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ABSTRACT 

 

Machekposhti, Karim Hamidi, Hossein Sedghi, Abdolrasoul Telvari & Hossein Babazadeh. 2017. Modelling 

Rainfall in Karkheh Dam Reservoir of Iran using Time Series Analysis (Stochastic ARIMA Models). Lebanese 

Science Journal. Vol. 18, No. 2: 204-218. 

 

Time series analysis and prediction has become a major tool in different applications in meteorological and 

hydrological phenomena, such as rainfall, temperature, evaporation, flood, drought etc. Among the most effective 

approaches for analyzing time series data is the auto regressive integrated moving average (ARIMA) model introduced 

by Box and Jenkins. In this study we used Box-Jenkins methodology to build non-seasonal ARIMA model for annual 

rainfall data of Karkheh dam reservoir in Iran for Jelogir Majin and Pole Zal stations (upstream of Karkheh dam 

reservoir) for the period 1966-2015. In this paper, ARIMA 8.1.1 and 9.1.1 models were found adequate for annual 

rainfall at Jelogir Majin and Pole Zal stations, respectively, and these models were used to predict the annual rainfall 

for the coming ten years to help decision makers to establish priorities in terms of water demand management. The 

statistical analysis system (SAS) and statistical package for the social science (SPSS) softwares were used to determine 

the best model to use for these series. 

 

Keywords: time series analysis, ARIMA model, rainfall prediction, Karkheh dam reservoir. 

 

INTRODUCTION 

 

Water is one of the most important natural resources and a key element in the socio- economic development 

of a country. Generally, water resources of the world and in Iran are under heavy stress due to increased demand and 

limitation of available quantity. Proper water management is the only option that ensures a squeezed gap between the 

demand and supply. Rainfall is the major component of the hydrologic cycle and this is the primary source of runoff. 

Worldwide, many attempts have been made to model and predict rainfall behavior using various empirical, statistical, 

numerical and deterministic techniques. They are still in research stage and needs more focused empirical approaches 

to estimate and predict rainfall accurately. Runoff generated by rainfall is very important in various activities of water 

resources development and management. The method of transformation of rainfall to runoff is highly complex, 

dynamic, nonlinear, and exhibits temporal and spatial variability. It is further affected by many parameters and often 

inter-related physical factors. Determining a robust relationship between rainfall and runoff for a watershed has been 

one of the most important problems for hydrologists, engineers and agriculturists. Furthermore, rainfall is essentially 

required to fulfil various demands including agriculture, hydropower, industries, environment and ecology. It is implicit 

that the rainfall is a natural phenomenon occurring due to atmospheric and oceanic circulation. It has large variability 

at different spatial and temporal scales. However, this input is subjected to uncertainty and stochastic errors (Mahsin et 

al., 2012). 
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Prediction of annual rainfall is significantly important in water resources management and crop pattern 

design. The annual rainfall data may be used to predict rainfall by time series analysis. The main development of time 

series models is done by Box and Jenkins (1976). Many attempts have been made in the recent past to model and predict 

rainfall using various techniques, with the use of time series techniques proving to be the most common. In time series 

analysis it is assumed that the data consists of a systematic pattern (usually a set of identifiable components) and random 

noise (error) which usually makes the pattern difficult to identify. Time series analysis techniques usually involve some 

method of filtering out noise in order to make the pattern more salient. The time series patterns can be described in 

terms of two basic classes of components: trend and seasonality. The trend represents a general systematic linear or 

(most often) nonlinear component that changes over time and does not repeat or at least does not repeat within the time 

range captured by the data. The seasonality may have a formally similar nature; however, it repeats itself in systematic 

intervals over time. Those two general classes of time series components may coexist in real-life data. The ARIMA 

model is an important predicting tool, and is the basis of many fundamental ideas in time series analysis. An auto-

regressive model of order p is conventionally classified as AR (p) and a moving average model with q terms is known 

as MA (q). A combined model that contains p auto-regressive terms and q moving average terms is called ARMA (p.q). 

If the object series differed in time to achieve stationarity, the model is classified as ARIMA (p.d.q), where the letter 

“I” signifies “integrated”. Thus, an ARIMA model is a combination of an auto-regressive (AR) process and a moving 

average (MA) process applied to a non-stationary data series. ARIMA modelling has been successfully applied in 

various water and environmental management applications (Meher and Jha, 2013). 

 

Gurudeo and Mahbub (2010) applied time series analysis for rainfall and temperature interactions in coastal 

catchments of Queensland, Australian. They implied that ARIMA model is suitable for prediction of these series. Eni 

and Adeyeye (2015) applied seasonal ARIMA modelling for forecast of rainfall in Warri town, Nigeria. The ARIMA 

1.1.1 (0.1.1)12 model fitted to this series with AIC value of 281. Model adequacy checks showed that the model was 

appropriate. Coefficient of the fitted model was finalized by the residual tests (Eni and Adeyeye, 2015). Wang et al. 

(2014) used the improved ARIMA model to predict the monthly precipitation at the Lanzhou station in Lanzhou, China. 

The results showed that the accuracy of the improved model is significantly higher than the seasonal model (Wang et 

al., 2014). Mahsin et al. (2012) used Box-Jenkins methodology to build seasonal ARIMA model for monthly rainfall 

data taken for Dhaka station for the period 1981-2010 with a total of 354 readings (Mahsin et al., 2012). Mirmousavi 

et al. (2014) studied precipitation behavior in Khoi meteorological station using statistical methods (Mirmousavi et al., 

2014). They found that ARIMA 1.1.0 model was the best fitted to annual precipitation. Based on this model, annual 

precipitation was predicted in 95 percent level by 2016 in this station. During recent decades, several researchers have 

developed methods of analyzing stochastic characteristics of rainfall time series (Ansari, 2013; Akpanta et al., 2015; 

Sayemuzzaman and Jha, 2014; Soltani et al., 2007 and Srikanthan and McMahon, 2001). 

 

The objective of this study was modelling and prediction of the annual rainfall data of Karkheh dam reservoir 

in Iran for Jelogir Majin and Pole Zal stations (upstream of Karkheh dam reservoir) by stochastic ARIMA model using 

Box-Jenkins approach in order to predict future rainfall values by the best ARIMA model and identify whether the 

annual rainfall had significantly changed during the period 1966 to 2015 under the impacts of climate change and 

human activities. In addition, ARIMA models which were found adequate, were used to predict the annual rainfall for 

the coming ten years to help decision makers to establish priorities in terms of water demand management. 

 

Study Area and Data Collection 

 

Karkheh dam is a multipurpose hydro development designed to control the Karkheh river flow for irrigation, 

electric power generation and for partial accumulation of extreme Karkheh river inflows into Karkheh dam. Krakheh 

dam was constructed on the Karkheh River in the West of Iran, 24 kilometer upstream from Andimeshk town in 

Khuzestan province, northwest Iran. In 2001 the project was completed. The project generates 400 Mw of electrical 

power from performing its flood control function. Khuzestan province of Iran gets the benefit of irrigation water from 

its reservoir. Figure 1 shows the study area location. The mean rainfall in Karkheh dam reservoir for the entire period 

of record of 50 years from 1966 to 2015 in Jelogir Majin and Pole Zal hydrometric stations (stations number 9 and 10 

in figure 1) are plotted as shown in Figures 2 and 3. This data were obtained from Iran Water Resources Management 

Organization (IWRMO). The basin’s climate is best described as Mediterranean, having mild/wet winters and hot/dry 

summers, with mean annual precipitation ranging from 150 mm in the southern arid plains to 750 mm in the northern 



Lebanese Science Journal, Vol. 18, No. 2, 2017   206 

 

 

 
 

mountains. The Karkheh River is directly connected to the Karkheh dam, the largest surface reservoir in the region, 

which has an important role in supplying water to the region. 

 
Figure 1. The location of the investigated area 

 

Materials and Methods 

 

Typically various statistical tools are applied to auto-correlate time series of data for modelling and prediction 

of future values in the annual rainfall series. In general, auto-regressive (AR), moving average (MA), auto-regressive 

moving average (ARMA) and auto-regressive integrated moving average (ARIMA) models are applied to time series 

of rainfall data. A model which depends only on previous outputs of a system to predict an output is called an auto-

regressive (AR) model. While a model which depends only on inputs to the system to predict an output is called a 

moving average (MA) model. The model derived from auto-regressive and moving average processes may be a mixture 

of these two and of higher order than one as well, which is termed as a stationary ARMA model with its random shocks 

independent and normally distributed with zero mean and constant variance. An ARMA model can be noted as ARMA 

(p, q) where p is the number of AR parameters and q is the number of MA parameters. It models only stationary data 

set i.e. the data set for which residuals are independent for all time period. It is understood that all hydrologic data sets 

are not stationary in real life. Some data sets follow some sort of persistence or auto-correlation which is inherently 

present in it and cannot be removed. Some sorts of trend and cycle are also associated with such data sets. Modelling 

of non-stationary data sets with ARMA model does not look appropriate because ARMA model is not applicable to 

non-stationary series. Non-stationary data sets can be modeled through auto-regressive and moving average processes 

through differentiation i.e. the data set is differentiated until it becomes stationary. For real life data required 

differentiation at maximum order of three to make it stationary. In other words, ARMA models rely upon the 

assumption that the time series is stationary. Techniques have been developed to convert (normalize) non-stationary 

time series into stationary ones so that the classic theory can be applied. As an alternative, the ARIMA has been 

developed as a generalization of the classical ARMA models when there is evidence of non-stationarity. ARIMA 

models have been incorporated into the Box-Jenkins set of time series analysis models. ARIMA model is an extension 

of ARMA model in the sense that by including auto-regressive and moving average it has an extra part of differentiating 

the time series. If a data set exhibits long term variations such as trend, seasonality and cyclic components, 

Karkheh Dam 
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differentiating of dataset in ARIMA allows the model to deal with such long term variations. Two common processes 

of ARIMA in identifying patterns in time series data and forecasting are: auto-regressive and moving average. 

 

Auto-regressive process: Most time series consist of elements that are serially dependent at the time of 

occurrence in the sense that one can estimate a coefficient or a set of coefficients that describe consecutive elements of 

the series from specific, time-lagged (previous) elements. Each observation of the time series is made up of a random 

error component (random shock, ξ) and a linear combination of prior observations. 

 

Moving average process: Independent from the auto-regressive process, each element in the series can also 

be affected by the past error (or random shock) which is not considered by the auto-regressive component. Each 

observation of the time series is made up of a random error component (random shock, ξ) and a linear combination of 

prior random shocks. 

 

The ARIMA model includes three types of parameters which are: the auto-regressive parameters (p), the 

number of differencing passes (d), and moving average parameters (q). In the notation introduced by Box and Jenkins, 

models are summarized as ARIMA p.d.q. For example, a model described as ARIMA 1.1.1 means it contains 1 auto-

regressive parameter and 1 moving average parameter for the time series after it is differentiated once to attain 

stationary. The general form of the ARIMA model describing the current value Xt of a time series is: 

 

φ1 (B) (1-B) Xt = θ1 (B) et    (Equation 1) 

 

Where φ1= Auto-regressive parameter, and θ1= Moving average parameter. 

 

Four basic stages of ARIMA in identifying patterns in time series data and prediction are model identification, 

parameter estimation, diagnostic checking and forecasting. 

 

Model identification stage 

 

In this stage, number of auto-regressive (p) and moving average (q) parameters necessary to yield an effective 

model of the process are decided. The data are examined to check for the most appropriate class of ARIMA processes 

through selecting the order of the regular and non-seasonal differentiation required to make the series stationary, as 

well as through specifying the number of regular and auto-regressive and moving average parameters necessary to 

adequately represent the time series model. The major tools used in the identification phase are plots of the series, 

correlograms (plot of auto-correlation and partial auto-correlation verses lag) of auto-correlation function (ACF) and 

partial auto-correlation function (PACF). The ACF is the correlation between neighboring observations in a time series. 

When determining if an autocorrelation exists, the original time series is compared to the lagged series. This lagged 

series is simply the original series moved one time period forward. Suppose there are five time-based observations: 10, 

20, 30, 40, and 50. When lag =1, the original series is moved forward one time period. When lag =2, the original series 

is moved forward two time periods. In the other words, the theoretical ACF measures amount of linear dependence 

between observations in a time series that are separated by k time lags. The PACF is used to compute and plot the 

partial auto-correlations between the original series and the lags. However, PACF eliminates all linear dependence in 

the time series beyond the specified lag. The PACF plot helps to determine how many auto-regressive terms are 

necessary to reveal trend either in the mean level or in the variance level of the series. 

 

Parameter estimation stage 

 

At parameter estimation stage, the parameters are estimated using by the Maximum Likelihood (ML), 

Conditional Least Square (CLS) and Unconditional Least Square (ULS) methods. Among these methods, maximum 

likelihood seems to be the best (Box and Jenkins, 1976). The parameters should be statistically significant at α=p% and 

satisfy two conditions, namely stationary and invertibility for auto-regressive and moving average models, respectively. 

In this stage, several models are tentatively chosen and then were compute the values of Akaike Information Criterion 

(AIC). The model structure which has the minimum AIC value, among others model structures, will be chosen as the 

best model. Equation 2 describes the formula to compute AIC. In this Equations Tp is the number of AR, I and MA 

parameters. 
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Diagnostic checking stage 

 

After fitting a provisional time series model, we can assess its adequacy in various ways. Most diagnostic 

tests deal with the residual assumptions in order to determine whether the residuals from fitted model are independent, 

have a constant variance, and are normally distributed. Several diagnostic statistics and plots of the residuals can be 

used to examine the goodness of fit of the tentative model to the time series data. The approaches that can be used to 

evaluate the adequacy of a model are the ACF residual and Port Manteau lack of fit test. The auto-correlations function 

(ACF) of the series can be used to examine whether the residual of the fitted model is white noise or not. Under the 

null hypothesis that residual follows a white noise process, roughly 95% of the auto-correlation coefficient should fall 

within the range ± 1.96/√T. In Port Manteau lack of fit test (Equation 3), the values of p-value exceed the 5%, it 

indicates that residuals have significant departure from white noise. If the selected model fails to pass Port Manteau 

lack of fit test, the modeler return to select alternative model and follow the same procedure until satisfactory model 

results are obtained. 
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In Equation 3, rk (at) is the auto-correlation coefficient of the residual (at) at lag k, and M is the maximum lag 

considered (about N/4), ARIMA model is considered adequate if p>chi square is greater than 0.05 where 0.05 is the 

probability level of significance. 

 

Forecasting stage 

 

In this stage, the estimated parameters are used to calculate new values of the time series and confidence 

intervals for those predicted values. The estimation process is performed on transformed (differentiated) data, hence 

before the forecasts are generated; the series needs to be integrated to cancel out the effect of differentiation so that the 

forecasts are expressed in values compatible with the input data. This automatic integration feature is represented by 

the letter “I” in the name of the methodology (ARIMA = Auto Regressive Integrated Moving Average). In the present 

study, to identify the best fitting model, the predicted values using the several different ARIMA models are compared 

to the observed data of the validation period (1966-2015). The data of 1966 to 2005 used for modelling and the data of 

2006-2015 used for evaluation of the best model and model's ability to predict. In the present work, to evaluate the 

performance of the best ARIMA model at each station, coefficient of determination (R2) was used to select the best 

model. R2 gives impartial result as it takes mean values of both the observed and predicted data. 

 

RESULTS AND DISCUSSION 

 

Before initiating modelling, we need to conduct several tests on original data series such as normality, 

homogeneity and adequacy tests. In this study we tested all annual rainfall with normal distribution and we found that 

the all series were not normal, and therefore natural log transformation was required for the normalization. After 

normality test, we plotted annual rainfall data with time (Figures 2 and 3). There was a little decreasing trend of the 

series and the series were not stationary. In order to fit an ARIMA model, stationary data in both variance and mean 

were needed. Variance stationarity was attained by having log transformation and differentiation of the original data to 

attain stationary in the mean. For our data, we need to have first differential, d=1, of the original data in order to have 

stationary series. After that, we need to test the ACF and PACF for the differential series to check stationarity. As 

shown in Figures 4 and 5, the ACF and PACF for the differential rainfall data were almost stable which support the 

assumption that the series is stationary in both the mean and the variance after having 1st order non-seasonal 

differential. Therefore, an ARIMA (p.1.q) model could be identified for the differentiated rainfall data. After ARIMA 

model was identified above, the p and q parameters need to be identified for our model. According to the ACF and 

PACF plots of annual rainfall in Jelogir Majin station, the suggested ARIMA model is 8.1.1, because ACF plot is 

suggesting AR (8) term whereas PACF is suggesting MA (1) term. Also the suggested model for Pole Zal was ARIMA 
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9.1.1 model, because ACF plot is suggesting AR (9) term whereas PACF is suggesting MA (1) term too. For ARIMA 

model selection, different ARIMA models structures were estimated to find the best model structure. 

 

The parameters estimation values for several models by ML, CLS and ULS method are shown in Tables 1 

and 2, and suggested that all selected models except ARIMA 1.1.1 and 4.1.1 models in ML and ULS method were 

suitable for entrance to next stage because it satisfied two conditions: stationary and invertibility. In addition, the Port 

Manteau values lack fit test for annual rainfall for Jelogir Majin and Pole Zal stations, as shown in Tables 3 and 4. 

These tables showed that all three selected models were adequate for prediction of studied series data. The plots of the 

ACF and PACF for the residuals of selected models are shown in Figures 6 and 7. These figures showed that the 

suggested model can be considered as appropriate model. Because the results of both tests suggest that the residuals 

were white noise, therefore the models are suitable for prediction. Several models in three methods were recognized 

for forecast, therefore it is essential to use the AIC index to select the best model. The values of AIC for the different 

ARIMA models are shown in Table 5 (AIC=321.128 in CLS estimation method for annual rainfall in Jelogir Majin 

station and AIC=316.938 in ML estimation method for annual rainfall in Pole Zal station). The model that gives the 

minimum AIC is selected as best fit model. Obviously, the ARIMA 8.1.1 and 9.1.1 models have the smallest values of 

AIC for prediction of annual rainfall in Jelogir Majin and Pole Zal stations, respectively, thus these models are suitable 

for prediction in the future. In order to evaluate the performance of the models, ten years forecasts were generated for 

the testing period from 2006 to 2015 and presented in Table 6. The hydrograph between real and predicted (forecasted) 

rainfall data using ARIMA models are shown in Figure 8. It was evident that the values of actual and forecasted rainfall 

data were close to each other, thus it can be concluded that the chosen models are suitable for each station. In addition, 

the coefficient of determination (R2) between actual and forecasted values was high (R2=0.70 and 0.80 for annual 

rainfall in Jelogir Majin and Pole Zal stations, respectively). The results obtained confirmed that the ARIMA 8.1.1 and 

9.1.1 models were adequate for the studied series. Furthermore, these models are better than other models because 

ARIMA model gives low error value and is in good fit with the observed data. The Jelogir Majin station is larger than 

Pole Zal station and it is affected by more area than the Karkheh river basin. Therefore, the selected model at Jelogir 

Majin station could better predict rainfall in the region. 

 

 
Figure 2. Annual rainfall data for Jelogir Majin station (1966-2005). 

 

 
Figure 3. Annual rainfall data for Pole Zal station (1966-2005). 
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Figure 4. Plot of ACF and PACF for first order differential (d=1) of original rainfall data in Jelogir Majin 

station. 
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Figure 5. Plot of ACF and PACF for first order differential (d=1) of original rainfall data at Pole Zal station. 
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Table 1. Parameters estimation of the selected ARIMA model for annual rainfall at Jelogir Majin station. 

 

Estimation 

method 

Type (order) and values 

of ARIMA(p,1,q) 

parameters 

Std. error 

coefficient 

Absolute 

value of t 

Probability 

of t 

Stationary 

condition 

Invertion 

condition 

ML 
p(1) = -0.45831 0.14281 -3.21 0.0013 Satisfactory    

q(0) 

CLS 
p(1) = -0.45857 0.14418 -3.18 0.0029 Satisfactory    

q(0) 

ULS 
p(1) = -0.47025 0.14318 -3.28 0.0022 Satisfactory    

q(0) 

ML 
p(1) = 0.21071 0.18855 1.12 0.2638 Satisfactory    

q(1) = 0.99971 

p(1) = 0.19615 

28.2487 0.04 0. 9718 Not satisfactory 

CLS 
0.21063 0.93 0.3578 Satisfactory    

q(1) = 0.83593 0.11764 7.11 0.0001< Satisfactory 

ULS 
p(1) = 0.22697 0.16853 1.35 0.1863 Satisfactory    

q(1) = 0.99998 0.33052 3.03 0.0045 Not satisfactory 

ML 
p(8) = -0.25552 0.16684 -1.53 0.1257 Satisfactory    

q(1) = 0.99976 28.6089 0.03 0.9721 Not satisfactory 

CLS 
p(8) = -0.21750 0.18156 -1.2 0.2385 Satisfactory    

q(1) = 0.70035 0.11755 5.96 0.0001< Satisfactory 

ULS 
p(8) = -0.33925 0.17363 -1.95 0.0583 Satisfactory    

q(1) = 0.99998 0.32887 3.04 0.0043 Not satisfactory 

ML= Maximum likelihood            CLS= Conditional least square            ULS= Unconditional least square 

 

Table 2. Parameters estimation of the selected ARIMA model for annual rainfall at Pole Zal station. 

 

Estimation 

method 

Type (order) and values 

of ARIMA(p,1,q) 

parameters 

Std. error 

coefficient 

Absolute 

value of t 

Probability 

of t 

Stationary 

condition 

Invertion 

condition 

ML 
p(1) = -0.62039 0.12452 -4.98 0.0001< Satisfactory    

q(0) 

CLS 
p(1) = -0.63144 0.12581 -5.02 0.0001< Satisfactory    

q(0) 

ULS 
p(1) = -0.63594 0.12521 -5.08 0.0001< Satisfactory    

q(0) 

ML 
p(1) = -0.31071 0.20247 -1.53 0.1249 Satisfactory    

q(1) = 0.59798 

p(1) = -0.37590 

0.17659 3.39 0.0007 Satisfactory  

CLS 
0.21428 -1.75 0.0877 Satisfactory    

q(1) = 0.45739 0.20593 2.22 0.0325< Satisfactory  

ULS 
p(1) = -0.30706 0.20147 -1.52 0.1360 Satisfactory    

q(1) = 0.63238 0.16534 3.82 0.0005 Satisfactory  

ML 
p(9) = -0.36711 0.15570 -2.36 0.0184 Satisfactory    

q(1) = 0.89646 0.10410 8.61 0.0001< Satisfactory  

CLS 
p(9) = -0.30225 0.17256 -1.75 0.0881 Satisfactory    

q(1) = 0.71765 0.11474 6.25 0.0001< Satisfactory  

ULS 
p(9) = -0.45312 0.15926 -2.85 0.0072 Satisfactory    

q(1) = 0.99998 0.32942 3.04 0.0044 Not satisfactory 

ML= Maximum likelihood            CLS= Conditional least square            ULS= Unconditional least square 
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Table 3. Result of autocorrelation check of residual annual rainfall at Jelogir Majin station. 

 

ARIMA 

model 

Estimation 

method 
To lag Df 

Chi-

square 

Pr>chi 

square 

Adequacy for 

modelling 

ARIMA(1,1,0) 

ML 

6 5 7.57 0.1819 

Satisfactory 
12 11 10.49 0.4871 

18 17 12.02 0.7991 

24 23 17.23 0.798 

CLS 

6 5 7.57 0.1814 

Satisfactory 
12 11 10.44 0.4912 

18 17 12.01 0.7998 

24 23 17.27 0.7956 

ULS 

6 5 7.64 0.1771 

Satisfactory 
12 11 10.58 0.4792 

18 17 12.12 0.7926 

24 23 17.26 0.7963 

ARIMA(1,1,1) CLS 

6 4 2.43 0.6568 

Satisfactory 
12 10 4.41 0.9269 

18 16 6.57 0.9807 

24 22 12.71 0.9411 

ARIMA(8,1,1) CLS 

6 4 4.25 0.3729 

Satisfactory 
12 10 4.9 0.898 

18 16 7.03 0.9727 

24 22 11.73 0.9626 

ML= Maximum likelihood            CLS= Conditional least square            ULS= Unconditional least square 

 

Table 4. Result of autocorrelation check of residual annual rainfall at Pole Zal station. 

 

ARIMA 

model 

Estimation 

method 
To lag Df 

Chi-

square 

P>chi 

square 

Adequacy for 

modelling 

ARIMA(1.1.0) 

ML 

6 5 6.76 0.2389 

Satisfactory 
12 11 8.78 0.6424 

18 17 10.40 0.8861 

24 23 11.29 0.9801 

CLS 

6 5 6.75 0.2401 

Satisfactory 
12 11 8.83 0.6375 

18 17 10.54 0.8796 

24 23 11.44 0.9783 

ULS 

6 5 6.82 0.2342 

Satisfactory 
12 11 8.90 0.6312 

18 17 10.54 0.8793 

24 23 11.42 0.9785 

ARIMA(1.1.1) ML 

6 4 2.80 0.5924 

Satisfactory 
12 10 10.42 0.4043 

18 16 14.10 0.5916 

24 22 15.42 0.8437 
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CLS 

6 4 2.71 0.6080 

12 10 7.87 0.6420 

18 16 11.50 0.7778 

24 22 12.64 0.9438 

ULS 

6 4 2.89 0.5759 

12 10 11.63 0.3105 

18 16 15.54 0.4855 

24 22 16.99 0.7642 

ARIMA(9.1.1) 

ML 

6 4 6.78 0.1482 

Satisfactory 

12 10 9.77 0.4613 

18 16 12.47 0.7114 

24 22 14.75 0.8726 

CLS 

6 4 7.07 0.1325 

12 10 8.83 0.5487 

18 16 10.55 0.8366 

24 22 12.79 0.9388 

ML= Maximum likelihood            CLS= Conditional least square            ULS= Unconditional least square 

 

 
Figure 6. Autocorrelogram of residual series parameter for annual rainfall at Jelogir Majin station. 
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Figure 7. Autocorrelogram of residual series parameter for annual rainfall at Pole Zal station. 

 

Table 5. Goodness of statistic fit for rainfall. 

 

ARIMA 

model 

Estimation 

method 

Akaikc's statistic of rainfall 

Jelogir Majin station Pole Zal station 

(1.1.0) 

ML 325.576 322.965 

CLS 325.599 322.648 

ULS 325.583 322.981 

(1.1.1) 

ML - 320.117 

CLS 322.981 321.385 

ULS - 320.159 

(8.1.1) 

ML - - 

CLS 321.128 - 

ULS - - 

(9.1.1) 

ML - 316.938 

CLS - 320.969 

ULS - - 
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Table 6. Forecasted and actual rainfall for the period from 2006-7 to 2015-16. 

 

Period 
Rainfall at Jelogir Majin station Rainfall at Pole Zal station 

Forecasted (mm) Actual (mm) Forecasted (mm) Actual (mm) 

2006-7 43 40 41 40 

2007-8 44 42 39 37 

2008-9 40 38 42 39 

2009-10 37 39 39 37 

2010-11 43 41 38 39 

2011-12 40 38 37 36 

2012-13 39 37 35 34 

2013-14 39 38 36 35 

2014-15 38 37 34 35 

2015-16 38 36 33 34 

 

 

 
Figure 8. Comparison of forecasted and actual rainfall data for the period 2006-2015 in Jelogir Majin (A) and 

Pole Zal (B) stations. 
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Figure 9. Correlation between actual and predicted rainfall values at Jelogir Majin (A) and Pole Zal (B) 

stations. 

 

CONCLUSION 

 

Rainfall prediction is crucial for making important decisions and performing strategic planning. The ability 

to predict rainfall quantitatively guides the management of water related problems such as extreme rainfall conditions 

such as floods and droughts, among other issues. Therefore, prediction of hydrological variables such as rainfall, 

floodstream and runoff flow as probabilistic events is a key issue in water resources planning. These hydrological 

variables are usually measured longitudinally across time, which makes time series analysis of their occurrences in 

discrete time appropriate for monitoring and simulating their hydrological behavior. Rainfall is among the sophisticated 

and challenging components of the hydrological cycle to modelling and prediction because of various dynamic and 

environmental factors and random variations both spatially and temporally. 

 

In this research, we attempted to predict annual rainfall in Jelogir Majin and Pole Zal stations of Karkheh 

dam reservoir in Iran using ARIMA model. The ARIMA model was an appropriate tool to predict annual rainfall. The 

ARIMA model has a better performance than other ARMA stochastic model because it makes time series stationary, 

in both training and forecasting. The model 8.1.1 with AIC=321.128 in CLS estimation method for annual rainfall in 

Jelogir Majin station and the model 9.1.1 with AIC=316.938 in ML estimation method for annual rainfall in Pole Zal 

station were less than the other models. For model validation, the values of R2 were 0.7 and 0.8 for annual rainfall in 

Jelogir Majin and Pole Zal stations, respectively, an indication of high ability of ARIMA model in annual rainfall 

prediction. According to the results obtained, R2 between actual and forecasted (predicted) values in the studied station 

had downward trend and critical condition. Therefore, agriculture water management and cropping pattern must be 
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done very carefully. Our selection of ARIMA 8.1.1 and 9.1.1 models for annual rainfall in Jelogir Majin and Pole Zal 

stations, respectively, gave us ten years prediction along with their 95% confidence interval that can help decision 

makers to establish strategies, priorities and proper use of water resources in Karkheh River in Iran. The ARIMA 

models are suitable for short term prediction because the ARMA family models can model short term persistence very 

well. These models are a finite memory model, and does not do well in long term prediction. 
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