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Learning good image priors is of utmost importance for  the study of vision, computer vision and image 

processing applications. Learning priors and optimizing over whole images can lead to tremendous 

computational challenges. In contrast, when we work with small image patches, it is possible to learn priors 

and perform patch restoration very efficiently. This raises three questions - do priors that give high likelihood 

to the data also lead to good performance in restoration? Can we use such patch based priors to restore a full 

image? Can we learn better patch priors? In this work we answer these questions.  We compare the 

likelihood of several patch models and show that priors that give high likelihood to data perform better in 

patch restoration. Motivated by this result, we propose a generic framework which allows for whole image 

restoration using any patch based prior for which a MAP (or approximate MAP) estimate can be calculated. 

We show how to derive an appropriate cost function, how to optimize it and how to use it to restore whole 

images. Finally, we present a generic, surprisingly simple Gaussian Mixture prior, learned from a set of 

natural images. When used with the proposed framework, this Gaussian Mixture Model outperforms all other 

generic prior methods for image denoising, deblurring and inpainting. 

 

KEYWORDS: Gaussian Mixture Model, Image denoising, Deblurring, Damaged Images and Inpainting

 

Copyright © 2017 International Journal for Modern Trends in Science and Technology  
All rights reserved. 

 

I. INTRODUCTION 

  Image priors have become a popular tool for 

image restoration tasks. Good priors have been 

applied to different tasks such as image denoising, 

image inpainting and more, yielding excellent 

results. However, learning good priors from natural 

images is a daunting task - the high dimensionality 

of images makes learning, inference and 

optimization with such priors prohibitively hard.  

 

From Patch Likelihoods to Patch Restoration: 

For many patch priors a closed form of log 

likelihood, Bayesian Least Squares (BLS) and 

Maximum A-Posteriori (MAP) estimates can be 

easily calculated. Given that, we start with a simple 

question: Do priors that give high likelihood for 

natural image patches also produce good results in 

a restoration task such as denoising. 

In order to provide an answer for this question we 

compare several popular priors, trained over 

50,000 8 8 patches randomly sampled from the 

training set of with their DC removed. We compare 

the log likelihood each model gives on a set of 

unseen natural image patches (sampled from the 

test set of [10]) and the performance of each model 

in patch denoising using MAP estimates. The 

models we use here are: Independent pixels with 

learned marginals (Ind. Pixel), Multivariate 

Gaussian over pixels with learned covariance 

(MVG), Independent PCA with learned 

(non-Gaussian) marginals and ICA with learned 
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marginals. For a detailed description of these 

models see the Supplementary Material.  

 

From Patch Likelihoods to Whole Image 

Restoration: 

       Motivated by the results in Section 2, we 

now wish to answer the second question of this 

paper - do patch priors that give high likelihoods 

perform better in whole image restoration? To 

answer this question we first need to consider the 

problem of how to use patch priors for whole image  

 
                       Fig : Denoising  

II. PERFORMANCE 

   The likelihood of several off-the-shelf patch 

priors, learned from natural images, along with 

their patch denoising performance. As can be seen, 

patch priors that give higher likelihood to the data 

give better patch denoising performance (PSNR in 

dB). In this paper we show how to obtain similar 

performance in whole image restoration. 

   To illustrate the advantages and difficulties of 

working with patch priors, consider Figure 2. 

Suppose we learn a simple patch prior from a given 

image (Figure 2a). To learn this  prior take all 

overlapping patches from the image, remove their 

DC component and build a histogram of all patches 

in the image, counting the times they appear in it. 

Under this prior, for example, the most likely patch 

would be flat (because the majority of patches in 

the original image.  

Framework and Optimization: 

Expected Patch Log Likelihood – EPLL: 

        The basic idea behind our method is to try to 

maximize the Expected Patch Log Likelihood 

(EPLL) while still being close to the corrupted image 

in a way which is dependent on the corruption 

model. Given an image x (in vectorized form) we 

define the EPLL under prior p as: 

     log 1P i

i

EPLL x p Px  

         Where iP  is a matrix which extracts the 

i-th patch from the image (in vectorized form) out of 

all overlapping patches, while  log ip Px  is the 

likelihood of the i-th patch under the prior p. 

Assuming a patch location in the image is chosen 

uniformly at random, EPLL is the expected log 

likelihood of a patch in the image (up to a 

multiplication by 1 N ). 

          Now, assume we are given a corrupted 

image y, and a model of image corruption of the 

form 
2

Ax y  -We note that the corruption model 

we present here is quite general, as denoising, 

image inpainting and deblurring [7], among others, 

are special cases of it. We will discuss this in more 

detail in Section 3.1.3. The cost we propose to 

minimize in order to find the reconstructed image 

using the patch prior p is: 

     
2

2
2

p Pf x y Ax y EPLL x


    

          Equation 2 has the familiar form of a 

likelihood term and a prior term, but note that 

 PEPLL x  is not the log probability of a full image. 

Since it sums over the log probabilities of all 

overlapping patches, it "double counts" the log 

probability. Rather, it is the expected log likelihood 

of a randomly chosen patch in the image. 

Optimization: 

   Direct optimization of the cost function in 

Equation 2 may be very hard, depending on the 

prior used.  

 
Fig 2:  Optimization using Priors 

alternative optimization method called ―Half 

Quadratic Splitting‖ which has been proposed 

recently in several relevant contexts. This method 

allows for efficient optimization of the cost. In ―Half 

Quadratic Splitting‖ we introduce a set of patches  

 
1

N
iz  one for each overlapping patch iPx  in the 

image, yielding the following cost function: 
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      Note that as    we restrict the patches 

iPx  to be equal to the auxiliary variables iz  and 

the solutions of Equation 3 and Equation 2 

converge. For a fixed value of  , optimizing.  

 

Related Methods: 

      Several existing methods are closely related, 

but are fundamentally different from the proposed 

framework. The first related method is the Fields of 

Experts (FoE) framework by Roth and Black [6]. In 

FoE, a Markov Random Field (MRF) whose filters 

are trained by approximately maximizing the 

likelihood of the training images is learned. Due to 

the intractability of the partition function, learning 

with this model is extremely hard and is performed 

using contrastive divergence. Inference in FoE is 

actually a special case of our proposed method - 

while the learning is vastly different, in FoE the 

inference procedure is equivalent to optimizing 

Equation 2 with an independent prior (such as 

ICA), whose filters were learned before hand. A 

common approximation to learning MRFs is to 

approximate the log probability of an image as a 

sum of local marginal or conditional probabilities 

as in the method of composite likelihood [13] or 

directed models of images [14]. In contrast, we do 

not attempt to approximate the global log 

probability and argue that modeling the local patch 

marginals is sufficient for image restoration. This 

points to one of the advantages of our method – 

learning a patch prior is much easier than learning 

a MRF. As a result, we can learn a much richer 

patch prior easily and incorporate it into our 

framework - as we show later. 

          Another closely related method is KSVD [3] 

- in KSVD, one learns a patch based dictionary 

which attempts to maximize the sparsity of 

resulting coefficients. This dictionarycan be 

learned either from a set of natural image patches 

(generic, or global as it is sometimes called) or the 

noisy image itself (image based). Using this 

dictionary, all overlapping patches of the image are 

denoised independently and then averaged to 

obtain a new reconstructed image. This process is 

repeated for several iterations using this new 

estimated image. Learning the dictionary in KSVD 

is different than learning a patch prior because it 

may be performed as part of the optimization 

process (unless the dictionary is learned 

beforehand from natural images), but the 

optimization in KSVD can be seen as a special case 

of our method - when the prior is a sparse prior, 

our cost function and KSVD’s are the same. We 

note again, however, that our framework allows for 

much richer priors which can be learned 

beforehand over patches - as we will see later on, 

this boasts some tremendous benefits. 

 Patch Likelihoods and the EPLL Framework: 

         We have seen that the EPLL cost function 

(Equation 2) depends on the likelihood of patches. 

Going back to the priors from Section 2 we now ask 

- do better priors (in the likelihood sense) also lead 

to better whole image denoising with the proposed 

EPLL framework? Figure 4 shows the average 

PSNR obtained with 5 different images from the 

Berkeley training set, corrupted with Gaussian 

noise at 25   and denoised using each of the 

priors in section 2. We compare the result obtained 

using simple patch averaging (PA) and our 

proposed EPLL framework. 

 
                                         Fig 4: Image 

Denoising  Performance (a) Whole image 

denoising with the proposed framework with 

all the priors discussed in Section (b) Note how 

the EPLL framework improves performance 

significantly when compared to simple patch 

averaging (PA) 

 

Gaussian Mixture Prior: 

          We learn a finite Gaussian mixture model 

over the pixels of natural image patches. Many 

popular image priors can be seen as special cases 

of a GMM  but they typically constrain the means 

and covariance matrices during learning. In 

contrast, we do not constrain the model in any 

way—we learn the means, full covariance matrices 

and mixing weights, over all pixels. Learning is 

easily performed using the Expectation 

Maximization algorithm (EM). With this model, 

calculating the log likelihood of a given patch is 

trivial: 

     
1

log log , 5
K

k k k

k

p x N x 


 
  

 

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       Where k  are the mixing weights for each of 

the mixture component and k  and k  are the 

corresponding mean and covariance matrix. 

      Given a noisy patch y, the BLS estimate can 

be calculated in closed form (as the posterior is just 

another Gaussian mixture) [1]. The MAP estimate, 

however, can not be calculated in closed form. To 

tackle this we use the following approximate MAP 

estimation procedure: 

1. Given noisy patch y we calculate the conditional 

mixing weights  k P k y  . 

2. We choose the component which has the highest 

conditional mixing weight max maxk kk  . 

3. The MAP estimate x̂  is then a Wiener filter 

solution for the maxk -th component: 

   
max max max

1
2 2ˆ

k k kx I y I  


      

 
Table 1:Difference Between Patch And Image 

Restoration 

     GMM model performance in log likelihood (Log 

L), patch denoising (BLS and MAP) and image 

denoising (Patch Average (PA) and EPLL, the 

proposed framework) - note that the performance is 

better than all priors in all measures. The patches, 

noisy patches, images and noisy images are the 

same as in Figure 1 and Figure 4. All values are in 

PSNR (dB) apart from the log likelihood. 

Comparison: 

      We learn the proposed GMM model from a 

set of 
62 10  patches, sampled from [10] with their 

DC removed. The model is with learned 200 

mixture components with zero means and full 

covariance matrices. We also trained GMMs with 

unconstrained means and found that all the means 

were very close to zero. As mentioned above, 

learning was performed using EM. Training with 

the above training set takes around 30h with 

unoptimized MATLAB code1. Denoising a patch 

with this model is performed using the 

approximate MAP procedure described Having 

learned this GMM prior, we can now compare its 

performance both in likelihood and denoising with 

the priors we have discussed thus far in Section 1 

on the same dataset of unseen patches. Table 1 

shows the results obtained with the GMM prior - as 

can be seen, this prior is superior in likelihood, 

patch denoising and whole image denoising to all 

other priors we discussed thus far.  

 
Fig : PSNR Comparision 

 Comparison of the performance of the ICA prior to 

the high likelihood GMM prior using EPLL and 

noise level 25  . 5a depicts a scatter plot of 

PSNR values obtained when denoising 68 images 

from[10]. Note the superior performance of the 

GMM prior when compared to ICA on all images. 5b 

depicts a detail shot from two of the images - note 

the high visual quality of the GMM prior result. The 

details are best seen when zoomed in on a 

computer screen. 

Comparison to State-Of-The-Art Methods: 

          We compare the performance of EPLL with 

the proposed GMM prior with leading image 

restoration methods – both generic and image 

based. All the experiments were conducted on 68 

images from the test set of the Berkeley 

Segmentation Database [10]. All experiments were 

conducted using the same noisy realization of the 

images. In all experiments we set 
2N  , 

where N is the number of pixels in each patch. We 

used a patch size of 8 8  in all experiments. For 

the GMM prior, we optimized (by hand) the values 

for   on the 5 images from the Berkeley training 

set – these were set to 
21   [1, 4, 8, 16, 32, 

64]. Running times on a Quad Core Q6600 

processor are around 300s per image with 

unoptimized  MATLAB code. 

 
Table 2: Comparision of Generic and Image 

based methods Prior 
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 Summary of denoising experiments results. Our 

method is clearly state-of-the-art when compared 

to generic priors, and is competitive with image 

based method such as BM3D and LLSC which are 

state-of-the-art in image denoising. 

 
 Eigenvectors of 6 randomly selected covariance 

matrices from the learned GMM model, sorted by 

eigenvalue from largest to smallest. Note the 

richness of the structures - some of the 

eigenvectors look like PCA components, while 

others model texture boundaries, edges and other 

structures at different orientations. 

Generic Priors: 

        We compare the performance of EPLL and 

the GMM prior in image denoising with leading 

generic methods - Fields of Experts [6] and KSVD 

[3] trained on natural image patches (KSVDG). The 

summary of results may be seen in Table 2a - it is 

clear that our method outperforms the current 

state-of-the- art generic methods. 

 

Image Based Priors: 

        We now compare the performance of our 

method (EPLL+GMM) to image specific methods - 

which learn from the noisy image itself. We 

compare to KSVD, BM3D [5] and LLSC [8] which 

are currently the state-of-the-art in image 

denoising. The summary of results may be seen in 

Table 2b. As can be seen, our method is highly 

competitive with these state-of-the-art method, 

even though it is generic. Some examples of the 

results may be seen in Figure 6. 

 
Fig 6 : Denoised Images 

Image Deblurring: 

            While image specific priors give excellent 

performance in denoising, since the degradation of 

different patches in the same image can be 

"averaged out", this is certainly not the case for all 

image restoration tasks, and for such tasks a 

generic prior is needed. An example of such a task 

is image deblurring. We convolved 68 images from 

the Berkeley database (same as above) with the 

blur kernels supplied with the code of [7]. We then 

added 1% white Gaussian noise to the images, and 

attempted reconstruction using the code by [7] and 

our EPLL framework with GMM prior. Results are 

superior both in PSNR and quality of the output, as 

can be seen in Figure 8. 

 
Fig 8: Deblurring experiments 

  

III. RESULTS AND CONCLUSION 

By applying above discussed methods the results 

are of the corrupted images are as follows: 

      
Fig 8.1(a)corrupted image          Fig 8.1(b) 

restored image 

    
  Fig 8.2 (a) corrupted image    Fig 8.2 (b) 

restored image                
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IV. CONCLUSION 

 We have presented a new system for meaningful 

structure extraction from texture. Our main 

contribution is twofold. First, we proposed novel 

variation measures to capture the nature of 

structure and texture. We have extensively 

evaluated these measures and conclude that they 

are indeed powerful to make these two types of 

visual in-formation separable in many cases. 

Second, we fashioned a new optimization scheme 

to transform the original non-linear problem to a 

set of sub problems that are much easier to solve 

quickly. Several applications making use of these 

images and drawings were proposed. Our method 

does not need prior texture information. It could, 

thus, mistake part of structures as texture, if they 

are visually similar in scales. One example is 

shown in Figure 15, where structures are not all 

preserved. It is because the scale and shape of 

these edges are overly close to those of the 

underlying texture; significantly obscure the 

difference from the statistical perspective. 
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