Article

Univalent Harmonic Functions

Meera Agarwal ${ }^{1}$, Ranjita Kapur ${ }^{2}$

Abstract

The purpose of this article is to use the Dziok-Srivastava operator to find necessary and sufficient condition of complex valued harmonic univalent functions. Extreme points for these classes are also determined. An integral operator, distortion bounds and a neighbourhood of such functions are also considered.

Keywords: Convolution, Distortion bounds, Dziok-Srivastava operator, Harmonic functions, Integral operator, Neighbourhood

Introduction

Let O be the open unit disc and FH be the class of functions which are univalent, complex valued, sense-preserving, harmonic in O normalized by:
$g(0)=g z(0)-1=0$
Each $\mathrm{g} \in \mathrm{FH}$ can be written as
$\mathrm{g}=\mathrm{h} 1 \pm \mathrm{h} 2$

Where h 1 and h 2 are analytic in O
We call h 1 the analytic part and h 2 be its co-analytic part. For g to be sense-preserving and locally univalent in O a necessary and sufficient condition is given by $\left|\mathrm{h} 1^{\prime}(\mathrm{z})\right|>\left|\mathrm{h} 2^{\prime}(\mathrm{z})\right|$ in $0 .^{1}$

Thus for
$\mathrm{g}=\mathrm{h} 1 \pm \epsilon \mathrm{F}, \mathrm{h} 2 \mathrm{H}$
We may write:
$h 1(z)=z+\sum^{\infty}=2 ; h 2(z)=\sum_{=1}^{\infty}(0 \leq v 1<1)$
Note that FH becomes F, the class of normalized analytic functions which are univalent if the co-analytic part of is equal to zero

For $q t \in D(t=1,2 \ldots p)$

[^0]ISSN: 2395-3802
$s t \in D-\{0,-1,-2 \ldots\}(t=1,2 \ldots w)$, the generalized hyper geometric function is then defined by:
pFw (q1 . . qp; s1 . . sw; z)
$=\sum=0$ (1) ... (),
() ...()! 1
$(p \leq w+1 ; p, w \in N O=\{0,1,2 \ldots\})$
Where (e) n is the Pochhammer symbol defined by:
()$=\Gamma(+) \Gamma()(+1) \cdot(+-1)$ for $n \in N=\{1,2 \ldots\}=1$ when $\mathrm{n}=0$.

Corresponding to the function:
h1 (q1 . . . qp; s1 . . . sw; z) = ZpFw (q1 . . . qp; s1. . . sw; z).

The Dziok-Srivastava operator: ${ }^{2}$
$A p, w(q 1 \ldots q p ; s 1 \ldots s w)$ is defined by $A p, w(q 1 \ldots$ $\mathrm{qp} ; \mathrm{s} 1 \ldots \mathrm{sw}$) g (z) = h1 (q1 . . qp; s1 . . sw; z) $\square \mathrm{g}(\mathrm{z})$
$\infty(1)-1 \ldots()-1=z+\sum=2() \ldots()-1-1!1-1$
Where " \square " means convolution
To make it easy, we write:
$A p, w[1] g(z)=A p, w(q 1 \ldots q p ; s 1 \ldots s w) g(z)$
Now we define the Dziok - Srivastava operator of the Harmonic function given by:
$g=h 1+h 2$
$A s+A_{p, w}[1] h 2$
Ap, w[1]g=Ap,w[1] h1
Let $F^{*} H(q 1, s)$ be the family of harmonic functions of the form such that $(\arg A p, w[1] g) \geq s, 0 \leq s<1,|z|=r<1$.

For $p=w+1, q 2=s 1 \ldots q p=s w, F^{*} H(1, s)=F H(s)^{3}$ is the class of orientation preserving univalent harmonic star like functions f of order s in 0 , that is $(\arg g(r)>s$ is univalent. ${ }^{4}$

Also, $\mathrm{F}^{*} \mathrm{H}(\mathrm{n}+1, \mathrm{~s})=\mathrm{RH}$ (n , harmonic functions class with $\left(\arg D^{n} g(z)\right) \geq s$, where D is the Ruscheweyh derivative. ${ }^{5}$

We also let (q1, s) $=F^{*} H(q 1, s) \cap \mathrm{VH}^{6}$, where VH , the class of harmonic functions g of the form (1) and there exists \square so that, mod 2, arg (uk) + (k-1) $\square=\arg (\mathrm{vk})+$ (k-1) $\square=0 \mathrm{k} \geq 2$

Silverman and Jahangiri, gave the necessary and sufficient conditions for functions of the form (1) to be in (s), where $0 \leq s<1$. ${ }^{6}$

Note for $p=w+1, q 1=1, q 2=s 1 \ldots q p=s w$ and the coanalytic part of $g=h 1 \pm$ being equal to zero, the class (q s) reduces h2-1to the class studied in. ${ }^{7}$

Now here, we will present a sufficient condition for $g=h$ \pm given by (1) to be in $\mathrm{F}^{*}(\mathrm{q} s)$ and then 1 h 2 H 1 .

We will show that the same condition is also necessary for the functions to be in (q1, s). Distortion theorems, extreme points, integral operators and neighbourhoods of such functions are considered.

Theorems and Important Results

In theorem A, we will introduce a sufficient condition for the harmonic functions to be in $\mathrm{F}^{*} \mathrm{H}(\mathrm{q} 1, \mathrm{~s})$ theorem A .

Let $\mathrm{g}=\mathrm{h} 1 \pm \mathrm{h} 2$ be given by (1).
If $\sum^{\infty}=2-1!^{1}\left(1-s{ }^{-s}| |+{ }_{1-s}{ }^{+s}| |\right) \Gamma(q 1, s) \leq 1-1+s\left|{ }_{1}\right|(5) 1-s$ Where $u 1=1,0 \leq s<1$ and $\Gamma(1)=|(1)-1 \ldots()-1|$, (1) $-1 \ldots()-1$ then $g \in F^{*} H(q 1, s)$

Proof

In order to prove that $g \in F^{* H}(q 1, s)$, we will show that if (5) holds, then the required condition (3) is satisfied.

For (3), we can write:
$(\arg A p, w[1] g(z))=\operatorname{Re}\{z(A p, w[1] h 1(z))-(A p, w[$ 1] $h 2(z)).\} A p, w[1] h 1+A p, w[1] h 2=\operatorname{Re}^{()}()$
using the relation that $\operatorname{Re} \omega \geq s$ iff $|1-s+\omega| \geq \mid 1+s-$ $\omega \mid$,

It is sufficient to show that:
$|M(z)+(1-s) N(z)|-|M(z)-(1+s) N(z)| \geq 0 .(6)$
Substituting the values of $M(z)$ and $N(z)$ in (5), the expression becomes:

```
\(|M(z)+(1-s) N(z)|-|M(z)-(1+s) N(z)| \geq(2-s)|z|-\)
\(\sum^{\infty}=2^{+1-s}-1!\Gamma(1),| || |-\sum^{\infty}=1^{-1+s}{ }_{-1!} \Gamma\left({ }_{1},\right)| || | s|z|-\)
\(\sum^{\infty}=2^{-1-s}-1!\Gamma(1)| || |-\sum_{=1}^{\infty}+1+s \Gamma(1)| | \mid(7)\)
\(1-\sum \infty-\Gamma(),| | \geq 2(1-s)|z|\left\{=2(1-)(-1)!1-\Sigma^{\infty}+\right\} \Gamma(\)
, ) | \(\left.\right|^{=1}(1-)(-1)!1=2(1-s)|z|\{1-\)
\(1+s| |\left[\sum^{\infty} 1\left(k-s| |+1-s 1-s 1^{=2}(-1)!k+s| |\right) \Gamma(\right.\)
, )]\} 1 - s 1
```

This expression is non－negative by（5）and so $g \in \mathrm{~F}^{*} \mathrm{H}$（q1， s）we obtain the necessary and sufficient given by（4）．

Conditions for $\mathrm{g}=\mathrm{h} 1+\mathrm{h} 2$

Theorem B

Let $\mathrm{g}=\square \square \square$ be given by（4）．Then $\mathrm{g} \in \square(\mathrm{q} 1, \mathrm{~s}) \mathrm{h} 1+\mathrm{h} 2$
$\left\{\left[\sum^{\infty}=2(-1)!{ }^{1}\left({ }^{k-}{ }_{1-s}{ }^{s}| |+{ }_{1}{ }^{k+}-{ }^{s}{ }_{s}| |\right) \Gamma(1),\right]\right\} \leq 1-1+s\left|{ }_{1}\right|$ （8） 1 － s

Where u1 $=1,0 \leq s<1$
（1）$=1^{(1)-1 \ldots()}-1^{(1)}-1^{\cdots()}-1$

Proof

Since（ $q 1, s$ ）${ }^{\text {F }}$＊$H(q 1, s)$ ，so we required to prove other part of the theorem．

For functions $\mathrm{g} \in(\mathrm{q} 1, \mathrm{~s})$ ，we observe that the condition $(\arg A p, w[1] g) \geq s$
$(\arg A p, w[1] g)-s$
$=\operatorname{Re}\left\{z\left(A_{p, w}\left[{ }_{1}\right] h_{1}(z)\right)-\left(A_{p, w}\left[{ }_{1}\right] h_{2}(z)\right)^{\prime} .-s\right\}^{A} p, w^{[} 1^{]} h 1+$ $\mathrm{A}_{\mathrm{p}, \mathrm{w}}\left[{ }_{1}\right] h_{2} \geq 0$
$\operatorname{Re} \infty-s \infty+s(1-s) z+\sum_{=2} \Gamma\left({ }_{1},\right)| |{ }^{\Sigma}=1-1!\Gamma\left({ }_{1},\right)| |$ $\left.[-1!] \geq \infty \Gamma(1)| |-\infty 0^{+\Sigma}=2^{\Sigma}=1{ }^{\Gamma} 1^{\prime}\right)|\mid \square$（9）

This condition holds for all values of z in O ．if we choose \square according to（1．4），then we have：
$(1-s)-\left.(1+s)\right|_{1} \mid-\sum_{=2}^{\infty}(-s| |++s| |) \Gamma\left({ }_{1},\right)^{-1}$.
$-1!-1!1+| |+\sum^{\infty}(| |+| |) \Gamma(,)^{-1} \geq 01=21(10)$
If the given condition does not hold then the numerator in above equation is negative for r close to for $k=2,3$ ．

Therefore there exists a point $\mathrm{zO}=\mathrm{rO}$ in interval $(0,1)$ for which the quotient of above equation is negative which is a contradiction and Hence the result．

Theorem C

Let suppose the values
■k $=(1-s)(k-1)!$ and ${ }^{2} k=(1-s)(k-1)!(-s) \Gamma(),(+s) \Gamma($, 11 （q1，

For v1 to be fixed，then the extreme points for（s）are given by：
$\{z+$ 国xz $k\}$ where $k \geq 2 \mp 1\}$ \} $\{z+1+$ 国（11）and $|x|=1$ －｜v1｜．

Proof

Any function $\mathrm{g} \epsilon \square(\mathrm{q} 1, \mathrm{~s})$ may be expressed as：
$\mathrm{g}(\mathrm{z})=\mathrm{z}+\sum^{\infty}=2| |+^{-}+\sum \infty| | 1=2$
Where the coefficients satisfy the inequality（5）
Set h11（z）$=\mathrm{z}, \mathrm{h} 21(\mathrm{z})=\mathrm{v} 1 \mathrm{z}, \mathrm{h} 1 \mathrm{k}(\mathrm{z})=\mathrm{z}+\mathrm{T}_{\mathrm{K}}{ }^{\text {a }}$
$\mathrm{h} 2 \mathrm{k}=\mathrm{v} 1 \mathrm{z}+$ ，
Writing $X k=\left|\left|T_{k} Y k=| | k=2,3 \ldots\right.\right.$ and $X 1=1-\sum_{=2}^{\infty}$ $\mathrm{Xk} ; \mathrm{Y} 1=1-\sum_{=2}{ }^{\infty} \mathrm{Yk}$

We have：
$g(z)=\sum_{=1}^{\infty}\left(X_{k} h_{1}()+Y h_{2}()\right)$
In particular，we have
$\mathrm{h} 21(\mathrm{z})=\mathrm{z}+1$ and
$h 2 k(z)=z+$ 国 $k x \bar{k} \mp 1+$ 回 $(k \geq 2,|x|+|y|=1-|v 1|), k$
$h 2 k(z)=z+$ 回kxz $\overline{-} \mp 1+$（ $k \geq 2,|x|+|y|=1-|v 1|), k$
We observe that the extreme points of \square（q1，s）are completely contained in $\{\mathrm{h} 2 \mathrm{k}(\mathrm{z})\}$ ．

To see that h21 is not an extreme point，Note that h21 may be written as
h21（z）$={ }_{2}\left\{\mathrm{~h} 21(\mathrm{z})+\right.$ 团 $\left.(1-|\mathrm{v} 1|) \mathrm{z}^{2}\right\}+{ }_{2}\{\mathrm{~h} 21(\mathrm{z})-$－ $2(1$ $\left.-|v 1|) z^{2}\right\}$ ，a convex linear combination of functions in \square （ $q 1$ 1，s）．If both $|x| \neq 0$ and $|y| \neq 0$ ，we will show that it can also be expressed as a convex linear combination of functions in \square（q1，s）．

Wlog，assume $|x| \geq|y|$ ．Choose >0 small enough so that is strictly less than $\|$ ．

$$
|y| \text { Choose } M=1+\text { and } N=1-| | \text {. }
$$

Now we observe that both
$\mathrm{t} 1(\mathrm{z})=\mathrm{z}+\mathrm{G} \mathrm{kMxz} \mathrm{k}^{-}$and $+\mathrm{v} 1 \mathrm{z}+$ ？ k
$\mathrm{t} 2(\mathrm{z})=\mathrm{z}+\mathrm{T} \mathrm{k}(2-\mathrm{M}) \mathrm{xz} \mathrm{k}+\mathrm{v} 1 \mathrm{z}+\mathrm{Tk}(2-)$ are in ${ }^{-}(\mathrm{q} 1, \mathrm{~s})$ and note that $\mathrm{gn}(\mathrm{z})=12\{\mathrm{t} 1(\mathrm{z})+\mathrm{t} 2(\mathrm{z})\}$ ．

This shows that such functions are the required extreme points for \square（q1，s）which proofs the theorem．

References

1．Clunie JM，Sheill T．Small Harmonic univalent functions．Annales Academiæ Scientiarum Fenniae Mathematica Dissertationes 1984；9：3－25．
2. Dziok J, Srivastava HM. Classes of analytic functions associate with the generalized hyper geometric function. Applied Mathematics and Computation 1999; 103: 1-13.
3. Janangiri JM. Harmonic functions star like in the unit disc. The Journal of Mathematical Analysis and Applications 1999; 235: 470-7.
4. Murugugussybdara Moorthy G. On a class of Ruscheweh-type harmonic univalent functions with varying arguments. International Journal of Pure and Applied Mathematics 2003; 2: 90-5.
5. Ruscheweyh S. New criteria for univalent functions. American Mathematical Society 1975; 49: 109-15.
6. Jahangiri JM, Silverman H. Harmonic univalent functions with varying arguments. International Journal of Applied Mathematics 2002; 8(3): 267-75.
7. Silverman H. Harmonic univalent functions with varying arguments. The Journal of Mathematical Analysis and Applications 1978; 220: 283-9.
8. Ruscheweyh S. Neighbourhoods of univalent functions. American Mathematical Society 1981; 81(4): 521-8.

[^0]: ${ }^{1}$ Associate Professor, ${ }^{2}$ Assistant Professor, Apeejay College of Fine Arts, Jalandhar, Punjab, India.
 Correspondence: Ms. Meera Agarwal, Apeejay College of Fine Arts, Jalandhar, Punjab, India.
 E-mail Id: meeraaggarwal17@yahoo.in
 Orcid Id: http://orcid.org/0000-0002-8443-0942
 How to cite this article: Agarwal M, Kapur R. Univalent Harmonic Functions. J Adv Res Embed Sys 2017; 4(1\&2): 15-18.

