS, 15: 143–152. Romanus V, Julander I, Blom-Bulow B, Larsson LO, - 19. Normann B, Boman G (2000). Shortages in Swedish tuberculosis care. Good results only in 71 percent of cases after 12-month treatment as shown in a current study. Lakartidningen, 97: 5613–5616. - 20. Santha T, Garg R, Frieden TR, Chandrasekaran V, Subramani R, Gopi PG, Selvakumar N, Ganapathy S, Charles N, Rajamma J, Narayanan PR (2002). Risk factors associated with default, failure and death among tuberculosis patients treated in a DOTS programme in Tiruvallur District, South India, 2000. Int. J. Tuberc. Lung Dis., 6: 780–788. - 21. Shargie EB, Lindtjørn B (2005). DOTS improves treatment outcomes and service coverage for tuberculosis in South Ethiopia: A retrospective trend analysis. BMC Public Health, 5: 62. doi: 10.1186/1471-2458-5-62. Osiyale et al. 95 Singh V, Jaiswal A, Porter JD, Qgden JA, Sarin R, Sharma PP, - 22. Arora Vic Jain Rc (2002). TB control, poverty and Vulnerability in Delhi, India. Trop. Med. Int. Health, 7(8): 693–700. - 23. Srinath S, Sharath B, Santosha K, Chadha SS, Roopa S, Chander K, Wares F, Chauhan LS, Wilson NC, Harries AD (2011). Tuberculosis 'retreatment others': Profile and treatment outcomes in the state of Andhra Pradesh, India. Int. J. Tuberc. Lung Dis., 15(1): 105-109. - 24. Steyn M, van der Merwe N, Dick J, Borcherds R, Wilding RJ (1997). Communication with TB patients; A neglected dimension of effective treatment? Curationis, 20: 53–56. - 25. Tabarsi P, Chistsaz E, Moradi A, Baghaei P, Farnia P, Marjani M, Irannejad P, Mansouri D, Masjedi M (2009). First line TB drug resistance prevalence and its pattern among HW infected patients in the National referred TB Centre in Iran. Int, J. STD AIDS, 20(8): 566-570. - 26. Tekle B, Mariam DH, Ali A (2002). Defaulting from DOTS and its determinants in three districts of Arsi Zone in Ethiopia. Int. J. Tuberc. Lung Dis., 6: 573–579. - 27. Wiktor SZ, Sassan-Morokro M, Grant AD, Abouya L, Karon JM (1999). Efficacy of trimethoprim-sulphamethoxazole prophylaxis to - decrease morbidity and mortality in HIV-1-infected patients with tuberculosis in Abidjan, Côte d'Ivoire: A randomised controlled trial. Lancet., 353: 1469–1475. - 28. World Health Organisation (2003). Treatment of tuberculosis: Guidelines for National Programmes. Geneva, Switzerland: World Health Organization. Available http://whqlibdoc.who.int/hq/2003/WHO_CDS_T B_2003.313_. World Health Organization (1992). Secular trend of tuberculosis in Western Europe. Epidemiological situation in countries. WHO/TB/1992, World Geneva. Health Organization WHO **Tuberculosis** Programme(1994). Framework for Effective Tuberculosis Control. Geneva, Switzerland, WHO/TB/94, 179, - 29. Yumo HA, Mbanya D, Kuaban C, Neuhann F (2011). Outcome assessment of a Global Fund grant for tuberculosis control at the district level in rural Cameroon. Int. J. Tuberc. Lung Dis., 15(3): 352-357. - 30. Zellweger JP, Coulon P (1998). Outcome of patients treated for tuberculosis in Vaud County, Switzerland. Int. J. Tuberc. Lung Dis., 2: 372–377.