CODEN (USA): IAJPBB ISSN: 2349-7750 # INDO AMERICAN JOURNAL OF PHARMACEUTICAL SCIENCES http://doi.org/10.5281/zenodo.555920 Available online at: http://www.iajps.com Research Article ### MOLECULAR MODELLING STUDIES AND SYNTHESIS OF SOME BENZIMIDAZOLE DERIVATIVES AS ANGIOTENSIN CONVERTING ENZYME INHIBITORS Mohd. Imran*, Naira Nayeem and Said A. El-Feky Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, P.O. Box 840, Kingdom of Saudi Arabia. **Received:** 23 March 2017 **Accepted:** 18 April 2017 #### **Abstract:** The purpose of this study was to provide some benzimidazole derivatives as angiotensin converting enzyme (ACE) inhibitor. Based on the literature, a total of 19 benzimidazole derivatives were selected for molecular modelling study using the Autodock Vina software. The molecular modelling revealed that compound 10, 16, and 18 had binding affinity with the ACE enzyme closer to the binding affinity of lisinopril. To obtain the compounds 10, 16 and 18, the 2-(butylsulfanyl)-1H-benzimidazole was treated with 2-fluorophenacylbromide, 2-methylphenacylbromide, and 3-nitrophenacylbromide, respectively. The structures of these compounds were confirmed on the basis of their spectral data (IR, 1 H-NMR, and 13 C-NMR). The synthesized compounds were subjected for their in vitro ACE inhibitory assay using Dojindo ACE Kit-WST test kit, Dojindo Laboratories, Kumamoto, Japan. It was observed that the compounds 10 and 16 had IC50 values less than the standard drug Lisinopril and have the required attributes to become potential candidates as an ACE inhibitor. However, further studies are recommended to ensure their efficacy and safety in different animal models. Key Words: Molecular modelling, Autodock Vina, Synthesis, Benzimidazole derivatives, ACE inhibitors. #### **Corresponding author:** #### Mohd. Imran, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, P.O. Box 840, Kingdom of Saudi Arabia. E-mail: imran_inderlok@yahoo.co.in Mobile Number: +966599577945 QR code Please cite this article in press as Mohd. Imran et al, Molecular Modelling Studies and Synthesis of Some Benzimidazole Derivatives as Angiotensin Converting Enzyme Inhibitors, Indo Am. J. P. Sci, 2017; 4(04). #### INTRODUCTION: Hypertension has become a leading cause of human morbidity and mortality. According to World Health Organization [1], about 40% of people aged 25 and above are suffering from hypertension worldwide. According to recent studies [2, 3], the burden of hypertension is increasing at an alarming rate in Gulf region including in the Kingdom of Saudi Arabia. These studies have also stated that if the burden of hypertension remains uncontrolled, it will lead to major challenges to the health care system. Accordingly, efforts should be made to reduce the burden of hypertension worldwide. ĊH₃ Telmisartan Angiotensin Converting Enzyme (ACE) [4] is an enzyme that converts Angiotensin I to Angiotensin II [4]. Angiotensin II is a potent vasoconstrictor and is implicated in the development of hypertension. Therefore, drugs that prevent the generation of Angiotensin II from Angiotensin I by inhibiting the Angiotensin Converting Enzyme (ACE) as well as the drugs that are Angiotensin II receptor antagonists are in clinical use as antihypertensive agents, for example, captopril [5], enalapril [6], lisinopril [7], telmisartan [8], candesartan [9], and azilsartan [10]. Candesartan Azilsartan However, many side effects are also associated with these drugs, for example, proteinurea, rashes, bad mouth odor. arrhythmia. allergic reactions. alopecia, angioedema, pancreatitis, gastrointestinal disorders. Therefore, scientists are working to develop new ACE inhibitors as well as Angiotensine II receptor antagonists that are safer effective than these existing Benzimidazole derivatives are reported to possess diverse biological activities [11,12]. Benzimidazole been reviewed derivatives have also antihypertensive agents including as inhibitors of the Angiotensin Converting Enzyme (ACE) [13-15]. Therefore, it was aimed to perform molecular modelling studies and to synthesize benzimidazole derivatives as angiotensin converting enzyme inhibitors. #### **MATERIALS AND METHODS:** #### **Molecular Docking Methodology** Docking studies were carried out by using AutoDock Vina software [16], running on Linux Ubuntu 12.0, installed on Pentium i3 workstation. The program AutoDock Tools (ADT) released as an extension suite to the Python Molecular Viewer was used to prepare the protein and the ligand to convert the molecules into Autodock type, which is a prerequisite for the docking [17, 18]. Discovery studio 4 [19] was used for visualizing the resolutions of docked conformations. ChemDraw ultra 8.0 software [Chemical Structure Drawing Standard; Cambridge Soft corporation, USA (2003)] was used for construction of compounds which were transformed to 3D structures using Chem 3D ultra 8.0 software and the constructed 3D structures were energetically minimized by using MOPAC (semiempirical quantum mechanics) with the AM1 mozyme geometry, 100 iterations and minimum RMS gradient of0.10. For each ligand, corresponding ATOM/HETATM and CONECT records were extracted from protein complex in the pdb file. After assigning bond orders, missing hydrogen atoms were added. Then in the AutoDock tools package, the partial atomic charges were calculated using Gasteiger-Marsili method [20] and after merging nonpolar hydrogens, rotatable bonds were assigned. For receptor, the ligand, as well as any additional chains and all the heteroatoms including water molecules were removed. By the use of AutoDock Tools all missing hydrogens were added. Input molecule files for an AutoDock experiments must conform to the set of atom types supported by it. Therefore, pdbqt format was used to write ligands, recognized by AutoDock. The grid maps were calculated using AutoGrid [21]. In all dockings, a grid map with 60 x 60 x 60 points, a grid spacing of 0.503 A° were used, and the maps were centered on the ligand binding site. All the compounds taken under study were modeled by positioning them in the LPR (PDB ID: 1086) binding site in the active domain of ACE protein as accorded by the published crystal structure. From the comparative docking study of our compounds with standard binding compound (LPR) we could observe how our compounds might bind to the ACE inhibition site, based on the knowledge of the structure of similar active sites. We redocked LPR into the active site of the protein and then we docked with our compounds in order to compare the binding affinity of both ligand and the test compounds. The docking score of the targeted compounds is also provided in Table 1. Table 1: Docking scores of the selected compounds and the physical constants of the synthesized compounds | Compound | R | Molecular | M.P. | Yield | R _f Value | Docking | |------------|--------------------|---|--------|-------|----------------------|---------| | Number | | Formula | (±2°C) | (%) | | Score | | 1 | Н | $C_{19}H_{20}N_2OS$ | - | - | - | -7.9 | | 2 | 4-Br | $C_{19}H_{19}BrN_2OS$ | - | - | - | -7.4 | | 3 | 3-Br | C ₁₉ H ₁₉ BrN ₂ OS | - | - | - | -7.8 | | 4 | 2-Br | $C_{19}H_{19}BrN_2OS$ | - | - | - | -7.6 | | 5 | 2-C1 | C ₁₉ H ₁₉ ClN ₂ OS | - | - | - | -7.3 | | 6 | 3-C1 | $C_{19}H_{19}CIN_2OS$ | - | - | - | -7.6 | | 7 | 4-C1 | $C_{19}H_{19}CIN_2OS$ | - | - | - | -7.8 | | 8 | 4-F | C ₁₉ H ₁₉ FN ₂ OS | - | - | - | -7.8 | | 9 | 3-F | C ₁₉ H ₁₉ FN ₂ OS | - | - | - | -7.8 | | 10 | 2-F | $C_{19}H_{19}FN_2OS$ | 166 | 55 | 0.81 | -8 | | 11 | 2-OCH ₃ | $C_{20}H_{22}N_2O_2S$ | - | - | - | -7.7 | | 12 | 3-OCH ₃ | $C_{20}H_{22}N_2O_2S$ | - | - | - | -7.7 | | 13 | 4-OCH ₃ | $C_{20}H_{22}N_2O_2S$ | - | - | - | -7.5 | | 14 | 4-CH ₃ | $C_{20}H_{22}N_2OS$ | - | - | - | -7.4 | | 15 | 3-CH ₃ | $C_{20}H_{22}N_2OS$ | - | - | - | -7.7 | | 16 | 2-CH ₃ | $C_{20}H_{22}N_2OS$ | 143 | 70 | 0.77 | -8.1 | | 17 | 2-NO ₂ | $C_{19}H_{19}N_3O_3S$ | - | - | - | -7.7 | | 18 | 3-NO ₂ | $C_{19}H_{19}N_3O_3S$ | 155 | 60 | 0.79 | -8.2 | | 19 | 4-NO ₂ | $C_{19}H_{19}N_3O_3S$ | - | - | - | -7.7 | | Lisinopril | - | - | - | - | - | -8.3 | #### Chemistry Melting points were recorded in open capillary tubes and are uncorrected. IR (KBr) spectra were recorded on a JASCO, FTIR-4100 spectrophotometer. The ¹H-NMR and ¹³C-NMR spectra were recorded on Bruker Ultrashield 500 Plus MHz spectrophotometer. All reagents used in the present work were of analytical grade. The standard drug Lisinopril used for the assessment of *in vitro* ACE inhibitory activity was procured from Sigma Aldrich, USA. The purity of the compounds was checked on silica gel G plates using iodine vapours as visualizing agent. The $R_{\rm f}$ value of the compounds was determined by using a mixture of benzene and acetone (9:1). The synthetic pathway for the preparation of the benzimidazole derivatives is provided in Scheme 1. Scheme 1 #### Synthesis of 2-(butylsulfanyl)-1*H*-benzimidazole 1*H*-Benzimidazole-2-thiol (0.01 mol) and sodium hydroxide (0.01 mol) were mixed in 20 ml of ethanol and the mixture was heated for 1 hour. Butyl bromide (0.02 mol) was added to the mixture and the resulting mixture was refluxed for 8 hours. The contents were reduced to half of its volume and then poured on crushed ice. The solid was filtered, washed with water and recrystallized from ethanol. m.p. 133-135°C; Yield: 50%; R_f value: 0.88; IR (KBr) cm-1: 3440 (N-H), 2950, 1330, 1394; ¹H-NMR (DMSO-d₆, δ ppm): 0.85 (t, 3H), 1.28-1.48 (m, 2H), 1.62-1.73 (m, 2H), 3.25 (t, 2H), 7.03-7.17 (m, 2H), 7.35-7.55 (m, 2H), 12.33 (1H, bs). ## General procedure for the synthesis of the targeted compounds 2-(Butylsulfanyl)-1*H*-benzimidazole (0.01 mol) was dissolved in 25 ml of acetone. Potassium carbonate (0.015 mol) was added to the mixture and the mixture was stirred for about 30 minutes. Appropriate phenacyl bromide (0.01 mole) was added to the resulting mixture and it was stirred for 20 hours. The contents of the flask were reduced to half of its volume and it was poured on crushed ice. The solid separated was filtered, washed with water and recrystallized from ethanol. #### **Angiotensin Converting Enzyme Inhibitory Assay** The compounds (10, 16 and 18) that showed highest ACE inhibitory activity, according to the molecular modelling studies were subjected for the ACE inhibitory assay using Dojindo ACE Kit-WST test kit, Dojindo Laboratories, Kumamoto, Japan [22]. The enzymatic reaction was initiated by the ACE and aminoacylase in the mixture containing 3HB-GGG (3-hydroxybutyrate glycylglycylglycine) and the ACE-inhibitor. The mixture was then incubated at 37°C for 60 minutes. During this incubation, the substrate, 3HB-GGG, was enzymatically cut into 3HB-G and G-G and then 3HB and G. The yield of 3HB was monitored indirectly through formazan concentration, which was measured at 450 nm after 10 minute reaction at 25°C. Testing procedures were run according to the manufacturer's instructions using a 96-well plate without modification, and the inhibition rate was calculated based on a comparison of the optical absorbance of samples-treated wells (As), control wells (Ac), and blank wells (Ab). Absorbance was measured at 450 nm using the microplate reader Biotek-ELX800 (BioTek, Vermont, USA). Inhibition rates were calculated using the following equation. Inhibition rate (%) = $$[Ac - As / Ac - Ab] \times 100$$ Samples were suspected to inhibit the ACE activity, and therefore inhibit the formation of formazan. The more strongly inhibitory the activity of the samples, the less color appeared in the final solution. #### **Statistical Analysis** All ACE inhibitory activity data are presented as mean \pm standard deviation (SD, n = 3). The data were analyzed by one-way analysis of variance (ANOVA) with Dunnett's Multiple Comparison Test with respect to control group and standard groups using GraphPad Prism version 5.00 for Windows (GraphPad Software, San Diego California USA). The results were considered significantly different at p < 0.05. The IC₅₀ values were determined by linear regression calculator of GraphPad software. #### **RESULTS:** #### **Molecular Docking Study** The docking data of Lisinopril with the ACE protein revealed that the original co-crystallized and docked ligand overlapped with ACE protein elegantly, thereby validating our docking study. The results of docking scores in terms of binding affinity have been summarized in Table 1. The lisinopril exhibited binding affinity of -8.3 kcal/mol with the ACE protein and interacted with the Glu-162, Asn-277, Asn-281, His-383 and Tyr-523 by forming conventional H-bond as shown in 2D-diagram of ligand protein interaction (Figure 1). Interestingly, compounds 10 (Figure 2), 16 (Figure 3), and 18 (Figure 4) also showed binding affinity close to Lisinopril. The compound 10 exhibited binding affinity of -8.0 kcal/mol; the compound 16 exhibited binding affinity of -8.1 kcal/mol; and the compound 18 exhibited binding affinity of -8.2 kcal/mol. Fig 1: 2D interaction of lisinopril with the active sites of the ACE Fig 2: 2D interaction of compound 10 with the active sites of the ACE Fig 3: 2D interaction of compound 16 with the active sites of the ACE Fig 4: 2D interaction of compound 18 with the active sites of the ACE #### Chemistry The benzimidazole derivatives were prepared according to the method provided in Scheme 1. The compound o-phenylenediamine was reacted with carbon disulfide in the presence of potassium hydroxide to obtain 1*H*-benzimidazole-2-thiol. The 1*H*-benzimidazole-2-thiol was treated with butyl bromide in the presence of sodium hydroxide to provide 2-(Butylsulfanyl)-1*H*-benzimidazole. The 2-(butylsulfanyl)-1*H*-benzimidazole was treated with 2-fluorophenacylbromide, 2-methylphenacylbromide, and 3-nitrophenacylbromide to obtain the targeted compounds 10, 16 and 18, respectively. The structure of these compounds was confirmed on the basis of following data. **2-[2-(butylsulfanyl)-1***H***-benzimidazol-1-yl]-1-(2-fluorophenyl)ethanone (Compound 10):** IR (KBr) cm-1: 2955, 1700 (C=O), 1335, 1390; ¹H-NMR (DMSO-d6, δ ppm): 0.90 (t, 3H), 1.29-1.42 (m, 2H), 1.61-1.71 (m, 2H), 3.21 (t, 2H), 5.80 (s, 2H), 7.10-7.41 (m, 4H), 7.55-7.81 (m, 4H); ¹³C-NMR (DMSO-d6, δ ppm): 12.3, 20.5, 31.3, 35.3, 55.0, 109.1, 114.1, 114.3, 122.1 (2), 124.5, 126.1, 126.6, 133.5, 133.8, 137.8, 151.5, 161.1, 170.8. **2-[2-(butylsulfanyl)-1***H***-benzimidazol-1-yl]-1-(2-methylphenyl)ethanone (Compound 16):** IR (KBr) cm-1: 2950, 1695 (C=O), 1330, 1395; 1 H-NMR (DMSO-d6, δ ppm): 0.88 (t, 3H), 1.30-1.41 (m, 2H), 1.62-1.72 (m, 2H), 3.23 (t, 2H), 5.78 (s, 2H), 7.13-7.41 (m, 4H), 7.54-7.84 (m, 4H); 13 C-NMR (DMSO-d6, δ ppm): 12.3, 17.5, 20.5, 31.3, 35.3, 55.3, 109.1, 114.1, 122.1 (2C), 124.5, 126.4, 130.2, 132.1, 133.1, 133.7, 136.2, 137.8, 151.5, 170.9. **2-[2-(butylsulfanyl)-1***H***-benzimidazol-1-yl]-1-(3-nitrophenyl)ethanone (Compound 18):** IR (KBr) cm-1: 2955, 1695 (C=O), 1330, 1395; 0.89 (t, 3H), 1.30-1.41 (m, 2H), 1.62-1.70 (m, 2H), 3.23 (t, 2H), 5.79 (s, 2H), 7.13-7.40- (m, 4H), 7.52-7.80 (m, 4H); 13 C-NMR (DMSO-d6, δ ppm): 12.3, 20.5, 31.3, 35.3, 55.0, 109.1, 114.1, 121.3, 122.1 (2C), 127.2, 128.4, 133.1, 133.8, 136.5, 137.8, 146.7, 151.5, 170.8. #### ACE inhibitory activity Based on the molecular modelling results, the compounds **10**, **16** and **18** were selected for further *in vitro* ACE inhibitory assay using Dojindo ACE Kit-WST test kit, Dojindo Laboratories, Kumamoto, Japan. The ACE inhibitory activity data of these compounds are provided in Table 2. Table 2: In vitro ACE inhibitory activity of the synthesized benzimidazole derivatives | Compound | Concentration
(μg/mL) | %ACE Inhibition (Mean ± SD) | IC50
(µg/mL) | Docking
Score | |-------------|--------------------------|-----------------------------|-----------------|------------------| | | 1 | 41.10 ± 0.22* | | | | | 2 | $62.11 \pm 0.12*$ | 0.4 | -8.3 | | Lisinopril | 4 | $77.61 \pm 0.09*$ | | | | | 8 | 88.16 ± 0.55 * | | | | | 1 | $38.11 \pm 0.22*$ | | | | Compound 10 | 2 | 60.01 ± 0.41 * | 0.37 | -8 | | | 4 | $75.11 \pm 0.46*$ | | | | | 8 | 84.60 ± 0.11 | | | | | 1 | $38.33 \pm 0.55*$ | | | | | 2 | $61.89 \pm 0.42*$ | 0.36 | -8.1 | | Compound 16 | 4 | $77.11 \pm 0.31*$ | | | | | 8 | $86.16 \pm 0.17*$ | | | | | 1 | 40.22 ± 0.18 * | | | | 0 140 | 2 | $63.81 \pm 0.14*$ | 1.92 | -8.2 | | Compound 18 | 4 | 78.0 ± 0.16 * | | | | | 8 | $88.66 \pm 0.35*$ | | | ^{*}p < 0.05; n = 3. #### **DISCUSSION:** Based on the literature [11-15], 19 benzimidazole derivatives were selected for molecular modelling study with the expectation that these compounds may provide good ACE inhibitory activity. The structure of these compounds is provided in Table 1. The molecular modelling study revealed that the compound 10, 16, and 18 had binding affinity with ACE enzyme closer to the binding affinity of lisinopril. These compounds were synthesized by the treatment of 2-(butylsulfanyl)-1*H*-benzimidazole 2-fluorophenacylbromide, with methylphenacylbromide, and 3-nitrophenacylbromide to obtain the compounds 10, 16 and 18, respectively. The structures of these compounds were confirmed on the basis of their spectral data (IR, ¹H-NMR, and ¹³C-NMR). The synthesized compounds were subjected for their in vitro ACE inhibitory assay using Dojindo ACE Kit-WST test kit, Dojindo Laboratories, Kumamoto, Japan. The ACE inhibitory activity of these compounds revealed that the compound 10 had an IC₅₀ value of 0.37 µg/mL; the compound 16 had an IC₅₀ value of 0.36 µg/mL; the compound 18 had an IC₅₀ value of 1.92 µg/mL; and lisinopril had an IC₅₀ value of 0.40 µg/mL. These results suggest that the compound 10 and the compound 16 are better ACE inhibitors than Lisinopril. Contrary to the results of molecular docking score of the compound 18, it did not show expected results in in vitro ACE inhibitory assay. #### **CONCLUSION:** Based on the results it has been concluded that the compounds **10** and **16** had IC₅₀ values less than the standard drug lisinopril and they also have the required pharmacodynamics attributes to become potential candidates as an ACE inhibitors. However, further studies are recommended to ensure their efficacy and safety in different animal models. #### **ACKNOWLEDGEMENT:** The authors gratefully acknowledge the approval and the support of this research study by the grant no. 4673-PHM-2016-1-6-F from the Deanship of Scientific Research at Northern Border University, Arar, K.S.A. #### **REFERENCES:** - 1.World Health Organization, 2013. A global brief on hypertension [ONLINE] Available at: http://apps.who.int/iris/bitstream/10665/79059/1/WH O_DCO_WHD_2013.2_eng.pdf?ua=1; Accessed on March 15, 2017. - 2.Charbel EB, Ziad AM, Marwa T, Farah D, Margaret R, Sara J, Sarah M, Mohammad AS, Mohammad AA, Ali HM, Abdullah AA. - Hypertension and its associated risk factors in the Kingdom of Saudi Arabia, 2013: A National Survey. Inter. J. Hypertens, 2014, Article ID 564679, 8 pages http://dx.doi.org/10.1155/2014/564679. - 3.Najlaa A, Faruk A. Prevalence of cardiovascular disease and associated risk factors among adult population in the Gulf region: A systematic review. Adv. Public Health. 2015, Article ID 235101, 23 pages http://dx.doi.org/10.1155/2015/235101. - 4.Naik P, Murumkar P, Giridhar R, Yadav MR. Angiotensin II receptor type 1 (AT1) selective nonpeptidic antagonists A perspective. Bioorg. Med. Chem. 2010; 18:8418-8456. - 5.Furqan M, Mahmood A, Aysha R. Synthesis and in vitro characterization of hydroxypropyl methylcellulose-graft-poly (acrylic acid/2-acrylamido-2-methyl-1-propanesulfonic acid) polymeric network for controlled release of captopril. Acta Pol. Pharm. 2016; 73(1):183-196. - 6.Loscertales HR, Modamio P, Lastra CF, Braza AJ, Tobaruela G, Mariño EL. Stability of enalapril repackaged into monitored dosage system. Curr. Med. Res. Opin. 2015; 31(10): 1915-1917. - 7.Bouabdallah S, Ben Dhia MT, Driss MR. Study of a conformational equilibrium of lisinopril by HPLC, NMR, and DFT. Int. J. Anal. Chem. 2014; Article ID 494719. - 8.Rizos CV, Elisaf MS. Telmisartan: a multifaceted antihypertension drug. Curr. Med. Res. Opin. 2016; 15:1-2. - 9.Kang MK, Chung WB, Hong SK, Kim OR, Ihm SH, Chang K, Seung K. Effects of candesartan cilexetil and amlodipine orotate on receptor for advanced glycation end products expression in the aortic wall of Otsuka Long-Evans Tokushima Fatty (OETFF) type 2 diabetic rats. Arch. Pharm. Res. 2016; 39(4):565-576. - 10.Angeloni E. Azilsartan medoxomil in the management of hypertension: an evidence-based review of its place in therapy. Core Evid. 2016; 11:1-10 - 11. Yogita B, Om S. The therapeutic journey of benzimidazoles: A review. Bioorg. Med. Chem. 2012; 20:6208–6236. - 12.Monika G, Chander M. Development of drugs based on imidazole and benzimidazole bioactive heterocycles: recent advances and future directions. Med. Chem. Res. 2016; 25:173-210. - 13.Geeta Y, Swastika G. Structure activity relationship (SAR) study of benzimidazole scaffold for different biological activities: A mini-review. Eur. J. Med. Chem. 2015; 97:419-443. - 14. Kuldipsinh PB, Stoyanka N, Illiyan I, Manjunath DG. Novel research strategies of benzimidazole derivatives: A review. Mini-Rev. Med. Chem. 2013; 13(10):1421-1447. - 15.Rangappa SK, Asha H, Srinivasa B, Bhari MN. Comprehensive review in current developments of benzimidazole-based medicinal chemistry. Chem. Bio. Drug Des. 2015; 86(1):19-65. - 16.Natesh R, Schwager SL, Sturrock ED, Acharya KR. Crystal structure of the human angiotensin-converting enzyme-lisinopril complex. Nature. 2003; 421(6922):551-554. - 17.Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 2010; 31:455-461. - 18.Michel FS. Python: A Programming Language for Software Integration and Development. J. Mol. Graphics Mod. 1999; 17:57-61. - 19.Dassault Systems BIOVIA, Discovery Studio Modeling Environment, San Diego: Dassault Systèmes, 2016. - 20. Gasteiger J, Marsili M, Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. *Tetrahedron*. 1980; 36:3219-3228. - 21.Goodford PJ. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem. 1985; 28:849–857. - 22.Imran M, Nayeem N. Synthesis and Antihypertensive Activity of Some Novel Pyridazinones. Orient J Chem. 2016; 32(1):267-274.