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             Fall armyworm is a polyphagous migratory pest. Insecticides are 

used as major components of integrated pest management to control the pest, 

however, full dependence on insecticides has made the pest evolve resistance 

to most insecticide classes. The involvement of voltage-gated sodium 

channels in the excitation of cells makes them a primary target site of a large 

number of synthetic and naturally occurring neurotoxins. Consequently, it is 

imperative to delineate the molecular determinants that mediate interactions 

between insecticides with voltage-gated sodium channels. The present study 

sought to identify residues involved in the binding of these insecticides and 

to demarcate the most efficacious insecticides depending on their binding 

affinity to the voltage-gated sodium channels. The study took an in-silico 

approach to identify docking sites on voltage-gated sodium channels along 

with the interactions between known insecticides and specific amino acids on 

the voltage-gated sodium channels. The homology of the Spodoptera 

frugiperda voltage-gated sodium channels was developed to predict the 

binding sites of different known insecticides that target the insect. The current 

study identified amino acid residues that insecticides could target to enhance 

their effectiveness against the fall armyworm. Insecticides that do not target 

voltage-gated sodium channels also showed interactions with this channel, 

indicating the possibility of a different mode of action that could be 

confirmed by experimental studies. Our findings can direct efforts that 

monitor for mutations that result in insecticide resistance given that new 

interacting residues were identified. These findings can enable better 

management of resistance when it develops.   
 

INTRODUCTION 

 

             The fall armyworm (Spodoptera frugiperda) refers to a polyphagous migratory 

pest originally a native of the sub-tropical and tropical regions of America. It is amongst 

the most destructive insects of economic importance infesting maize, cotton, rice, soybean, 

sorghum and vegetables (Cruz 1995; Figueiredo et al., 2005). The distribution of S. 

frugiperda, covers an immense geographical area even though it is limited to warmer 

climates due to the increased dispersal ability of adult insects that have spread rapidly to a 

http://eajbsa.journals.ekb.eg/
mailto:savgichere@gmail.com


Savinda Njeri Gichere et al. 36 

wide range of host species (Sparks, 1979).  

             The over-infestation coupled with high economic loss has promoted reliance on 

intensive spraying of insecticides. Consequently, the indiscriminate widespread utilization 

of insecticides has prompted the existence of resistant fall armyworm (FAW) populations 

to various classes of insecticide including benzoylureas, organophosphates, pyrethroids 

and carbamates [Diez and Omoto, 2001; Yu et al., 1991, 1992 and 2003). 

             Studies by Young and McMilan, (1979) document early insecticide resistance in 

FAW against carbamate. Others followed suit with several resistance instances against 

organophosphates and pyrethroid being documented (Yu et al., 1991 and 1992). In the 

laboratory, resistance has been recorded in populations with described resistance ratios 

higher than 40-times-over to a certain pyrethroid (Morillo and Notz 2001).  

             In Brazil, pyrethroid resistance has been reported in FAW with a record resistance 

ratio of 13-folds over lambda-cyhalothrin (Diez and Omoto, 2001). Pyrethroid and 

organophosphates resistance biochemical characterization in fall armyworm has implied 

that both insecticide detoxification and target-site insensitivity by enzymes confer 

resistance (Yu et al., 2003). Furthermore, resistance genetics in the fall armyworm to both 

methomyl and lambda-cyhalothrin portrays multiple recessive alleles as critical (Rios and 

Saldamando, 2011). However, both studies do not identify the specific mutations/genes 

involved. 

1 Structure of Voltage-gated Sodium Channels in Insects:  

              VGSCs are essential in generating and propagating electrical signalling. The 

existing comprehensive structural and functional integrity of the VGSCs is generated from 

extensive functional and molecular analysis of mammalian sodium channels (Rinkevich et 

al., 2013; Catterall, 2000; Chahine, 2018). In the late 1980s, cloned ‘para’ VGSC of the 

insect nervous system from Drosophila melanogaster was functionally and structurally 

homologous to the α-subunit of sodium channels in mammals (Davies et al., 2007). Sodium 

channels in mammals consist of several β-subunits and a pore-forming α-subunit. The latter 

contains four homologous repeat domains (I–IV), each consisting of six segments (S1–S6) 

(Silver et al., 2014; Wang et al., 2013). Segments1-4 in each domain constitutes the sensing 

module (Figure 1A). The Segment 5 -6 and the P-loops that connect them, form the pore 

module (Rinkevich et al., 2013; Wang et al., 2015).  

             Each of the S4 segments harbors five to eight positive charged and evenly spaced 

residues lysine or arginine hence act as voltage sensors (Chahine, 2018). The ion-selectivity 

filter is composed of the amino acids found in the inner linings of the P-loops between 

Segment 5 and S6 (Chahine, 2018). In eukaryotic VGSC, the pore signature is 

Asparagine/Glutamine/Lysine/Alanine (D/E/K/A) present in P- loops linking Segment 5 

and 6 of domains I, II, III, and IV, respectively (Dong et al., 2014). Insects largely have an 

apparent, single sodium channel gene (Dong, 2010) unlike the mammalian nine α-subunit 

genes encoding different isoforms of sodium channel with varying gating properties and 

expression patterns (Goldin et al., 2000; Wang et al., 2013). The β-subunits in mammals 

function as auxiliary subunits to facilitate membrane localization and modulate channels 

(Xu et al., 2019). In contrast, insects have no orthologs of mammalian β-subunits (Wang 

et al., 2013). However, insects depend on alternative gene-splicing mechanisms and editing 

of ribonucleic acid (RNA) to develop variant sodium channels that have both varying 

pharmacological and gating characteristics (Dong, 2007, 2010; Wang et al., 2013; 

Soderlund, 2005). It is highly likely that these variants reflect the in vivo functional 

diversity of VGSCs, even though, physiological roles of splicing and editing variants is yet 

to be determined (Silver et al., 2014). 

              Drosophila melanogaster has non-orthologous proteins TipE and four TipE-

homologs (TEH1–4), while other insect species have three to four orthologs. These serve 
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as sodium channels auxiliary subunits in vivo. TipE and TEH1 contain a structural 

intracellular N- and C-termini with double transmembrane segments linked by a huge loop 

on the extracellular side (Wang et al., 2013). The TipE and TEH proteins optimize the 

sodium current amplitude in Xenopus oocytes just as the β-subunits in mammals, and alter 

voltage dependence and gating kinetics of the channels in D. melanogaster (DmNav), the 

house fly (Vssc1) and in German cockroach (BgNav) when co-expressed heterologous in 

the Xenopus oocytes (Wang et al., 2013; Olson et al., 2008; Tan et al., 2002; Liu et al., 

2004; Song et al., 2004; Smith et al., 1997; Warmke et al., 1997; Feng et al., 1995). 

Additionally, house fly TipE orthologs and Aedes aegypti mosquito (Du et al., 2013) and 

the American cockroach TEH1 orthologs, (Bourdin et al., 2013) enhance Xenopus oocytes 

sodium currents. It is likely that similar TipE- and TEH-ortholog effects are in other insects. 

Through channel gating modulation of auxiliary subunits, sodium channel sensitivity 

towards insecticides can be modified. If channel inactivation is enhanced to TEH1, there is 

a significant decrease in potency of deltamethrin on the Drosophila sodium channel (Wang 

et al., 2013). 

2- Functionality of Voltage-gated Sodium Channels (VGSCs): 

            VGSCs are integral transmembrane proteins vital in cellular electrical signaling by 

conducting sodium ions across the cell membrane of excitable cells. On cell membrane 

depolarization, the opening of the activation gate occurs via the outward movement of the 

S4 segments thereby initiating voltage-dependent activation (Rinkevich et al., 2013). The 

channel becomes occluded by an inactivation particle a few seconds later through fast 

inactivation (Catterall 1980). The fast inactivation process is executed by a cytoplasmic 

moiety formed by residues of Isoleucine-Phyneylalanine-Methionine (IFM) in mammals 

and Methionine- Phyneylalanine-Methionine (MFM) in insects, in the P-loops between 

domain III and IV (Fig. 1B). Consequently, this particle blocks the intracellular mouth of 

the pore thus stopping ion conduction (Rinkevich et al., 2013). This serves to terminate 

action potential activation and any over-depolarization of the membrane potentials an 

important role of the channels in cell excitation (Silver et al., 2014).  

 
Fig. 1 (a) Structure of VGSCs. Segment1–4 form the voltage-sensing domain (VSD). Pore Domain 

(PD) constitutes the Segment5–6 and the extracellular P-loop linkers. (b) Transition states of 

VGSCs during resting, open, inactivated and closed states. The colors are to differentiate the 

different domains in the channel (Adopted from Xu et al., 2019). 



Savinda Njeri Gichere et al. 38 

             Slow inactivation takes place to stop sodium conduction during prolonged 

depolarization and rapid repetitive stimulations (Chahine, 2018; Vilin and Ruben, 2001; 

Ulbricht, 2005). Unlike fast inactivation, the entry and recovery from the slow inactivated 

state take a longer time ranging from hundreds of milliseconds. This state is elucidated to 

be a protective mechanism against stress conditions generating accelerated repetitive 

stimuli (Chahine, 2018). During repolarization, the VGSCs close and Segment 4(S4) 

voltage sensors move backwards. Sodium channels deactivate and recover from 

inactivation, getting back to their resting state (Xu et al., 2019). 

3. Voltage-gated Sodium Channels as a Target Site: 

            The role of VGSCs in the nervous system makes it an ideal target region of multiple 

toxins in the course of evolution (Wang et al., 2003; Cestele and Catterall, 2000). The 

binding of neurotoxins to specific receptor sites alters the functionality of VGSCs through 

blocking pores, altering gate channels (Du et al., 2011; Tikhonov and Zhorov, 2005). This 

inactivation negatively alters the activation of membrane potential. Persistent 

transmembrane depolarization due to prolonged sodium influx induces continuous nerve 

firing and hyperexcitability that paralyses and kills the insect.  

            VGSC is primarily targeted by several synthetic insecticide classes including plant 

extract derivatives. For instance, pyrethrins, from flowers of pyrethrum (Tanacetum 

cinerariaefolium) extracts (Elliott, 1977), act on sodium channels (Narahashi, 1988). An 

additional organochlorine insecticide Dichlorodiphenyltrichloroethane (DDT), also targets 

sodium channels primarily. However, indoxacarb and metaflumizone target sodium 

channels with a different mode of action from pyrethroids (Table 1). The two-act by 

inhibiting sodium current (Silver et al., 2010; Dong et al., 2014; Wing et al., 2005; Dong 

et al.,2014),  

 

Table 1: Insecticides Mode of Action 
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4- Difference in Toxicity of Insecticides in Insects and Acarines: 

             Notably, Tau-fluvalinate (Pyrethroid) is highly toxic to mites and ticks than to 

insects.  This is attributed to the difference between acarine VGSC and that of insects. The 

amino acid at the locus 933, is cysteine (C) in insects and either glycine (G), alanine (A), 

or valine (V) in acarines. Modelling these VGSC interactions with the specific pyrethroids 

implies that the Cysteine in insect channels obstructs Tau-fluvalinate binding, reducing the 

comparative efficacy of the insecticide. However, if cysteine is replaced by smaller amino 

acids such as in acarines, Tau-fluvalinate acquires the necessary room to fit hence a tighter 

binding, making good acaricide out of the pyrethroid (O’Reilly et al., 2012). 

5- Models of Knockdown Resistance (kdr): 

            A resistance mechanism to the toxins is known as knockdown resistance (kdr), 

which is caused by changes within the VGSC, that renders it less sensitive to the toxin in 

the compounds (Vais et al., 2001: Soderlund and Knipple 2003). Globally, kdr has been 

agriculturally and medically documented as significant in arthropod pests (Soderlund, 

2005, 2012; Du et al., 2015; Rinkevich et al., 2013). More than 50 VGSC mutations have 

been recorded in reference to pyrethroid resistance in various arthropods (Du et al., 2013; 

Li et al., 2012; Xu et al., 2012; Rinkevich et al., 2013; Kristensen, 2005). Previous studies 

document that mutations conferring resistance to these insecticides are mostly common in 

regional domain II of channel protein (Vais et al., 2001; Soderland and Knipple 2003). 

These are 5 including; Leu925, Thr929 and Leu932 (IIS5) and Leu1014 located in IIS6 and 

Methionine 918 (Met918) located in the linker IIS4-5. L1014F is the most common 

mutation, originally in houseflies (Williamson et al., 1996; Endersby et al., 2011). For 

instance, a mutation at T929 (the binding site for DDT, deltamethrin, fenfluthrin and 

permethrin) confers resistance to all the four insecticide compounds, whereas mutations at 

M918, a distance button from fenfluthrin (pyrethroid) and DDT predicatively bind, confers 

resistance to deltamethrin and permethrin only (Silver et al., 2014). The study shows that, 

the model prediction for T929I ensues resistance to all four insecticide compounds, while 

M918T confers resistance to permethrin and deltamethrin and not DDT or fenfluthrin 

(Linda et al., 2017). Sun et al. (2016), has similarly used the same model on live insects’ 

bioassays to support the O’Reilly model above.  

             Alternatively, recent studies proposed a dual-receptor site model that binds with 

both DDT and pyrethroids (Du et al., 2015, 2016; Zhorov and Dong, 2017). In this model, 

the binding of two molecules to PyR1 receptor sites and PyR2 simultaneously is necessary 

for the sodium channel to lock in an open state (O’Reilly et al., 2006). The proposed 

location for this binding is in domain interfaces II/III and I/II, respectively, and are arranged 

in a quasi-symmetrical manner. Pyrethroids attach between four helices including S5, 

linker-helix L45 and two S6 helices from adjacent domains (Du et al., 2015).  

            While the original O’Reilly model L1014F affects pyrethroid binding through an 

indirect allosteric impact, key variances in the Du model indicate the L1014F is firmly 

localized within the PyR2 site. Consequently, L1014F’s effect is in slowing opening of 

VGSC that is predicted to significantly reduce the formation of PyR1, hence limits the 

availability of pyrethroid for binding, conferring the kdr. An additional difference is in the 

orientation of pyrethroids bound within each pocket that is reversed (which begs the 

question of why M918T would be ineffective against toxic compounds like fenfluthrin), 

and that the pyrethroids sip deeper into the PyR2 protein domain. 

            Precise molecular markers through identification of kdr mutations rapidly aids in 

the assessment of resistance allele frequency in insect populations other than being 

important in deciphering sodium channels structural features critical in binding and action 

of the pyrethroids (Silver et al., 2014). Studies by Amey et al. (2015), in aphid’s genome, 

identified unusual properties in VGSC sequences unique to aphids only. They possess a 
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unique heterodimeric channel, having a characteristic ion -selectivity filter, not common in 

insects and who's insensitive to tetrodotoxin was high. The study implied that it is possible 

to design selective compounds to act on aphids while sparing other insects. 

6- Homology Modelling: 

            Previous studies have used resolution crystal structures of bacterial potassium 

channels to provide structural templates for modelling of the VGSC (O’Reilly et al., 2007). 

The publication of a crystal structure of the electric eel sodium channel 1.4(Nav1.4) 

complex enables the extension of this homology modelling to encompass the VSDs. We 

have utilized the structure of Nav 1.4-beta1 complex, in the present study, as a template for 

generating a homology model for the fall armyworm VGSC in an open conformation. A 

combination of protein-ligand modelling and docking procedures has been adopted to 

describe how these ligands interact with the insect sodium channels.  

             MATERIALS AND METHODS 

 

1- Homology Modelling 

             The crystal structure of the Nav1.4-beta1 complex from electric eel provided the 

structural template for a homology model of the fall armyworm sodium channel in an 

activated state. The Nav 1.4 –beta complex from the electric eel represents the first Nav 

channel to be biochemically purified and cloned. The subunits of the model are represented 

by the dark-blue colour in figure 5. These subunits correspond to domains I, II, III, and IV 

in eukaryotic sodium channels that have four domains. The model was produced using the 

SWISS-MODEL workspace (swissmodel.expasy.org/workspace). The chosen protein had 

a Global Model Quality Estimation (GMQE) score of 0.37 (the highest among the 

identified templates). The GMQE score is a quality estimation that combines properties 

from the target template alignment and the template structure. The score reflects that 

expected accuracy of the model built with that of the alignment and template. 

The study used the ClustalW algorithm to align the amino acid sequences of the fall 

armyworm sodium channel (XP_035435130.1) with the Nav1.4 channels. The sequence 

identity of the alignments between the sequences was 33% (Fig. 2).  

 
Fig. 2 Sequence alignments of the Nav1.4 channel and fall armyworm sodium channel.  

 

2- Automated Ligand Docking 

             The crystal structure of the pyrethroids, metaflumizone, indoxocarb, 

benzophenylurea, cartap, fipronil, spinetoram, chlorfenapyr, and tebufenozide was 

obtained from the pubchem database (https://pubchem.ncbi.nlm.nih.gov/). The insecticides 

were downloaded in the sdf (special data file) format and converted to the pdb (protein data 

bank) format (compatible with Autodock Vina) via Pymol. Automated docking of the 

insecticides was performed using the AutoDock 4.2.6 software package (Trott and Olson, 

2010). The predicted binding affinities between the VGSC and the insecticides were 

measured in Kcal/mol. The protein molecule (VGSC) was read into Autodock Vina and 

water molecules were removed. Water molecules in the binding pocket can interfere with 

docking. Polar hydrogens and Kollman charges were added to the protein before it was 

saved in pdbqt format. The protein and ligand (insecticide) were then chosen as 

macromolecules in the Autodock Vina. Grid maps with 40×40×40 points were constructed 

with a grid point spacing of 0.375Å. The grids were centered on positions 138.737, 

128.216, and 125.832. A configuration file was then created to indicate the parameters for 

the docking process. The Iterated Local Search global optimizer algorithm with the 

https://pubchem.ncbi.nlm.nih.gov/compound/Spinetoram
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parameters of energy_range = 4 and exhaustiveness = 8 was used to perform docking 

simulations. The docking process performed using Autodock Vina was run using the 

command prompt. Docking predictions with the least binding free energy value (highest 

negative value) were deemed to be of significance.  The results of the docking process were 

visualized using pymol which was also used to identify the specific docking points of 

individual insecticides.  

             RESULTS  

  

            The homology model of the fall armyworm VGSC is largely based on the X-ray 

structure of the Nav1.4-beta1 complex from electric eel (PDB accession number (5XSY). 

The model of the VGSC used is shown in figure 3. 

 
Fig. 3 Model of the VGSCs 

 

3.1 Automated docking predictions 

            Insecticides have a distinct structure-activity relationship that relates to their 

physical properties and 3-D configuration of the entire molecule. Figure 4 illustrates the 

different chemical structures of the nine insecticides that were retrieved from the PubChem 

database. (https://pubchem.ncbi.nlm.nih.gov/).    

           The program Autodock was utilized in generating docking predictions for the 

insecticides and the modelled VGSC. The study analysed the energetically favourable 

docking predictions (i.e. those with negative values for binding free-energy) to determine 

the interactions between the insecticides and the residues in the protein model.  

 
Fig. 4 Chemical structures of the insecticides that were used in the docking. 

https://pubchem.ncbi.nlm.nih.gov/compound/Spinetoram
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Table 2: Binding Sites Identified Through the Molecular Docking Process 

 
 

             For each insecticide, the autodock vina software identified 9 potential binding sites. 

The ranking of the binding sites was based on their affinity (kcal/mol). Visualizations on 

the pymol software helped us identify the specific amino acids that interacted with the 

VGSC and the binding site where the interaction was identified (Fig. 5). The residue Ser1873 

stood out with six of the nine insecticides indicating interactions at this position. 

Indoxacarb and Pyrethroids, were among the insecticides that indicated interactions with 

the Ser1873 residues. The other identified interacting residues were specific for each 

insecticide.  
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Fig. 5 (a) Binding site between Benzoylphenylurea and the VGSC at position Tyrosine 476 represented by 

a dotted yellow line. The amino acid was located at the third binding site. (b) The binding site between cartap 

and the VGSC at positions Tyrosine 433, Glutamine 1580, Tyrosine 433, Phenylalanine 1579, Threonine 

430, and Threonine 1578 represented by a dotted yellow line. These amino acids were identified on the 1st, 

2nd, and 3rd binding sites. (c) The binding site between Chlorfenapyr and the VGSC at position Serine 1873 

is represented by a dotted yellow line. The amino acid was identified on the 2nd binding site. (d) The binding 

site between fipronil and the VGSC at positions Serine 1873 and Tyrosine 1927 is represented by a dotted 

yellow line. The protein was identified on the 1st binding site. (e) The binding site between indoxacarb and 

the VGSC at positions Serine 1873, Tyrosine 1927, and Asparagine 1045 represented by a dotted yellow line. 

The amino acids were identified on the 7th binding sites. (f) The binding site between metaflumizone and the 

VGSC at positions Alanine 1577 is represented by a dotted yellow line. The amino acid was identified on the 

8th binding site. (g) The binding site between Spinetoram and the VGSC at positions Serine 1873 and 

Glutamine 1580 is represented by a dotted yellow line. The amino acid was identified on the 1st pose. (h) The 

binding site between Tebufenozide and the VGSC at positions Serine 1873 is represented by a dotted yellow 

line. The amino acid was identified on the 7th binding site.(i) Binding site between Pyrethroids and the VGSC 

at position serine 1873 identified on the 1st pose.  
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             DISCUSSION  

  

             VGSCs are essential integral transmembrane proteins, crucial for electrical 

signalling in excitable cells. Their critical role in excitability has made them a target site of 

multiple neurotoxins. In addition, they are also the primary target of modern sodium 

channel binding inhibitors. The intensive insecticides application has, however, lead to 

resistance development against common insecticides. kdr caused by multiple mutations in 

the insecticide binding sites of VGSCs is a major mechanism of insecticide resistance 

among different insects. Insects that exhibit kdr show reduced target-site sensitivity to 

insecticides targeting sodium channels rising from one or more-point mutations. 

Understanding common insecticide binding sites for different classes of insecticides is an 

important step in finding a lasting solution to the growing menace of insecticide resistance. 

Twelve different amino acid residues that showed interactions with the insecticides under 

study were identified from our analyses (Table 2). Residue Ser1876 indicated the most 

frequent interactions, with 6 of the 9 insecticides used indicating interactions. The residue 

formed close (<4 Å) binding contacts with the analysed insecticides. Super kdr resistance 

has previously been attributed to Met918, Thr929, Leu925, and Leu 932 (O’Reilly et al., 

2006). None of these residues indicated any interactions with the two SCBIs and pyrethroid 

used in this study. Our results could indicate that the pyrethroid, metaflumizone, and 

indoxacarb have different target sites that allow them to interact with the fall army worm’s 

VGSC. Our results also confirm that the mutations previously reported have influenced the 

insecticide binding affinity, resulting in insecticide resistance. This could be attributed to a 

lack of interactions in the previously identified binding residues. Residues Val410 and 

Leu1014 known for kdr-type resistance to DDT and pyrethroids were also not picked up by 

our study (O’Reilly et al., 2006) of the 9 insecticides analysed in the present study, cartap 

indicated the highest number of binding sites in the VGSC. The insecticide successfully 

interacted with five different amino acids, including Gln 1580, Tyr 433, Phe 1579, Thr 430, 

and Thr 1578. These interactions were identified in pose 4 of the docking results which had 

a binding affinity of -4.2kcal/mol and an rmsd value of 4.712. This insecticide is known to 

cause neurotoxicity among insects (Liao et al., 2003). Interactions with the VGSC have, 

however, not been reported by previous studies. Residue Phe1579 has been previously been 

described as an essential determinant of SCBIs binding and mode of action (von Stein et 

al., 2013). Mutations of this residue usually interfere with the binding ability of the sodium 

channel inhibitors (SCIs) drugs to its receptors (Mike and Lukacs, 2010). Such results 

indicate the possibility of multiple modes of action for this class of insecticides. We suggest 

that further experimental studies be performed to look at the possibility of cartap actually 

binding to VGSC and affecting its toxicity through this mode of action. These studies could 

also be extended to the other classes of insecticides which indicate a different mode of 

action to that of the SCBIs. Indoxocarb, a different class of insecticides, indicated binding 

in three different amino acids, including Ser 1873, Ty 1927, and Asp 1045. Resistance to 

this insecticide has previously been attributed to Ser989 and Val1016, both of which did not 

indicate any interactions from our analyses (Leticia et al., 2017). The different interacting 

residues in our context could probably indicate alternative binding sites of the insecticides 

to the VGSC. Studies on the mutant insects could help to confirm the efficaciousness of 

these binding sites.  Serine 1873 was a highly targeted binding site with 5 of the 8 

insecticides indicating binding interactions with the amino acid. This binding position has, 

however, not been implicated in mutations that are known to cause kdr among fall 

armyworm insects. The prediction of multiple binding sites and new binding sites is of 

great importance in informing management of the pest and monitoring resistance 

development. The more the binding sites of an insecticide may correlate with increased 
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effectiveness against the pest, that is if any of the target site has mutated there is still 

remaining target binding options of where the insecticide can bind to and still execute its 

mode of action against the pest. The model generated in this case had the highest sequence 

similarity with the fall armyworm’s voltage-gated channel as indicated with its high Global 

Model Quality Estimation (GMQE) score (0.37). Future studies could work to find models 

and templates with higher sequence similarity matches to increase the accuracy of 

generated models.   

CONCLUSIONS 

           The modelling studies reported here relied on crystal structures of homologous ion 

channels to model binding sites of insecticides in the VGSCs. The results in this study 

identified insecticide-specific binding residues on the VGSC. Our study factored in the 

structure-activity relationships of pyrethroids to reveal the specific binding residues. We 

suggest that experimental studies be carried out to identify if non-VGSCs-targeting 

insecticides indicate different modes of actions, especially given that they had significant 

interactions with the VGSCs.  
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