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Abstract.  

Self-driving cars are an active area of interdisciplinary research spanning 
Artificial Intelligence (AI), Internet of Things (IoT), embedded systems, and control 
engineering. One crucial component needed in ensuring autonomous navigation is to 
accurately detect vehicles, pedestrians, or other obstacles on the road and ascertain their 
distance from the self-driving vehicle. The primary algorithms employed for this 
purpose involve the use of cameras and Light Detection and Ranging (LiDAR) data. 
Another category of algorithms consists of a fusion between these two sensor data. 
Sensor fusion networks take input as 2D camera images and LiDAR point clouds to 
output 3D bounding boxes as detection results. In this paper, we experimentally 
evaluate the performance of three object detection methods based on the input data 
type. We offer a comparison of three object detection networks by considering the 
following metrics - accuracy, performance in occluded environment, and computational 
complexity. YOLOv3, BEV network, and Point Fusion were trained and tested on the 
KITTI benchmark dataset. The performance of a sensor fusion network was shown to 
be superior to single-input networks.  

Keywords: Sensor fusion; object detection; 3D object detection; LiDAR point cloud; 
self-driving cars. 
Introduction. 

Object detection has taken primary importance in autonomous driving. At 
present, current perception systems utilize input data in the form of 2D images, point 
clouds, or a combination of both 2D images and LiDAR point clouds to achieve 
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accurate 3D localization and detection of vehicles. Research in the field of object 
detection has produced mature algorithms for 2D images. The emergence of Region-
based Convolutional Neural Network (RCNN) [1], Fast-RCNN [2], and Faster-RCNN 
[3] removed the bottlenecks of large operating time and high computation power in 2D 
object detection. Different from region-based algorithms, multiple versions of the state-
of-the-art object detector You Only Look Once (YOLO) [5, 6,7] have eased the task of 
predicting bounding boxes and class probabilities in 2D images.  

LiDAR is a widely used sensor in obtaining distances between the object and 
the sensor. LiDAR emits an infrared laser beam to determine the distance via the time-
of-flight principle. The wavelength of LiDARs exploited in self-driving cars is in class 1 
eye-safe range. In general, LiDARs perform comparatively better in challenging weather 
conditions such as fog and rain as opposed to optical cameras. These sensors are also 
relatively more resilient to changes in ambient light conditions. While 2D LiDARs 
featuring an array of beams such as those from Sick or LeddarTech are typically 
manipulated in Intelligent Transportation Systems (ITS), self-driving cars make use of 
3D LiDARs such as those from Ouster or Velodyne. These 3D LiDARs maneuver a 
rotating swivel that covers the entire field of view by scanning an array of laser beams 
across it. The infrared lasers are in the form of pulses and objects reflect these pulses 
hence distance information is obtained, yielding a 3D point cloud of the surrounding 
environment. Vertical resolution and angular revolution are key features that dictate the 
choice of a 3D LiDAR in an application. Currently, the common use of LiDARs is 
limited by their high cost. 

For the challenge of 3D object detection using LiDAR point clouds, the 
computer vision community has developed several methods. These include point-cloud 
voxels [2,3], or transforming the 3D view of point-cloud into a top-down 2D view to 
exhibit objects [1]. Some other techniques focus on estimating the 6-DoF from a 
sequence of images. Point Net [9] architecture has garnered significant attention in the 
research cadre of autonomous vehicles. A variant of this architecture has been applied 
in Point Fusion [14] to devise an application-agnostic algorithm. However, point clouds 
do not output color information and, depending upon the resolution of the sensor, 
point clouds are more or less sparse [15]. 

Another approach to 3D object detection combines LiDAR data and 2D 
images. This method has been manifested to benefit from the complementary 
capabilities of cameras and LiDARs. In a conceptually simplistic approach, a 2D 
detection network has been utilized to make detections in the 3D point cloud [15]. This 
is achieved by fusing output from a 2D detector with a transformed 3D point cloud. 
More involved approaches include Point Fusion [14] and Multi-View 3D Network 
(MV3D) [12] where a region-based fusion approach has been proposed. 

In this paper, we classified object detection algorithms based on input data. 
Three object detection networks have been identified in this regard: 1) YOLO v3 [7] 
for 2D images, 2) BEV detection for point clouds, and 3) Point Fusion [14] for fused 
data. We retrained these algorithms on KITTI [8] and specified metrics to assess the 
performance of these networks. The same dataset was put into service to evaluate all 
three networks to ensure the completeness of the comparison. Metrics for performance 
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evaluation are accuracy, performance in occluded environment, and computational 
complexity.  
Following are the main contributions of this work: 
•We surveyed existing object detection methods for 2D images, point clouds, and 
sensor fusion networks. 
•We chose representative methods in each category and retrained them on the KITTI 
dataset [8], and evaluate their performance based on accuracy, performance in occluded 
environment, and computational complexity. 
•We conveyed an analysis of the results along with the advantages and disadvantages of 
each algorithm. 
Related Work. 

This section highlights outstanding object detection works for 2D images, point 
clouds, and sensor fusion. It also reviews the performance of each network in 
comparison with other networks. 
2D Image Approaches 

Object detection networks detect certain object classes within an image. Two main 
categories of state-of-the-art methods can be identified: one-stage methods and two 
stage-methods. YOLO [5], RetinaNet [18], and Single Shot Multibox Detector (SSD) 
[19] are one-stage methods that prioritize inference speed. On the other hand, detection 
accuracy takes precedence in two-stage networks as they first propose candidate regions 
having a high likelihood of staging the objects, and then score these regions to provide 
the final detections. Examples include Faster R-CNN [3] and Mask R-CNN [4]. The 
task of bounding box estimation has great importance in the object detection problem. 
In some previous works, box encoding is applied where center coordinates (x,y) and 
offset of the bounding box are considered. RCNN [1], Fast RCNN [2], Faster-RCNN 
[3], YOLO [5], YOLOv2 [6], and Mask R-CNN [4] wield this type of encoding method 
for bounding box with a slightly different loss calculation scheme. YOLO [5] bases 
detection on a regression model. Image is divided into a grid of size S*S and B number 
of bounding boxes, their confidence scores, and class probabilities are predicted for 
each cell. Predictions are then encoded as a tensor. As compared to RCNN [1], YOLO 
[5] offers a faster detection speed. However, there is a slight reduction in performance.  
Point cloud Approaches 

3D Fully Convolutional Network (FCN) extended the application of 2D FCN by 
applying it to point cloud data [13]. In some previous works, sophisticated 
segmentation algorithms have been applied to propose candidates [17]. Region 
Proposal Network (RPN) is a more recent method of candidate proposal. Complex-
YOLO [10] proposed Euler-Region-Proposal Network (E-RPN) for pose estimation. 
Moreover, PointNet [9] is a ground-breaking contribution that consumes raw point 
cloud data and is compatible with several applications including part segmentation, 
object classification, and detection. Some other object detection algorithms transform 
point clouds into multiple views including Front View and Bird’s Eye View (BEV) 
multi-view feature maps [12,15]. A similar approach is adopted by VeloFCN [16], 
where point-cloud is transformed into front view. Our algorithm also takes advantage 
of BEV transformation to perform object detection in point clouds. 
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Sensor Fusion Approaches 
MV3D [12] is a sensor fusion network that efficiently deals with the limitations 

associated with the sparse nature of point clouds. It transforms point clouds into 
multiple views to make accurate 3D predictions. Moreover, the network is conveniently 
divided into two sub-networks: the first sub-network generates 3D candidate box 
proposals and the second sub-network fuses features from multiple modalities. This 
fusion framework rejects redundant features. A more conceptually simplistic approach 
is provided in [15] where 2D detections from a CNN are projected onto the 3D point 
cloud to obtain LiDAR point subset. A novel model-fitting algorithm then identifies 
the 3D bounding box based on generalized car models. Point Fusion [14] is a more 
recent contribution in 3D object detection that processes 3D point cloud data and 2D 
image data separately with PointNet [9] architecture and a CNN respectively. 
Information loss associated with BEV point clouds is mitigated in this algorithm. 
Material and Methods. 

In this paper, we focused on the car detection problem. KITTI [8] benchmark 
dataset was employed to retrain open-sourced algorithms. The 3D object detection task 
of the KITTI [8] dataset contains aligned 2D images and point clouds. Labels were 
available in the form of 2D and 3D bounding boxes. A total of 7418 point clouds and 
corresponding 2D images were adopted for training the networks from the KITTI [8] 
benchmark dataset. For 2D images, YOLOv3 [7] was evaluated and for point cloud 
data, a 2D projection approach to Bird’s Eye View (BEV) was adapted as arrayed in 
MV3D [12] and 3D FCN [17]. Point Fusion [14] was retrained and evaluated as a 
framework for sensor fusion.  

KITTI [8] dataset was obtained via VM Station Wagon mounted with number 
of different sensors including Velodyne HDL64 high precision Global Positioning 
System (GPS) inertial navigation system and RGB camera. A total of 6-hour drive data 
was obtained from driver viewpoint in [8]. Velodyne HDL64 rotates at 10Hz frequency 
with angular resolution of 0.09o. It captures 1.3 million points points/second with 360o 
horizontal and 26.8overtical field of view having range of 120m [8]. In this paper, we 
have focused on left camera RGB images, corresponding point clouds, and calibration 
files including the calibration details for velodyne to camera calibration. 
Following method was adopted to implement and evaluate the performance of three 
object detection algorithms that are, YOLOv3, BEV network, and Point Fusion: 

i. KITTI dataset was obtained from its website as it is an open-source dataset. 
ii. The training dataset was split into training and validation dataset in the ratio 1:1. 

It was used to categorize three classes of objects namely car, pedestrian and 
cyclist. 

iii. YOLOv3 was trained using RGB images only as it is a 2D detection network 
and does not require point cloud data.  

iv. BEV network was trained using point clouds only as this framework makes 
detections in point clouds. Point clouds were projected into BEV to encode the 
information of density height and intensity. Firstly, the height feature was 
obtained by discretizing the point cloud into a 2D grid with a 0.1m resolution. 
Secondly, in every cell, the value of reflectance of every point having maximum 
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height was obtained. Thirdly, the density feature simply proclaimed the total 
number of points in a cell. By implementing these steps, BEV portrayal of point 
clouds was obtained for the dataset.  

v. Point Fusion was trained using both RGB images and LiDAR point clouds as it 
is a sensor fusion network.  

vi. These trained frameworks were then tested using test images available in the 
dataset. 

Results and Discussion.  
Table 1.shows a comprehensive comparison of models trained and evaluated 

on the KITTI benchmark dataset for car detection. 
Table 1.Comparison of Object Detection Networks trained on KITTI 

 

Method Type of 

Input 

Data 

Input 

Processing 

No. of 

Stages 

Average 

Precision 

(%) 

Inference 

Time 

(sec) 

YOLO v3  2D images S*S grid 1 45 0.5 

BEV Point-

clouds 

2D projection 2 42 0.9 

Point 

Fusion  

2D images 

+ point 

clouds 

PointNet + 

ResNet 

2 47.8 1.2 

 

(a) YOLOv3 Detection Result  (a) YOLOv3 Detection Result  

 (b) BEV Detection Result (b) BEV Detection Result 
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(c) Point Fusion Detection Result 
(c) Point Fusion Detection Result  

Figure 1.Object Detection Results for 

Three Implemented Algorithms. (a) 

YOLOv3: Partially Visible Vehicles not 

detected (b) BEV: Partially Visible 

Vehicles detected (c) Point Fusion: 

Partially Visible Vehicles detected 

 

Figure 2. Object Detection Results for 

Three Implemented Algorithms. (a) 

YOLOv3: Missed Detections in Occluded 

Environment (b) BEV: Occluded Vehicles 

Detected (c) Point Fusion: Maximum 

Number of Occluded Vehicles Detected 

 

 

 

(a) YOLOv3 [7] Detection Result 

 

(b) BEV Detection Result 
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(c) Point Fusion [14] Detection Result 

 

 
 
 
 
 
 
Discussion.  

Three metrics were chosen to evaluate the performance of each algorithm: 1) 
Accuracy, 2) Performance in Occluded Environment, 3) Computational Complexity.  
Accuracy 

Average precision (AP) was considered as a metric to determine the accuracy of 
detections. AP scores for implemented algorithms are listed in Table 1. As compared to 
YOLOv3 and BEV, Point Fusion gives higher AP. Projection losses associated with 
BEV reduced detection accuracy. On the other hand, YOLOv3 displayed reduced 
performance with KITTI dataset. Qualitative results depicted in Figure 1-3 revealed 
that sensor fusion gives the best detection results in all scenarios. Hence, the sensor 
fusion network proposed in Point Fusion overcomes the drawbacks associated with 
single sensor networks.    
Performance in Occluded Environment 

The closeness or merging of two factors such that one is completely or partially 
covered by the other is referred to as occlusion. Object detection in an obstructed 
environment is a beneficial indicator of algorithm performance due to the problem's 
complexity. As seen in Fig. 2, YOLOv3 and BEV missed most occluded objects 
whereas the sensor fusion network detected all occluded objects available in the scene. 
From the results delineated in Figure 1-3, it was observed that YOLOv3 gives poor 
performance, BEV gives an intermediate performance, and Point Fusion produces the 
most accurate results in an occluded environment. This proves that sensor fusion 
frameworks are suited for application in all types of scenarios.  
Computational Complexity 

Figure 3. Object Detection Results for Three 

Implemented Algorithms. (a)YOLOv3: Detections 

Missed (b) BEV: Detections Missed (c)PointFusion: No 

Missed Detections 
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YOLOv3 has a fully convolutional architecture comprised of 106 layers. It is 
the slowest network compared to BEV and Point Fusion; however, it is less 
sophisticated than many other detection networks. On the other hand, BEV is the least 
complex algorithm as it projected a 3D point cloud into a 2D point cloud using the 
method offered in MV3D and made detections using Faster-RCNN. Point Fusion lies 
between the other two algorithms in terms of computational complexity. Moreover, the 
performance of Point Fusion was increased by the adoption of PointNet that processed 
point clouds in raw form. From qualitative results subdued in Figure 1-3 and AP 
unveiled in Table 1, it can be derived that the increased computational complexity of 
sensor fusion frameworks can be overlooked owing to their increased detection 
accuracy. 

In Figure 1-3 qualitative results are set forth. In Point Fusion detection results, 
front views of corresponding point clouds were also appended to reveal comprehensive 
results. 3D detections from Point Fusion were projected on the point clouds to 
generate front view detections. When compared with BEV detection results in Figure 
1-3, it became evident that Point Fusion also gives better performance when detections 
were made in point clouds. This performance improvement was justified by the fact 
that sensor fusion networks extract features from both 2D images and point clouds 
exploiting intensity, height, and density information. There is a partially visible vehicle 
in Fig. 1(a) that was not spotted by YOLOv3.The other two networks, on the other 
hand, caught the identical car, demonstrating that point clouds and sensor fusion are 
more capable of recognizing partially visible objects than 2D images.  

Moreover, in Fig. 2(a), YOLOv3 missed several occluded objects whereas 
maximum occluded objects were detected by Point Fusion. This was an important 
observation as performance in an occluded environment is an important parameter to 
evaluate the performance of networks. While sensor fusion frameworks are 
computationally complex and have greater inference time as reported in Table 1, these 
challenges can be traded off for better performance and accuracy of detection. 
Conclusion. 

We provide a comparison of three object detection techniques based on the input 
data type in this paper. An image-only algorithm, a LiDAR-only method, and a sensor 
fusion framework are among them. The KITTI benchmark dataset is operated to test 
these object detection systems. Performance evaluation concerning three metrics – i.e., 
accuracy, performance in occluded environment, and computational complexity – show 
that the sensor fusion framework gives better overall performance than single sensor 
algorithms. Qualitative and quantitative results expressed also support the thesis that 
sensor fusion for object detection is more productive as compared to camera and 
LiDAR only algorithms. As part of future work, we intend to explore the performance 
improvements achievement due to sensor fusion in the context of overhead vehicle 
profiling for Intelligent Transportation Systems (ITS).  

Acknowledgement. The manuscript has not been published to other journals and 
all authors contributed significantly to the research.  



                           International Journal of Innovations in Science & Technology 

Dec 2021 | Vol 3|Special issue                                                                      Page | 185 
 

Author’s Contribution. All authors contributed significantly towards the 
completion of this research and all authors are in agreement with the content of the 
manuscript. 
Conflict of interest. There exists no conflict of interest for publishing this 
manuscript in IJIST as the manuscript has not been published or submitted to 
other journals. However, this research was presented in International Conference 
on Engineering & Computing 2021.  
Project details. This work was supported by the Higher Education Commission of 
Pakistan (HEC) Technology Development Fund (TDF) grant TDF03-219 awarded 
to Dr. Shahzor Ahmad. 

REFRENCES 
1. G. Ross, “Rich feature hierarchies for accurate object detection and semantic segmentation,” in 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR), 2014. 
2. G. Ross, “Fast R-CNN,” in Proceedings of the IEEE Conference on Computer 
Vision (ICCV), 2015. 
3 R. Shaoqing, “Faster R-CNN: Towards real-time object detection with region proposal 
networks,” in Proceedings of the IEEE Conference on Neural Information 
Processing Systems (NIPS), 2017. 
4. H. Kaiming, “Mask R-CNN,” in Proceedings of the IEEE Conference on 
Computer Vision (ICCV), 2017. 
5. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, 
Real-Time Object Detection,”in Proceedings of IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR), 2016, pp. 779-788. 
6. J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,”in Proceedings of 
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 
6517-652. 
7. J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” 2018. 
8. A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving?The kitti 
vision benchmar suite,” IEEE CVPR, 2012. 
9. C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deeplearning on Point Sets for 
3D Classification and Segmentation,” in Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), 2017 
10. S. Martin, “Complex-YOLO: Real-time 3d object detection on point clouds,” in 
Proceedings of the European Conference on Computer Vision (ECCV).   
11. S. Song, and J. Xiao, “Deep sliding shapes for amodal 3d object detection in rgb-d images,” 
in In Proceedings of the IEEE Conference on Computer Visio and Pattern 
Recognition, 2016. 
12. X. Chen, H. Ma, J. Wan, B. Li, and T. Xia., “Multi view 3D object detection network 
for autonomous driving,” IEEE CVPR, 2017. 
13. B. Li, “3D Fully Convolutional Network for Vehicle Detection in Point Cloud,” in 
IROS,, 2016. 



                           International Journal of Innovations in Science & Technology 

Dec 2021 | Vol 3|Special issue                                                                      Page | 186 
 

14. D. Xu, D. Anguelov, and A. Jain, “Point Fusion: Deep Sensor Fusion for 3D Bounding 
Box Estimation,” in Proceedings of the IEEE Conference on Computer Visio and 
Pattern Recognition,, 2018. 
15. X. Du, M. H. A. Jr, S. Karaman, and D Rus, “A General Pipeline for 3D Detection of 
Vehicles,” IEEE ICRA, 2018. 
16. B. Li, T. Zhang, and T. Xia, “Vehicle Detection from 3d lidar using fully convolutional 
network,” In Robotics: Science and Systems, 2016. 
17. D. Nister, O. Naroditsky, and J. Bergen, “Visual Odometry,” IEEE CVPR, 2004 
18. T. Y. Lin, P. Goyal, and G.  Ross, “Focal Loss for Dense Object Detection,” 2017 
IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2999-3007, 
doi: 10.1109/ICCV.2017.324. 
19. W. Liu et al., “SSD: Single Shot MultiBox Detector,” 2016 ECCV 
  

 

Copyright © by authors and 50Sea. This work is licensed under 

Creative Commons Attribution 4.0 International License.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                           International Journal of Innovations in Science & Technology 

Dec 2021 | Vol 3|Special issue                                                                      Page | 187 
 

 



                           International Journal of Innovations in Science & Technology 

Dec 2021 | Vol 3|Special issue                                                                      Page | 188 
 

 

 

 

 

 

  


