

Content available at: https://www.ipinnovative.com/open-access-journals

IP Indian Journal of Neurosciences

Journal homepage: https://www.ijnonline.org/

Original Research Article

Classification of sub cortical structures of brain using mer-based support vector machine via brain stimulators in Parkinson's

Neerati Lavanya^{1*}, Sudha Pelluri¹, Venkateshwarla Rama Raju^{2,3,4}

¹Dept. of Computer Science and Engineering, University College of Engineering, Osmania University, Hyderabad, Telangana, India

²CMR College of Engineering & Technology, Affili: Jawaharlal Nehru Technological University JNTU, Hyderabad, Telangana, India

³CMR Institute of Medical Sciences, and CMR Hospital, Kandlakoya, Hyderabad, Telangana, India

⁴Nizam's Institute of Medical Sciences, NIMS Hospital, Hyderabad, Telangana, India

Abstract

Aims and Objectives: This study introduces a capable strategy for categorizing micro signals acquisition using micro electrode recording support vector-based machine (SVM) of Medtronic direct battery current (DC) used for energy-source.

Background: Earlier, many researchers done signal analysis on brain stimulators data but not on microelectrodes support-vectormachine-based which is for categorizing the PD brain data.

Materials and Methods: MER acquisition was for neural-recordings garnered through brain-stimulators in Parkinsonian diseased conditions and our findings are reported here. A model which extracts features via MER-based SVM which is categorized by supervised machine learning classification method.

Results: The computational features extracted and extrapolated are length of curve, threshold, peak to peak signal strength, root mean square (RMS), and normalization of nonlinear power and strength. The gathered features are, models are unified and applied to detect substructures of PDs, for instance, STN, SN,SN-pc, SN-pc, TN, plus Z-i. Approximation was99% which indicates excellent result. Our methodology evades any human intrusion via bias (subjectivity) in pin pointing subcortical organs principally STN. Micro electrodes are employed as sensors.

Conclusion: The DBS gives a singular likelihood attempt to observe electrical-activity of many subcortical organs within Parkinson candidates.

Keywords: Brain-stimulators, Micro electrodes recordings, MER-based support vector machine.

Received: 05-03-2025; Accepted: 27-03-2025; Available Online:

This is an Open Access (OA) journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprint@ipinnovative.com

1. Introduction

At the moment there are six million people facing the second most convolutional neuro degenerative disease and currently there is no cure for Parkinson disease. More than thirty thousand neurologists, neurophysiologists, neuro electro physiologists, and a large number of transdiscplined scientists from different branches like fields of engineering and medicine, biology, computing, and mathematics all over the globe. At present, various devices that are being used to treat is for the detection of symptoms and for reducing symptoms. Thus, new research focusing on machine learning in neurotechnology for neuroprotection using various engineering paradigms for instance, magnetic resonance imaging(MRI), Dat-Scan, Microelectrode recording(MER),

Deep Brain Stimulators(DBS),etc. ^{3,4,5,6,7,8,9,10,11,12,13,14,15} Even though PD produced through the exhaustion of dopamine within Basal-Ganglion(BG)parallel circuitry zone, generally it ismedicated viaLevodopa(L-dopa)and this is mainly to restore dopamine-cells. ^{16,17,18,19} Yet with L-dopa, there are many issues regarding side effects, observers(clinicians) introduced noise artifacts and external as well asuser problems, etc. Microelectrode guided surgical process also employed for PD treatment in plain conditions or when prescription doesn't work including Brain Stimulators. In DBS, the microelectrodes embedded into brain to stimulate neural cells within BG. ^{1,20,21,22,23,24,25}

Within PD, due to dopamine loss, cells are damaged are dead. "The loss of these brain cells causes circuits in the brain

Corresponding author: Neerati Lavanya Email: drvenkateshwararrr@gmail.com

to function abnormally, and those abnormal circuits result in movement problems. 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,26

The goal is to develop some frame- works plus procedures for micro-signal's acquisitions from brain processing plus to aid the clinical treatment to determine optimal site of graze. The features measured is distinctive points of neurons as of MER. For effectiveness of deep brain device, it's necessary to have precise microelectrode arrangement.

2. Materials and Methods

For the acquisition of the anatomical brain signals, it requires cutting edge amplifiers which comes all the through the signal conditioning, transducers, transistors and sufficient input impedances so as to attain meaning signal. In microelectrodes recordings machines and support vector based machines the above mechanisms are inbuilt both at the software and at the hardware levels.

Over the Parkinsonian images, the pinpointing was done as per Lozano engaged equivalent to five-angles through thorough going size (few mms).

Coordinate values inputted within a very high rich N-Vision software that yields3D-coordinatesofSTN. Then frame links are also employed to plot the course-ofmicrodes(Microchips)which is primely to prevent liners, (i.e., vessels.). The surgical-process done with drilling through2burr-holes bilaterally and as per coordinates. 5channel-eelctrodesare began through central channelelectrodecor respond to MR targeted lesion whereas medial located over the x – axis, anterio, posterio located on y - axis defendthe5mm region-diameter. Intra-op-signal acquisition gatheredinall5channel-electrodes.Microchips were gradually ensued via STN plus neural-data gathering done the STN computed over the MR imaging. The lesion was discovered through heavily-noise-immersedand there was a larger electric base-line (i.e.,0zero-line) plus uneven random-flux patterns by many occurrences. The Figure 1 depicts the M E R which wasacquiredas of STN. Quality is very poor and also the neural signals are heavily immersed in the noise contaminations.

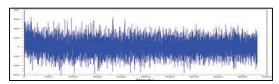


Figure 1: Noised STN neurons signals

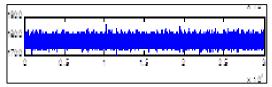


Figure 2: STN-neurons

Followed by the offline Matlab plotted S T N neurons (Figure 2, Figure 3, Figure 4, and Figure 5)

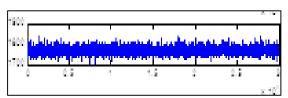


Figure 3: S N_pc neurons

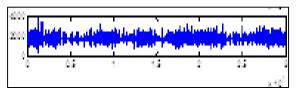


Figure 4: $Z \circ n \cdot a - I \cdot n \cdot c \cdot e \cdot r \cdot t \cdot a \cdot neurons$

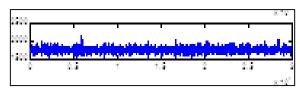


Figure 5: Thalamic-neurons

2.1. Feature—manifestations

The manifestations of this study explained here together with the mathematical expressions which were used and for the feature extrapolations. The vector variable x gives v e c t o r data whose measurement lengthwise is 'N.'

2.1.1. Curve length

This feature-vector employed for obtaining the strength and steadiness waveform values of sub thalamic-nucleus neural strength. The less value in the given interval, supplied by the end users, the waveform is steady and unchanging, else, it is erratic and volatile. Eq (1) derives multiplication of computing:

 x_i -size of sampledata-set X = (x1, x2, x3, ..., xN), Then' threshold' is computed through expression 2.

2.2.2. Threshold

Purpose of threshold is depending on calculation of deviancy of data to limit how the data and in what way through the size-'N' of window is dispersed or spread.

where, \dot{X} - mean of dataset.

2.2.3. Stability of signal (Peak-to-peak)

This is determined by the below equation (3)

$$K = \frac{1}{2} \sum_{i=1}^{N} \max \left\{ 0, \left| \operatorname{sgn} \left[x_{i+1} - x_{i} \right] - \operatorname{sgn} \left[x_{i+2} - x_{i+1} \right] \right| \right\}$$
.....3

Maximum of
$$(a, b) =$$

$$\begin{cases} a & \text{if} & a > b \\ b & \text{if} & a < b \\ aob & \text{if} & a = b \end{cases}$$

$$\operatorname{sgn}(X) = \begin{cases} 1 & \text{if} & x > 0 \\ 0 & \text{if} & = < 0 \\ -1 & \text{if} & x < 0 \end{cases}$$

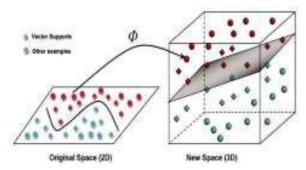
2.2.4. The RMS

It's a square—root-of standard of computing squares of S T Ns. It is mainly to represent the amplitude (strength of the STN neural signal) of the tremor. The R M S is determined through eqn.(4)

$$\delta = \sqrt{\frac{1}{N} \left(\sum_{i=1}^{N} x \right)} \dots 4$$

2.2.5. The Normalization of Non-Liner Energy

Generally continuous signal will come through phases/angles which represent the amplitudes and duration followed by the frequency in the frequency domain (on x-axis). It yields strength of neuronal's plus mean is computed by(equ.5)


2.2.6. Turning-points Amplitude (the TA)

As a standard time domain parameter which represents the phase-angle (shape-of waveform) is assessed by eq.6.

$$K = (\frac{1}{2} \sum_{i=1}^{N-1} | sgn(x_{i+1}) - sgn(x_1) \dots 6$$

2.2.7. Support vector machines

For processing the nonlinear ratio's, the support vector machine it uses the kernel – functions to endeavor the data-info in the places of more dimensionality plus transforming them to the linearly separable classes (**Figure 6**).

Figure 6: Model transfer (change) as of prime 2D space to 3D-space to splitsetsli nearly (2Diml to 3Diml).

Here the kernel didn't set not like in certain wave form transformations, e.g., Discrete-Fourier-Transform. (The D F T). The SVM is a knowledgeable machine, thence it depends on the training being given, trying and determining the execution, plus confirming that are usual strides in each and knowledge-procedure.

3. Procedure

Acquisition of 2sec neuronal data done, Sampl.freq (at 24kHz-cycles/S) thus u to 48kHz samples for all recordings. Taking into consideration the path of 13 records for-all sub cortical brain-sub-structures, last path was52 sample-records, thus 25x1000thousand samples. The corresponding features shown in below equ`n.

$$X = \begin{matrix} X_1 & V_1 & V_2 & \dots & \dots & V_p \\ X_1 & \begin{bmatrix} x_{11} & x_{12} & \dots & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & \dots & x_{2p} \\ \vdots & \vdots & \ddots & \dots & \vdots \\ \vdots & \vdots & \dots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & \dots & x_{np} \end{bmatrix}$$

where n=0.5kexamps.yp features.

Figure 7: Vector

Vector correspond to the SNpc, third 125 correspond to the TN, and the last 125-instances correspond to the Zi. The computational features (or Statistical indexes) of this study performed using Mat-Lab.

4. Results and Discussion

Gauss – polynomial's - kernel's, together distinct features worn for obtaining best S V M models which is largest -value of K a p p a K - S t a t i s t i c with n - f o l d rationale which allocate us to seek the yet reasonable pragmatic error's(if any) through entire data base. This comprises separating early and preliminary data base in to the 'n' -subsets also choosing 'n-1' sub sets to compute model-interest. Sub set the one that is unused within the procedure is employed to determine delta-error. The computational process is in 'n' -times finite loop (by default it gets exited), all the time through distinct—

test—sub sets. Finally delta-error determined through mean-of `n`-partial s a m p l e s of delta-errors.

The model-paradigms trained through *poly-kernels*93 (`C`x`e`=31x3) as well as through *Gauss-k e r n e l* (186). Findings are depicted in **Figure 8**.

Figure 8: A 10 f o l corroboration traverse outcomes yielded through better S V M m o d e l

Building—experimentations in our up-to-the-minute computational- neuro- science research may force to overloading of the data(surplus), whilst the predictable outcome is to see the s y s t e m s n e u r a l d y n a m i c s. So, a computer data scientist is essential to overcome the issue. But its very complex nebulous-task for clinicians to understand the henomena. The established model simulations can be offered to expect procedures and processes of action-of-electrical stimulations remedial therapy/therapeutic-procedure which can be utilized to build more well-organized additional effective therapies which re personalized to the patients correspondingly.

5. Conclusions

Electrical brain stimulators were existing since long primely for finding the electrical activity and thus behavior. Many stalwarts' devised yet none were or triumphant or flourishing or proserous. However, the era of 1992 was most outstanding for debuting the pioneering stimulating device the deep brain stimulator (called DBS). Brain stimulators especially the cutting edge D B S has emerged as an effective therapy for people suffering from medication refractory essential tremor (ET). Significant tremor suppression for patients can be achieved by targeting and stimulating the sub thalamic nuclei (STN). In clinical practice, DBS is delivered continuously, resulting in stimulation when not needed, particularly during sleep when tremor is not experienced. Although the feasibility of fully embedded intention-based closed-loop DBS (CL-DBS) algorithms for ET shown, in attendance was the, be deficient in the investigation over the performanceactivities whilst be asleep and napping. To this end, the performance of CL-DBS during night hours can be investigated. The patients can be implanted with an investigational neurostimulator. So that at-home recordings to track the adaptive state and stimulation current overnight can be observed for which subjects can be instructed to record 30 minutes of awake data, keep recording through the night, and indicate when they woke up. Although self-reporting indicates that CL-DBS does not disrupt sleep, the stimulation may trigger throughout the entire night of sleep and can be shown a need to account for sleep when developing CL-DBS algorithms for ET.

6. Ethical No.

Nims/2019/02/vrr.

7. Source of Funding

DST Funded CSRI Project Rf. SR/CSRI/201/2016.

8. Conflict of Interest

None.

References

- Karthick PA, Wan KR, Qi ASA, Dauwels J, King NKK. Automated detection of subthalamic nucleus in deep brain stimulation surgery for Parkinson's disease using microelectrode recordings and wavelet packet features. *J Neurosci Methods*. 2020;343:108826.
- Raju VR, Mridula RK. Effect of Microelectrode Recording in Accurate targeting STN with High Frequency DBS in Parkinson Disease. *IETE J Res.* 2019;68(1):136–49.
- Shin-Yuan C, Sheng-Huang L, Shinn-Zong L, Subthalamic Nucleus Deep Brain Stimulation for Parkinson's Disease – An Update Review. Tzu Chi Med J. 2005;17(4):205-12.
- Pollo C, Vingerhoets F, Pralong E, Ghika J, Maeder P, Meuli R et al. Localization of electrodes in the subthalamic nucleus on magnetic resonance imaging. *J Neurosurg*. 2007;106(1):36–44.
- Sanchez Castro J, Pollo C, Cuisenaire O, Villemure J, Thiran J. Validation of experts versus atlas-based and automatic registration methods for subthalamic nucleus targeting on MRI. *Int J CARS*, 2006;1:5–12.
- Pesenti A, Rohr M, Egidi M, Rampini P, Tamma F, Locatelli M et al. The subthalamic nucleus in Parkinson's disease: power spectral density analysis of neural intraoperative signals. *Neurol Sci.* 2003;24(6):367–74.
- Luján J, Noecker A, Butson C, Cooper S, Walter B, Vitek J et al. Automated 3-Dimensional Brain Atlas Fitting to Microlectrode Recordings from Deep Brain Stimulation Surgeries. Stereotact Func Neurosurg, 2009;87(4):229–40.

- 8. Wong S, Baltuch G, Jaggi J, Danish S. Functional localization and visualization of the subthalamic nucleus from microelectrode recordings acquired during DBS surgery with unsupervised machine learning. *J Neural Eng.* 2009;6(2):1–11.
- Raju VR, Anuradha B, Effectiveness of Lead-Point with Micro recording for Determining STN- DBS in Parkinson's Disease using HMM-Models. Int Res J Eng Technol (IRJET). 2019;6(7):1472–83.
- V. Vapnik, The nature of statistical learning theory, 2nd ed. Springer-Verlag, New York, 2000.
- Boser B, Guyon I, Vapnik V. A Training Algorithm for Optimal Margin Classifiers, in Proceedings of the NAFIPS'99, 1999:580-4.
- Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten H. The WEKA data mining software: An update. ACM SIGKDD Explor Newsletter. 2008;11(1):10–18
- J. Fleiss, Statistical methods for rates and proportions, 2nd ed. John Wiley, New York, 1981.
- Rossiter HE, Davis EM, Clark EV, Boudrias MH, Ward NS. Beta oscillations reflect changes in motor cortex inhibition in healthy ageing. *Neuroimage*. 2014;91(100):360–5.
- Hammond C, Bergman H, Brown P. Pathological synchronization in Parkinson's disease: networks, models and treatments. Trends Neurosci, 2007;30(7):357–64.
- Prichep LS, John ER, Ferris SH, Reisberg B, Almas M, Alper K et al. Quantitative EEG correlates of cognitive deterioration in the elderly. *Neurobiol Aging*. 1994;15(1):85–90.
- Dustman RE, Shearer DE, Emmerson RY. Life-span changes in EEG spectral amplitude, amplitude variability and mean frequency. *Clin Neurophysiol*. 1999;110(8):1399–409.
- Brady B, Power L, Bardouille T. Age-related trends in neuromagnetic transient beta burst characteristics during a sensorimotor task and rest in the Cam-CAN openaccess dataset. *Neuroimage*. 2020;222:117245.
- Foffani G, Bianchi AM, Baselli G, Priori A. Movement-related frequency modulation of beta oscillatory activity in the human subthalamic nucleus. *J Physiol*, 2005:568(Pt 2):699–711.

- Kuhn AA, Williams D, Kupsch AR, Limousin P, Hariz M, Schneider GH. Event-related beta desynchronization in human subthalamic nucleus correlates with motor performance. *Brain*. 2004;127(Pt 4):735–46.
- Lipski WJ, Wozny TA, Alhourani A, Kondylis ED, Turner RS, Crammond DJ. et al. Dynamics of human subthalamic neuron phase-locking t o motor and sensory cortical oscillations during movement. *J Neurophysiol*. 2017;118(3):1472–87
- Schmiedt-Fehr C, Mathes B, Kedilaya S, Krauss J, Basar-Eroglu C. Aging differentially affects alpha and beta sensorimotor rhythms in a go/nogo task. *Clin Neurophysiol*. 2016;127(10):3234-42.
- Bos MJ, Sanchez AMA, Bancone R, Temel Y, de Greef BTA, Absalom AR et al. Influence of Anesthesia and Clinical Variables on the Firing Rate, Coefficient of Variation and Multi-Unit Activity of the Subthalamic Nucleus in Patients with Parkinson's Disease. J Clin Med. 2020;9(4):1229.
- Wolters AF, Heijmans M, Michielse S, Leentjens AFG, Postma AA, Jansen JFA et al. The TRACK-PD study: protocol of a longitudinal ultra-high field imaging study in Parkinson's disease. BMC Neurol. 2020;20(1):292.
- Sijben LCJ, Mess WH, Walter U, Janssen AML, Kuijf ML, Oosterloo M et al, The cross-sectional area of the vagus nerve is not reduced in Parkinson's Disease patients. eNeuSci 2022;27:100–400
- Janssen MLF, Zwartjes DGM, Temel Y, Kranen-Mastenbroek V, Duits A, Bour LJ, et al., Subthalamic neuronal responses to cortical stimulation. *Mov Disord*, 2012;27(3):435-8.

Cite this article Lavanya N, Pelluri S, Raju VR. Classification of sub cortical structures of brain using mer-based support vector machine via brain stimulators in Parkinson's. *IP Indian J Neurosci* 2025;11(1):33-37.