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A B S T R A C T

Strigolactones (SLs) are versatile compounds that have recently been identified as a special generation of
plant hormones. They play a significant role as modulators of coordinated plant development in response
to nutrient deficiency and defence, particularly by influencing plant root microbiome and mycorrhization.
SLs act as signals molecules that help host communicate with their environment belowground, in addition
to regulating root architecture and growth promotion. Alternatively, boosting the SLs hormone level or
applying external SLs, SL synthetic analogs e.g. GR24, and SL mimics to plants, can improve the root
architecture, and physiological changes, and controls biotic and abiotic parameters by activating regulatory
genes and molecular changes. Interestingly, SLs perform a fundamental character in the establishment of
arbuscular mycorrhiza fungi (AMF) symbiosis by eliciting mycorrhization in the plant, which allows for
adequate phosphorus utilization. Due to various their multifunctional aspect, they have a wide range of
possible agricultural and biotechnological applications. We should be able to comprehend the biological
mechanisms operating below ground in plant systems and their significance in the ecosystem with greater
clarity as more research is conducted into the necessary conditions for various SLs in various biological
activities.
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1. Introduction

Arbuscular Mycorrhizal Fungi (AMF) are obligate
biotrophic roots that exchange mutually beneficial effects
with around 80% of plants1,2 and symbiotic relationship
among plants and fungi from a long-gone phylum.3,4 AMF,
which is established by the majority of territory plant
species and fungi that are members of a monophyletic
phylum called the Glomeromycota, is most likely the
most widespread terrestrial symbiotic association.5–7

Interestingly, this mutualism relation helps host plants
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develop vigorously in harsh circumstances by facilitating
a series of complicated interactions among the fungus and
plant that cause an increase in photosynthetic efficiency8

and additional gas exchange related attributes9 in addition
to increase in water and soil nutrients absorption.3,10–12

AMF are recognized to tolerate high metal concentrations
in the soil and it can reduce heavy-metal toxicity in the
host plants reported by several investigators.13–16 The
homeostasis of heavy metals depends heavily on metal
transporters.17 Glomus intraradices has a Zn transporter,
according to findings of Gonzalez-Guerrero et al.18

AMF closely links plants to the fungi’s hyphal network,
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which can contain more than 100 meters of hyphae per
cubic-centimeter of soil.19 This AMF hyphal-network has
been specifically designed to absorb water and nutrients,
primarily phosphate and others nutrients.20 AMF enhance
the soil-quality by changing the texture-structure of the
soil, which benefits plant health.2,16,21 Organic matter
in soil can decompose more quickly thanks to fungus
hyphae. Additionally, by enhancing the "sink effect" and
moving photon -assimilates from the aerial parts to the
roots, mycorrhizal fungi may have an impact on how much
atmospheric CO2 fixation occurs by host plants.22,23

Now a days, plants are constantly facing the challenges
because of unfavourable environmental conditions, resulting
in significant reductions in growth, yield, and physiological
traits. Hormones have a major influence on the regulation
in plant development, overall physiology, and shelf life.
Strigolactones (SLs) were discovered to be in charge
of altering fungal physiology and mitochondrial activity
as well as inducing branching.24 The parasitic plants
Striga and Orobanche are known for using SLs as
germination stimulants.25 In some AMF, SLs can also
promote sporulation.26 It has been discovered that species
of Striga take advantage of an ancient and conserved
communication system between associated fungi and their
host-plants.27 The physiological functions and molecular
signalling involved in root development are carried out
by SLs involvement, which also serve as signals to
attract the AMF for symbiosis.28 SLs are new carotenoid-
derived signaling molecules (hormones)29 that developed
as controllers of a simple developmental processes in very
early plant lineages prior to actually bringing in unique
roles to help land plants grow vigorously without any
biological complexity24 (Figure 1). Around 25 different
types of naturally present SLs have been documented in
various plant species, and they are divided into two groups
classified on their chemical structures – (i) canonical and (ii)
non-canonical SLs.30 A butenolide ring (D ring) is joined to
a tricyclic lactone (ABC rings) via an enol ether bridge in
canonical SLs. The ABC ring is substituted with an irregular
ring structure in non-canonical SLs. SL molecules in various
forms may have diverse biological functions.31

Natural SLs’ chemical synthesis is limited by their
complicated structure and stereochemistry. GR24 is a
generally applied synthetic SL analogue in science. Their
adaptability is also demonstrated by the fact that, once
released in the rhizosphere but it’s extremely low amounts
(10−7 to 10−15 M)24,32 or externally applied synthetic SLs
analogs like GR24,33,34 they have been used as a signaling
compounds for plant- networking organisms and plant
growth development from various kingdoms.35,36

Plants are regularly exposed to a variety of un-favourable
environmental circumstances, resulting in abiotic stress and
lower productivity. In this scenario, the microbiota of the
rhizosphere must be improved by signalling molecules. New

Fig. 1: SLs hormone in plant microbe’s interaction and growth
promoting

Fig. 2: SLs hormone role in plant interactions with beneficial root
microbiome

phytohormones like SLs are important for regulating plant
biological activities and assisting them in communicating
with the outside microbial community (Figure 2).35–37

SLs also orchestrate resource distribution modifications
by strategically altering plant growth, allowing plants
to respond to nutrient availability. SL interacts with
auxin, abscisic acid, ethylene, cytokinin, and other plant
phytohormones to construct elaborate signalling networks,
then instead of functioning independently.37

Endogenous plant hormones, on the other hand, play
crucial roles in modification to shifting environmental
factors by mediating growth, development, nutrient
dissemination, and source changes. Moreover, the hormonal
interactions can modify how plants react to environmental
cues like nutrient deficiency and canopy shade, as well
as how plants are arranged. Since the initial discovery,
there have been significant developments and fresh insights
into the biosynthesis, signalling, and transport of SLs.38,39

We give a basic overview of SL in this review along with
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a thorough discussion of how we currently understand
their function in plants and how crucial they are to AMF
symbiosis and plant growth.

2. Conclusion

Strigolactones (SLs) play a significant role in modulating
coordinated plant development in response to nutrient
deficiency and protection, especially by influencing plant
mycorrhization and the root microbiome. In addition
to controlling root architecture and promoting growth,
SLs function as molecular signals that assist plants in
interacting with their underground environment. They have
a wide range of potential agricultural and biotechnological
applications because of their multifunctional nature. We
should be able to comprehend the biological mechanisms
operating below ground in plant systems and their
significance in the ecosystem with greater clarity as more
research is conducted into the basic requirements for various
SLs in various biological activities.
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