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Abstract 

The purpose of this  article is to use the Dziok-Srivastava operator to find necessary and sufficient 

condition of complex valued harmonic univalent functions. Extreme points for these classes are also 

determined. An integral operator, distortion bounds and a neighbourhood of such functions are also 

considered. 
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Introduction 

Let O be the open unit disc and FH be the class of functions which are univalent, complex valued, sense-preserving, 

harmonic in O normalized by: 

g (0) = gz (0) − 1 = 0. 

Each g є FH can be written as 

g = h1 ± h2 

Where h1 and h2 are analytic in O 

We call h1 the analytic part and h2 be its co-analytic part. For g to be sense-preserving and locally univalent in O a 

necessary and sufficient condition is given by |h1’ (z)| > |h2’ (z)| in O.
1 

Thus for 

g = h1 ± є F, h2 H 

We may write: 

h1 (z) = z + ∑
∞

 = 2; h2 (z) = ∑
∞

 =1 (0 ≤v1 <1) 

Note that FH becomes F, the class of normalized analytic functions which are univalent if the co-analytic part of is 

equal to zero. 

For qt є D (t = 1, 2 . . . p) 
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st є D - {0,−1,−2 . . .} (t = 1, 2 . . . w), the generalized 

hyper geometric function is then defined by: 

pFw (q1 . . . qp; s1 . . . sw; z) 

= ∑ =0
∞

 (1) … ( ),  

 ( ) …( ) ! 1  

(p ≤w + 1; p, w є N0 = {0, 1, 2 . . .})  

Where (e) n is the Pochhammer symbol defined by: 

( ) = Г (+) Г ( ) (+ 1) · (+ − 1) for n є N = {1, 2 . . .} = 1 when 

n = 0. 

Corresponding to the function: 

h1 (q1 . . . qp; s1 . . . sw; z) = ZpFw (q1 . . . qp; s1. . . sw; 

z). 

The Dziok-Srivastava operator:
2 

Ap, w (q1 . . . qp; s1 . . . sw) is defined by Ap, w (q1 . . . 

qp; s1 . . . sw) g (z) = h1 (q1 . . . qp; s1 . . . sw; z) � g (z) 

 ∞ (1) − 1 … ( ) − 1 = z + ∑ = 2 ( ) … ( ) −1 − 1! 1 − 1  

Where “�” means convolution 

To make it easy, we write: 

Ap, w [1] g (z) = Ap, w (q1 . . .  qp; s1 . . .  sw) g (z)  

Now we define the Dziok - Srivastava operator of the 

Harmonic function given by: 

g = h1 + h2 

As + Ap,w [1] h2 

Ap, w [1] g = Ap, w [1] h1 

Let F
*
H (q1, s) be the family of harmonic functions of the 

form such that (arg Ap, w [1] g) ≥s, 0 ≤s <1, |z| = r <1. 

For p = w + 1, q2 = s1 . . .  qp = sw, F
*
H (1, s) = FH (s)

3 
is 

the class of orientation preserving univalent harmonic 

star like functions f of order s in O, that is
 
(arg g (r ) >s is 

univalent.
4 

Also, F
*
H (n+1, s) = RH (n, harmonic functions class with 

(arg D
n
g(z)) ≥s, where D is the Ruscheweyh derivative.

5
  

We also let (q1, s) = F
*
H (q1, s) ∩ VH

6
, where VH, the 

class of harmonic functions g of the form (1) and there 

exists � so that, mod 2, arg (uk) + (k – 1) � = arg (vk) + 

(k − 1) � = 0 k ≥2 

Silverman and Jahangiri, gave the necessary and 

sufficient conditions for functions of the form (1) to be 

in (s), where 0 ≤s <1.
6 

Note for p = w+ 1, q1 = 1, q2 = s1 . . . qp = sw and the co-

analytic part of g = h1 ± being equal to zero, the class (q 

s) reduces h2 - 1to the class studied in.
7 

Now here, we will present a sufficient condition for g = h 

± given by (1) to be in F
*
 (q s) and then 1 h2 H1. 

We will show that the same condition is also necessary 

for the functions to be in (q1, s). Distortion theorems, 

extreme points, integral operators and neighbourhoods 

of such functions are considered. 

Theorems and Important Results 

In theorem A, we will introduce a sufficient condition for 

the harmonic functions to be in F
*
H (q1, s) theorem A. 

Let g = h1 ± h2 be given by (1). 

If ∑
∞

 =2 −1!
1
 (1−s

 −s
 | |+1−s

 +s
 | |) Г (q1, s) ≤ 1- 1+s | 1| (5) 1−s  

Where u1 = 1, 0 ≤ s < 1 and Г (1) = |(1) −1 …( ) − 1 |, (1) 

−1 …( ) – 1 then g є F
*
H (q1, s) 

Proof 

In order to prove that g є F*H (q1, s), we will show that 

if (5) holds, then the required condition (3) is satisfied. 

For (3), we can write: 

(arg Ap,w [1]g(z)) = Re {z(Ap,w[ 1]ℎ1(z)) − (Ap,w[ 

1]ℎ2(z)) .}Ap, w[ 1]h1 + Ap,w[ 1]h2 = Re 
( )

 ( ) 

using the relation that Re ω ≥ s iff |1 − s + ω | ≥ |1 + s − 

ω |, 

It is sufficient to show that: 

|M(z) + (1−s)N(z)| − |M(z) − (1 + s)N(z)| ≥ 0. (6) 

Substituting the values of M (z) and N (z) in (5), the 

expression becomes: 

|M(z) + (1 − s)N(z)| − |M(z) − (1 + s)N(z)| ≥ (2 − s)|z| − 

∑
∞

 =2 
+1−s

 −1! Г ( 1, )| || | – ∑
∞

 =1 
−1+s

 −1! Г ( 1, )| || | s|z| - 

∑
∞

 =2 
−1−s

 −1! Г (1)| || | - ∑ =1
∞

 +1+s Г(1)| || | (7)  

1 − ∑∞ − Г ( , )| |  ≥2(1−s)|z|{ =2 (1− )( −1)! 1 − ∑
∞

 + } Г ( 

, )| | 
=1

 (1− )( −1)! 1 = 2(1 − s)|z| {1 −  

 1+ s | | [∑
∞

 1 ( k− s | | + 1 − s 1 − s 1 
=2

 ( −1)! k+ s | |) Г ( 

, )]} 1 − s 1  
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This expression is non-negative by (5) and so g є F
*
H (q1, 

s) we obtain the necessary and sufficient given by (4).  

Conditions for g = h1 + h2  

Theorem B 

Let g =   ��� be given by (4). Then g є  � (q1, s) h1 + h2  

{ [∑
∞

 =2 (−1)!
1
 ( 

k−
1– s

s
 | | + 1

k+
− 

s
s | |) Г ( 1, )]}≤ 1 − 1+ s |1| 

(8) 1 − s  

Where u1 = 1, 0 ≤ s < 1  

 (1) =|
 (1) −1

 
…( )

 −1 | 
(1)

 −1 
… ( )

 −1 

Proof 

Since (q1, s)  F
*
H (q1, s), so we required to prove other 

part of the theorem.  

For functions g є (q1, s), we observe that the condition 

(arg Ap, w[1]g) ≥s 

(arg Ap, w[1]g) - s 

= Re { z(Ap,w[ 1]ℎ1(z)) − (Ap,w[ 1]ℎ2 (z))′ . − s}
A
p,w

[ 
1

]
ℎ1+ 

Ap,w[ 1]ℎ2 ≥ 0  

Re ∞ −s ∞ +s (1 − s)z + ∑ =2 Г ( 1, )| | − 
∑
 =1 −1! Г ( 1, )| | 

[−1! ] ≥ ∞ Г (1) | | − ∞ 0 
+∑

 =2 
∑

 =1 
Г
 
( 
1

, )
 | | � (9)  

This condition holds for all values of z in O. if we choose 

� according to (1.4), then we have: 

(1 − s)− (1+ s)| 1|− ∑ =2
∞

 ( −s | |+ +s | |) Г ( 1, ) 
−1

.  

−1! −1! 1+| |+ ∑
∞

 (| |+ | |) Г ( , ) 
−1

 ≥ 0 1 =2 1 (10)  

If the given condition does not hold then the numerator 

in above equation is negative for r close to for k = 2, 3.  

Therefore there exists a point z0 = r0 in interval (0, 1) for 

which the quotient of above equation is negative which 

is a contradiction and Hence the result. 

Theorem C 

Let suppose the values 

k = (1 − s) (k−1)! and k = (1 − s) (k−1)! (−s)Г (,) ( +s)Г (,) 

1 1 (q1,  

For v1 to be fixed, then the extreme points for (s) are 

given by: 

{z + kxz k ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ } where k ≥2+̅̅̅̅̅1 } { z + 1 + k (11) and |x| = 1 

− |v1|. 

Proof 

Any function g є � (q1, s) may be expressed as: 

g(z) = z + ∑∞ =2| |+ ̅̅̅̅̅ + ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ∑ ∞ | | 1 = 2 

Where the coefficients satisfy the inequality (5) 

Set h11 (z) = z, h21 (z) = v1z, h1k (z) = z + k 

 

h2k = v1z +, 

Writing Xk = | | k Yk = | | k = 2, 3 . . . and X1 = 1 − ∑ =2
∞

 

Xk; Y1 = 1 − ∑ =2
∞

 Yk  

We have: 

g(z) = ∑ =1
∞

 (Xkℎ1 ( ) + Y ℎ2 ( ))  

In particular, we have  

h21 (z) = z + ̅̅̅̅̅1 and 

h2k (z) = z + kxz k ̅̅̅̅̅̅̅̅ + ̅̅̅̅̅1 + (k ≥2, |x| + |y| = 1 − |v1|),k 

h2k (z) = z + kxz k ̅̅̅̅̅̅̅̅ + ̅̅̅̅̅1 + (k ≥2, |x| + |y| = 1 − |v1|),k 

We observe that the extreme points of � (q1, s) are 

completely contained in {h2k(z)}. 

To see that h21 is not an extreme point, Note that h21 

may be written as 

h21 (z) = 
1

2{h21 (z) + 2 (1 − |v1|)z
2
} + 

1
2{ h21 (z) - 2 (1 

− |v1|)z
2
}, a convex linear combination of functions in � 

(q1, s). If both |x| ≠0 and |y| ≠ 0, we will show that it 

can also be expressed as a convex linear combination of 

functions in � (q1, s). 

Wlog, assume |x| ≥ |y|. Choose > 0 small enough so 

that is strictly less than | | .  

 |y| Choose M = 1 + and N = 1 − | |.  

 Now we observe that both  

t1(z) = z + kMxz k ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ and +v1z + k 

t2(z)= z + k(2-M)xz k ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ +v1z + k (2 − ) are in ̅ (q1, s) and 

note that gn(z) = 12{t1(z) + t2(z)}. 

This shows that such functions are the required extreme 

points for � (q1, s) which proofs the theorem. 
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