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A B S T R A C T

Multineural spikes were acquired with a multisite electrode placed in the hippocampus pyramidal cell layer
of non-primate anesthetized snitch animals. If the impedance of each electrode-site is relatively low and
the distance amongst electrode sites is appropriately miniatured, a spike generated by a neuron is parallelly
recorded at multielectrode sites with different amplitudes. The covariance between the spike of the at each
electrode-point and a template was computed as a damping-factor due to the volume conduction of the spike
from the neuron to electrode-site. Computed damping factors were vectorized and analyzed by simple but
elegant hierarchical-clustering using a multidimensional statistical-test. Since a cluster of damping vectors
was shown to correspond to an antidromically identified neuron, spikes of distinct neurons are classified
by suggesting to the scatterings of damping vectors. Errors in damping vector computing due to partially
overlapping spikes were minimized by successively subtracting preceding spikes from raw data. Clustering
errors due to complex-spike-bursts (i.e., spikes with variable-amplitudes) were prevented by detecting such
bursts and using only the first spike of a burst for clustering.
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1. Introduction

Separation of action potentials (spikes) generated by
adjacent neurons is a major problem in extracellular
microelectrode recording from cell-dense regions of the
brain (e.g., hippocampal pyramidal cell layer). Although
several types of hardware/software window discrimination
have been devised, the number of neurons separable
from single-channel recordings is small, averaging about
two.1 Conventional procedures cannot distinguish between
similar-amplitude spikes originating from different neurons
equidistant from the recording microelectrode. Part of the
problem has been solved by using the stereotrode method,2

which discriminates between several neurons based on the

* Corresponding author.
E-mail address: drvrr@cmrcet.ac.in (V. R. Raju).

peak-amplitude ratio of spikes detected at two adjacent
electrodes. Peak amplitude, however, is only one spike
feature, and is unstable at low signal-to-noise (S/N) ratio or
low sampling rates. Recently, a neural network method was
applied to stereotrode data for multineuronal classification.3

When new multichannel spike data are to be clustered, this
method requires the result of prior clustering of spike data
obtained under identical conditions (the same electrode,
multineuronal positions, etc.). Such a requirement imposes
limitations on the applicability of the method to a variety of
multichannel spike data.

We propose here a substantial improvement of the
stereotrode method by using covariance, rather than just
the peak-amplitude ratio, between a template and an actual
spike recorded using a multisite microelectrode. Partially
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overlapping spikes a major obstacle to spike discrimination
were separated by successively subtracting preceding spikes
from raw data. Another obstacle complex spike bursts, i.e.,
series of spikes with different amplitudes was overcome
by first detecting such bursts and then using only the first
spike of each burst for spike clustering. These improvements
produced better spike cluster separation. We also confirmed
the correspondence between single clusters and neurons
using the neurophysiological collision test.4

2. Objectives

To investigate the multi-unit multisite microelectrodes
embedded (implanted) in the hippocampal pyramidal cell
layers of the non-primate snitch animals. If the impedance
of each electrode-site is relatively low and the distance
amongst electrode sites is appropriately miniatured, a
spike generated by a neuron is parallelly recorded at
multielectrode sites with different amplitudes.

3. Materials and Methods

Conventional window discriminators separate neuronal
spikes by mainly referencing their peak amplitudes.
However, boundaries of spike amplitudes between different
neurons are difficult to determine, e.g., two neurons
equidistant from the electrode site may have nearly
identical amplitudes. McNaughton et al. developed the
stereotrode method in which neuronal spikes are separated
by referring to the joint distribution of peak-amplitude
values obtained by multichannel recording.2 The method
given is based on the same strategy but involves calculation
of damping vectors for each observed spike. It also involves
automatic decomposition of spikes that are noisy, bursty, or
overlapping.

4. Notion

Action potentials of the target neuron are recorded extra-
cellularly with a multisite microelectrode. The action
potentials are assumed to originate from the center of the
cell body and to exhibit consistent amplitudes at a certain
distance from an active electrode site. We normalize the
averaged spike waveform so that its negative peak equals
1µV and refer to this normalized spike waveformω (t) as a
template.

A spike generated at time T by the target neuron located
at P is described as where h (tp−rn ) is the impulse response
function of the damping factor (i.e., volume conduction
from the target neuron to the nth electrode site), t indicates
time, and ⊗ is the convolution operator. Consider a spike
computed at the duration of time T via the target neuron
situated at a point p is defined as

vn (t) = h (t, p− rn )×ω (t −T ) ........(1)
where h (tp−rn ) is the impulse response function of the

damping factor, i.e., volume conduction from the target

neuron
to the nth electrode site, t indicates time, and ⊗ is the

convolution operator. By focusing on the attenuation effect
of the spatial damping factor, (1) is transformed as

By focusing on the attenuation effect of the spatial
damping factor, (1) is transformed as

vn (t) = h(p− rn ). ω(t −T )+ εn (t) ......(2)
By minimization of the energy of the error function, is

estimated as h (p−rn ) and then
vn (t) � h(p− rn ). ω(t −T ) .......(3)
Since ω (t) is normalized so that its negative peak equals
1µV h (p−rn ) approximately equals the negative peak

amplitude of each spike. The spatial damping factors from
multisite electrode N points are computed and vectorized as
follows

Ĥ (p) =
(
ĥ(p− r1

)
,
(
ĥ(p− r2

)
,
(
ĥ(p− r3

)
,....
(
ĥ(p− rN

)
.....(4)

If the point of the electrode is fixed, the spatial
dampening-vector Ĥ(p) relates to the location of the
neural-target, i.e., target-neuron, ‘p’. Therefore, spatial
damping vectors of spikes generated by the target neuron
form a cluster in damping vector space and clusters of
damping vectors correspond to different neurons. Spatial
damping vectors are clustered by hierarchical clustering
incorporating a multidimensional statistical test with the
null hypothesis the distributions of two clusters are
identical.

4.1. Pliable stretchy template reflects elastic

In template matching for detecting neuronal spikes,5

template waveforms should be selected, considering the
variety of observed spike waveforms. Spike waveforms
generated by neurons in the vicinity of a microelectrode
are similar in that each contains a negative peak and a
subsequent positive peak. However, spike amplitude and
duration vary among different neurons.6 The differences
in spike amplitude are used to determine which neuron
generated a spike. Differences in spike duration make spike
detection using a fixed template difficult, so we propose
using an elastic template that can be fitted to different spike
durations.

In preliminary spike detection based on template
matching, a large spike is arbitrarily chosen as a template
waveform. Spike waveforms detected in this way are then
averaged. The averaged waveform is normalized so that
its negative peak equals 1µV and used as the original
template ψ (t) Based on the original template ψ (t) elastic
templateψy (t)

is defined as wγ = ψ
(
t
y

)
.....(5)

where Y indicates the duration ratio of ωy(t) to ψ(t)
i.e., the resistance of ψ(t) is described by Y The optimum
value of is determined so that each spike detected has a
maximum correlation with ωy(t) at optimized Y When
elastic templateωy(t) is used instead ofω(t) in the previous
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subsection, undesirable effects of variable spike durations
are minimized in calculating spike damping vectors.

4.2. Identifying the spikes

The correlation method has been widely used for detecting
neuronal spikes. In this method recorded signals having
high correlation coefficients with a template are recognized
as spikes.5 Detection of superimposed spikes generated
by multiple neurons is a major challenge for any spike
detection method. Several methods have been devised to
detect such superimposed spikes. The most frequently
used method is called the exhaustive search technique in
which all possible combinations of predetermined templates
are time-shifted to search for the best template match.7,8

The main prob-lem of this method is the large amount
of computational time required to process all possible
combinations of time-shifted templates. We modify the
correlation method, which is less time-consuming than the
method above, such that superimposed spikes are separated
by the subtraction technique described in Section II-C2.

The correlation coefficient between the observed
waveform for each channel (vi (t) i = 1 To N ) and elastic
template of wγ (t) the spike detector is compared with
threshold (Th). If one of the correlation coefficients exceeds
Th, a spike is considered to have been detected.

5. Computing the correlation-coefficient

In order to improve the identification of the signal-spikes,
the weighting-vector function can be applied for computing
the correlation-coefficients. Hence, by utilizing the weight-
function, the analyzed signal at the n-th electrode point
wn(t) contains corresponding coincide and interrelating-
spikes

vn =
∑+∞

j=−∞ v j, n (t) .......(6)
Where-in, v j, n (t) giving the j-th analyzed spike

produced by any neural-cell within the area of the n-th
electrode-point at Ti time. Therefore, presuming that the
weight-function Wγ(t) weaken the spikes occurring before
and after the spike observed at , with spike duration ratio .
Here, we used a smoothed square waveform of the elastic
template for weighting

wy (t) =

∫ +δ
8
−δ
8

wγ (t+τ)2dτ

∫ +δ
8
−δ
8

wγ (τ)2dτ

................(7)

i.e.,

wy (t) =

∫ +δ
8
−δ
8

wγ (t2+τ2+2tτ)dτ∫ +δ
8
−δ
8

wγ (τ)2dτ

.........(8)

Where δ indicates the duration of the spike train which
is 1±3 milliseconds. (±1 m Sec to ±3 m Sec). By using this
weight vector letting us to isolate the neural spike examined
at Tk as given in the following equation (9)

vk,n (t) � vn (t) . wy (t −Tk ).......(9)

Therefore, can convert the pattern-signal template as
wγ (t) � wy (t) . wy (t −Tk )......(10
Now we can compute the correlation-coefficient between

vk,n(t) and the template (i.e., the variable-template) as

Ry
k,n

(t) =
∫ +δ
−δ vk,n (t+τ).wγ (τ)dτ√∫ +δ

−δ vk,n (t+τ)2dT .
∫ +δ
−δ wγ (τ)2dτ

....(11)

Therefore, we can convert the equation (11) to equation
(12) by applying the equation (9), as shown in below
expression

Because Rγ
k,n

(t) is maximal when the k-th neural-spike
occur, i.e., t=Tk , and the ratio of time-duration γk, we
can identify any spike by verifying Rγ

n (t) . Or else, every
spike is identified as every time-period when Rγ

n (t) of any
n (n=1,2,3,. . . N) and any γ which is equivalent (γ= γmin to
γmax , and exceeds the Th determined in advance.

2) Separation of Preceding Spikes: If the th spike
and those preceding it overlap, the positive deflection of
preceding spikes causes errors in estimation of damping
factor h(pk−rn )(n = 1 to N )

To minimize such errors, we subtract the components of
preceding spikes from observed waveform

Rγk
k,n

(Tk ) � Rγk
k

(Tk ) .....(15)

v (k )
n (t) =

∑+∞
j≥kv j,n (t) =vn (t)−∑k=1

j=−∞v j,n (t)
� vn (t)−∑+∞j≥k ĥ(pj − rn ). wy j (t −Tj,n )

.....(16)

By connecting the v (k )
n (t) as vn(t) in equation (14), the k-

th neural-spike is characterized or distinguished from v (k )
n (t)

unaltered through positive (+Ve) deflections or refractions
of previous train neural-spikes.

6. Computing the damping factorial

The turning points of the spike-train that are peaks acquired
at various micro electrode points might have small and
insignificant but then constant setbacks in some situations
as multiunit data sampling synchronously (not concurrently
or parallel). Say, even if the correlation function for the
k-th spike observed at the i-th electrode point has a local
peak value of Rγk

i (Tk, j ) at time Tk,i, that observed at the
j-th site may not have a local peak at time Tk,i, but have
a local peak of Rγk

j (Tk, j ) at time Tk,j, Hence, the timing
of spike appearance at each point is adjusted and evaluated
again during the period when Rγ

n(t) of any n (n=1 to N)
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and any gamma (gamma = gamma min to gamma max) is
over Th. After timing adjustment, damping factor h(pk-rn)
is estimated by minimizing the mean-square-error (MSE)
en(t) near the time Tk,n, namely, by applying the estimation
function

Hence, it is set to ĥ (pk − rn )

Now, if
+δ∫
−δ

wγk (τ)2dτ = 1, the expression (20) is

identically equal to the covariance between vn
(
Tk,n + t

)
and

also wγk (τ). If ĥ (pk − rn ) of the k-th spike of the STN
potential train is lower than the noise-distortion ρ (∀), we
neglect such a small spike after computing the damping
factorials electrode points, i.e., sites, we neglect such an iota
of train-spike after computing the curbing (or dampening)
factors.

7. Managing burst action potential train spikes

Most subthalamic nucleus neuron jones are detected and
microelectrode recording with bursting patterns can identify
subthalamic neurons by their characteristic bursting pattern
and their signals clearly identify the STN nucleus neurons
form the surrounding structures with decreasing amplitudes,
i.e., complex bursts of the spikes.9 Smaller spikes of such
a complex spike burst tend to be misclassified as having
been generated by different neurons. We describe here a
procedure to avoid such misclassification. Since the first
spike of a spike burst is considered not affected by the
firing mode, the damping vectors of subsequent spikes are
represented by the first spike. The subsequent spikes are
then classified as belonging to the cluster of the first spike.
A pair of spikes is considered to occur in a burst under
the following conditions: the inter-spike-interval (ISI) is
ISI b_min, ISI bax),. t\Typical firing pattern with irregular
firing and broad baseline noise is noticed from -1.00 level
onwards. . .

So, they are known to fire a burst of train-spikes with
reducing amplitudes, i.e., complex spike bursts

8. Cluster analysis

The spatial dampening vectors of the train-spikes computed/
or generated by a STN neuron are homo-centrically as a
cluster in a multi-dimensional space

. . . cluster is characterized or embodied as a normal
distribution of N

(
H; µi

∑
i

)
:

N
(
H; µi

∑
i

)
= 1(√

2π
]2√
Σi

e−
(

1
2

)
(H−µi )T Σ−1

i (H−µi ) (21)

Wherein ‘H’ indicating the dampening-vector as a static,
‘N’ is the height of the multi-dimensional-space equivalent
to the number of electrode points, followed by the µi ,Σiare
mean of population plus variance and covariances of
dampening-vectors included in the i-thcluster.

The spatial damping vectors are clustered hierarchically
by the centroid method.10 For the clustering algorithm,
a Mahalanobis generalized distance is defined as the
distance between the i-th and j-th clusters. The Mahalanobis
generalized distance is concerned with the error rate in
which damping vectors in the i-th cluster are misclassified
into the j-th cluster and vice versa, i.e., the rate of the first
and second type errors.11

We have two assumptions; (1) spikes in the i-th cluster
occur at the same rate as those in the j-th cluster, (2)
the population variance-covariance matrix of the damping
vectors included in the i-th cluster is nearly equal to that of
damping vectors in the j-th cluster, i.e.,∑

i�
∑

j�1
−

(∑
i +
∑

j

)
=
∑

i j

And we can compute the error-rate such as

Here, H is the simplified Mahalananobis distance
(statistic domain). If maximum of Pij=PIJ among all set
groups (or of clusters) then i-th and j-th clusters are
merged and the cluster analysis is resumed as long is PIJ≥
0.016, i.e., The simplified distance of Mahalananobis(

µi − µ j

)T ( 1
2

)
(ΣI + ΣJ )−1 ≤ 4

Therefore, the terminal constraint of the cluster-
process is determined by the Mahalananobis statistical test.
Since µiΣiare unknown until the end of the clustering,
substitute values

Since and are unknown until the end of clustering,
Substitute values pq used. Since each damping vector

initially forms a cluster, the initial value of µ̂i is the i
th damping vector. Since cluster distribution is scattered
due to noise or small overlapping spikes, the diagonal
elements

∑
i of are replaced by the variance of noise or

background spikes, σ2. The other elements are set to zero
when the number of damping vectors included in the i th
cluster is less than N. If the number of damping vectors
included in the ith cluster is greater than N after a few
clustering iterations, nondiagonal elements of

∑
i are set to
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λσ2, where λ is the correlation coefficient between the
pth and qth components of the damping vectors in the i-th
cluster.

9. Results and Discussion

In this study, we understood the equivalence of a cluster-
group with a subthalamic nucleus neuron. However, the
validity of this notion has not yet been determined. We
accomplished further investigations in which an aimed-
target s t n neuron was detected by the collision-
test and its damping vectors were determined by
our clustering method. Since the damping vectors of
the detected neuron distilled in a cluster-group which
communicated well to one of the cluster-groups in the multi
cluster-group allocation, demonstrating the neuron cluster
correspondence. Stimulus-amplitude and pulse-widths of
window discriminators of stn-neural-spikes acquired with a
single site single unit microelectrode is equivalent to cluster-
groups of neural-spikes including source to a minimal-
distribution of damping-vectors. In distinction with single-
site microelectrode recording (MER) signals of STNs, our
cluster-analysis disconnected neuronal-spikes, in particular,
by a joint-distribution of damping-vectors. Whether we
can achieve any gain from multi-site signal-recording,
nevertheless, varies on the form of multi-site multi-unit
micro-electrode and on neuron-density. Neuronal-spikes
computed or simulated or generated by a neuron in
a cell-sparse-region, for instance, are simply separated
by single-site micro-electrode recording MER signals
of stn. A multi-site multi-unit microelectrode together
with numerous adjoining recording-sites is necessary to
distinguish neuronal-spikes computed generated/simulated
by means of a number of neurons in a cell-dense-region-
areas for instance the hippo-campus(campal)/pyramidal
cell-layer of rascal‘s. Hence, the connection among the form
of multi-site multi-unit micro electrode and cell-density
should be explored further than to achieve the highest
advantage of use of multi-site multi-unit micro-electrode
recording (MER) signals of subthalamic and hippocampal
regions of the non-primate rascal animals.

10. Conclusion

We developed here a procedure for spontaneously
categorizing several neuronal-spikes from multi-site
multi-micro-electrode signals recording of stn data. The
technique is vigorous sturdy and robust as compared to
lower-sampling frequency and noise-distortion because a
neuronal-spike is characterized as a spatial-damping-vector
derived on based on the covariance-matrix amongst a
pattern-matching template and the experimental signal
at every single signal-recording-point of contact. The
correlation among a cluster-group of damping vectors and
a neuron was corroborated by the collision-test. It may
be concluded that the developed procedure is useful for

further accurate categorization of neuro-nal-spikes than
other kinds-of-spike-sorting, which lack the techniques to
distinguish corresponding-spikes or to treat spike-bursts.
This developed procedure is effective in researching multi
neuronal connections in locally connected neuronal-net-
works.
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