
 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 32

Realization of Presentation layer information of Legacy
Java Enterprise Applications Through Design Pattern’s

Recovery
Zaigham Mushtaq1, Ghulam Rasool2

1The Islamia University, Bahawalpur, Pakistan
2COMSATS University Islamabad, Lahore Campus.
Corresponding author: ZaighamMushtaq (zaigham@iub.edu.pk)
Citation | Mushtaq. Z and Rasool. G, Realization of Presentation layer information of Legacy
Java Enterprise Applications Through Design Pattern’s Recovery, International Journal of
Innovations in Science and Technology. Vol 4, Issue 1, pp: 32-50, 2022
Received | Dec 20, 2021; Revised | Jan 21, 2022 Accepted | Jan 24, 2022; Published | Jan 26,
2022.

Abstract
The presentation layer is the outermost layer of an application that provides user

interface and communication services. This layer is responsible for session management,
controlling client access, and validations within data from the client. In legacy enterprise
applications like Java Enterprise Edition Platform (Java EE), the design considerations of the
presentation layer are spread over different design patterns and cross-language constructs.
Resultantly, the analysis of such applications becomes quite challenging due to their
heterogeneity, essentially required for the extraction of design-level information and further
modernization. In this research, a flexible technique is presented to extract presentation tier
information based on customizable feature types by recovering instances of presentation tier
patterns of the Java Enterprise Edition Platform. The proposed approach is evaluated on well-
operative open-source Enterprise Applications. The validation results demonstrate the extraction
of presentation tier information through Design Pattern’s recovery. This prototype is validated
on the repository of source code of Java applications as well on open source java applications.

Keywords: Source Code Analysis, Design Patterns, Java Enterprise Appications,

1. Introduction

Evolution, bugs fixing and up-gradation are common in any software system. Many of
these features result in the enhancement and customization of a software application's structural
design. During the development and maintenance of software applications, consistency of
documentation with the design of an application is essential. Legacy software systems [1-3] are
difficult to maintain and upgrade due to obsolete or missing design documentation. It is also
observed that the available documentation does not match the original design due to changes
and enhancements made over time. The code comments and other sources may give some hints
to the software developer to complete the objectives but that does not ignore the necessity of
the complete architecture information of the system. Therefore, for the maintenance and up-
gradation of the legacy software system, the software developers must be able to see and
understand the complete architecture of the system to make modifications and apply best design
practices [4].

mailto:zaigham@iub.edu.pk

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 33

Design patterns are recurring problem-solving techniques[5]. They are reusable
components that can be utilized to solve certain design issues [8]. They aid in the improvement
of quality of software system design [6]. In particular, the detection of different design patterns
can help a great deal to understand the design decisions which can be useful for the
comprehensive examination of a system.

The recovery of different design patterns can be very valuable and can help a great deal in
software reverse engineering, maintenance, program comprehension, source code analysis,
redesign, and re-engineering of software applications [7, 8]. Modification of a software system
without a thorough knowledge of multiple design patterns, on the other hand, can cause the
application logic and justification behind the implemented design pattern variation to change.
Incomplete knowledge of design patterns can also make other aspects of software engineering
more difficult, such as refactoring, restructuring, and technology upgrades. All forms of design
patterns must be retrieved to gain insight into the system.

Software application heterogeneity has increased as a result of modernization, making
applications more complex and analysis more difficult [8]. As previously stated, design pattern
recovery is critical for extracting design-level information and the software application's
intent.Such apps' design knowledge and internal logic are stored in many levels that are
accessible. Information is dispersed across different tiers and languages in Java Enterprise
applications, which features a layered architecture. The design artifacts are organized into
separate components that reside on the computer. The presentation tier is the first layer and is
responsible for handling user interfaces and bears communication logic. This layer encapsulates
graphical design and user interaction code. The recovery of presentation tier logic [1] with the
help of different design patterns can help a great deal for understanding and redesigning the
structure of an application.

Recovery of different design patterns can help improve the reusability and extendibility of
written logic. Different types of design pattern recovery approaches are reported that support
the extraction of design-level information from software applications [9]. However, complete
detection of presentation tier J2EE Pattern has not been presented so far. The existing approach
supports the only partial recovery of J2EE Patterns within the presentation tier [1]. Therefore, to
be able to see the presentation tier logic implemented, all the design patterns present in a system
must be detected and visualized.

In this paper extendable approach is presented that supports the extraction of presentation
information from the Java Enterprise Edition platform by recovering presentation tier design
patterns. The proposed approach is extendable to support detection of other patterns like GOF
Patterns etc.

The Section 2 in this paper describes related work by describing source code analysis and
design pattern recovery. Section 3 presents background about the role of Enterprise
Applications. Section 4 mentions the mechanism for the extraction of presentation Tier
information by using design pattern recovery and Section 5 describes the conclusion and future
work.

Background: Role of Design Patterns in Enterprise Applications.

Enterprise applications are large-scale, distributed, multilingual applications constructed
with a variety of technologies. These apps' modules comprises of several language artifacts.
Multilingual enterprise applications are best exemplified by Java enterprise applications.
Enterprise applications enable the creation of numerous components utilizing programming
languages such as C#, Java, HTML, JavaScript, SQL, DSLs, and XML. Because the information
that needs to be fetched is distributed across numerous modules constructed using different

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 34

programming and scripting languages, the analysis of such an application is a tough and time-
consuming operation. Enterprise applications are complicated and are composed of layers or
tiers, each of which are composed of various technologies and has its own set of responsibilities.
Furthermore, each layer has a collection of different sorts of design patterns to formalize the
solution to the difficult problem [24, 41, 90]. Enterprise applications' server-side architecture is
organized into three layers: The presentation layer, the Business Logic Layer, and the Data
Access layer [6].

The enterprise applications are built using design patterns of many types like GOF [6].
Also, Java Enterprise application design patterns (JEA) [2, 3] are proven solutions that can deal
with the complexity of enterprise-level applications by offering encapsulation. Patterns of
Enterprise Application [5] are another type of pattern that is widely used in enterprise
applications to implement and reuse complex logic. These different types are mostly used in
enterprise-level applications. The reverse engineering of such various design patterns can help
recover design information, architecture, and logic used in the application. Hence the pattern
recovery techniques explained in the previous section can be applied with the help of static and
dynamic analysis.

The high-level model of Enterprise Application is presented in Figure 1. The model
explains that all tiers are formed using different components and each layer has its unique
responsibility. The presentation layer encapsulate login to service a client request. The client's
request is captured by the presentation layer, which then conducts the relevant procedures [3].
Single sign-on, session management, access control to business services, response construction,
and response delivery to clients are all part of this operation.

The information is stored in the form of design patterns in presentation layers [10]. This
information includes pre-processing and post-processing of a request. This layer has centralized
control for handling requests. It also contains a protocol-independent object [11] to pass to
other components. This layer handles view and action management. It creates, dispatches views,
and handles login for view management.

Furthermore, the J2EE design patterns of the presentation tier are listed in Table 1.
These patterns are verified and tested solutions that help build scalable enterprise applications.
These patterns can be applied to any environment other than Java enterprise applications. In a
nutshell, enterprise architecture follows tiered architecture, and each design pattern is specific to
a layer. To extract design logic from the presentation tier, there is a need to detect different types
of design patterns. Table 1. shows the presentation tier logic needed to be extracted for reverse
engineering and the respective design patterns that lies in that information.

Table 1. Presentation Tier Design Patterns [2, 3]

Tier Name Technology Name of Patterns

The presentation tier Applets, Servlets, UI

Elements, Browser,

JPS etc.

Dispatch View, Intercepting Filter,

View Helper, Service-To-Worker, Front

Controller, Composite View,

Application Controller, Context Object

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 35

Figure 1. Tiered model of Enterprise Application [2-4]

Table 1. Enterprise Application Presentation Tier logic and relevant Design Patterns [3]

[5]

Presentation Tier Information Concern Name of Design Patterns

Session management Service-To-Worker, Application Controller

Client Access Control Front Controller, Dispatch View

Validations and Token Synchronization Intercepting Filter

Helper Properties Integrity and Consistency View Helper, Composite View

Protocol independent information Context Object

Disparate Logic Localization View Helper

Control Code in Multiple Views Front Controller, Application Controller

Session management, Client Access Control, Helper Properties, Protocol independent
information, Disparate Logic Localization and Control Code in Multiple Views become
unavailable. Key characteristics of the discussion are inscribed in moving forward to the
detection of various types of design patterns from enterprise applications are described below.

1. Each design pattern in an enterprise application has a unique requirement, which can
help understand the reason for the implemented solution.

2. Detection of different design patterns can support reusability which can help maintain a
simpler task with fewer resources to spend [3].

3. The presence of Enterprise applications makes re-engineering a necessary requirenment,
as enterprise applications are found everywhere. The recovery of enterprise-level design
patterns increases the adoptability rate and reusability.

4. The discovery of multiple design patterns that incorporate systems increases the
reusability of diverse components and reduces cost, maintainability, and design
consistency.

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 36

5. Different design patterns are applied to build cross-language enterprise applications, and
they are heterogeneous. The recovery of such patterns is a technique for the analysis of
enterprise applications.

6. In a tiered model, the information flows in a layer in a specific sequence from one
component to the other. Therefore, to realize the complete information, all the patterns
that participate in the presentation tier. However, to the best of our knowledge, available
techniques [1-3, 10, 12] don’t completely realize the presentation tier information using
design pattern recovery.

Proposed Methodology

Only a few patterns from the presentation tier have been discovered, as previously stated
[1-3, 10, 12], including Front Controller, Composite View, and Intercepting Filter patterns.
Resultantly, valuable information about the presentation tier and its logic is lost inclusive of
Session management, client verification, token synchronization, Integrity, and Consistency, etc.
[2, 3]. Therefore, we cannot analyze the application properly which is a prerequisite for
reusability, refactoring, reverse engineering, and re-engineering [3][13].

This research enhances the existing approach [1-3, 10, 12] by allowing the recognition of
remaining presentation tier patterns counting Dispatch View, View Helper, Service-To-Worker,
Application Controller, and Context Object patterns along with the already detected patterns [2,
12, 13].

At first, the catalog of feature types [1-3, 10, 12] for presentation tier patterns is
enhanced, some of the additional features are added and definitions of remaining presentation
tier patterns are taken into account using customizable feature types. Based on these definitions,
the pattern detection algorithm is refurbished.

Features for Presentation Tier Design Patterns. A pattern definition's building blocks are
features. The components and their interrelation are described by features. A design pattern is a
grouping of several characteristics. In this section, the features for the detection of Presentation
Tier Design Patterns [12] (Dispatch View, View Helper, and Service-To-Worker, Application
Controller, and Context Object patterns) are presented.

Context Object
This pattern provides context-oriented access and is responsible for state encapsulation

in a protocol-independent way, shared throughout the application. This modeled couples
services and components and exposes only protocol-specific and context-based relevant APIs
[12] for use.

Figure 1. Context Object

Table 2. Features of Context Object Pattern
Index F. # Feature’s Signature

PF1 F28 getAllClasses()

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 37

PF2 F45 Hasclass (PF1) Extends HttpServlet

PF3 F46 HasObject of HttpServletRequest

PF4 F47 HasObject of HttpServletReponse

PF5 F14 HasMethodWithRType (PF3, PF4)

PF6

F46

&

F14

HasObject (PF3)AND HasMethodWithParameterType

(PF3, PF4)

PF7 F14 HasMethodWithParameterType (PF3, PF4)

PF8 F14 HasMethodWithParameterType (PF6)

PF9 F19 HasRealization(PF7, PF8)

View Helper
This figure is used to resolve the complexity and streamline access to model state and

data access logic. Sometimes business data access logic and presentation logic are intermingled.
Resultantly, the reusability, flexibility, and change management become quite difficult. The view
helper pattern supports template-based views and disallows the use of program logic in views.
The panoramas are used to provide encapsulation of formatting code by delegating its
responsibilities, whereas, Helper is utilized in encapsulation of view processing logic [12]. It acts
as an adapter to process formatting logic.

Figure 2. View Helper Pattern

Table 3. Features of View Helper Pattern

PF1 F29 GetXMlObjects ()

PF2 F30 HasNumberOfAssociationsWithType (PF1,>=2, “HTML” | “JSP”)

PF3 F31 HasTheseXMLTags (PF2, “Include”| “Put”)

PF4 F32 GetJSPObjects ()

PF5 F33 GetHTMLObjects ()

PF6 F30 HasNumberOfAssociationsWithType (PF1, >=1, “HTML” | “JSP”)

PF7 F5 HasAssociation (PF5, PF3)

PF8 F34

HasNoNumberOfAssociationsWithType (PF4 >= X, ”HTML” |

”JSP”)

PF9 F5 HasAssociation (PF7, PF3)

Dispatcher View
Dispatcher View invokes view processing before initiating the business process. This

design is implemented with the help of the dispatcher component as the combination of Front
Controller and View Helper patterns. The role of a dispatcher is to perform navigation or view
management inside a controller or in view.

Figure 3. Dispatcher View Pattern

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 38

Table 4. Features of Dispatch View Design Pattern

PF1 F20 HasDefinedAType (AllObjs, “Dispatch”)

PF2 F40 HasNoRealizationWithType (PF1, “HttpServlet”)

PF3 F31 HasTheseXMLTags (PF2, “Include”| “Put”)

PF3 F32 GetJSPObjects ()

PF4 F33 GetHTMLObjects ()

PF1 F5 HasAssociation (F5, F3)

PF2 F34 HasNoNumberOfAssociationsWithType (PF4 >= X, ”HTML” | ”JSP”)

PF3 F5 HasAssociation (PF5, PF3)

 Service-To-Worker
This Pattern performs authorization and authentication, encapsulates business logic, and

simplifies control flows and views. The Service to Worker is a combined form of micro patterns
including dispatcher or controller including helper or views. This pattern supports centralized
control and request handling [12]. After that forwards control to view for presentation in the
form of dynamic response.

Figure 4. Service to Worker Pattern
Table 5. Service to Worker Pattern

PF1 F12 GetAllInterfaces ()

PF2 F5 HasAssociation (AllObjs, F1)

PF3 F15 HasMethodWithParameterType (AllObjs, F2| “Object”| “String”)

PF4 F14 HasMethodWithRType (F3, F2| “Object”| “String”| “T”)

PF5 F28 GetAllClasses ()

PF6 F15 HasMethodWithParameterType (F6,”String”| “string”)

PF7 F41 HasNoDelegation (F4, F2)

PF8 F23 HasDelegation (F8, F5)

PF9 F19 HasRealization (AllObjs, F2)

PF10 F23 HasDelegation (AllObjs, F9)

Application Controller

This convention provides centralized retrieval and invocation components for request-
processing (like commands and views) and offers a central point for screen navigation and
application flow. This structure offers centralized and modularized actions and views
management [12].

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 39

Figure 5. Application Controller Pattern

Table 6. Application Controller Pattern

PF1 F29 GetXMlObjects ()

PF2 F32 GetJSPObjects ()

PF3 F33 GetHTMLObjects ()

PF4 F30 HasNumberOfAssociationsWithType (PF3, >=1, “HTML” | “JSP”)

PF5 F5 HasAssociation (PF4, PF3)

PF6 F34 HasNoNumberOfAssociationsWithType (PF5 >=1, “HTML” | “JSP”)

PF8 F6 HasDTOs ()

PF9 F28 GetAllClasses ()

PF10 F5 HasAssociation (PF8, PF9)

PF11 F30 HasNumberOfAssociationsWithType(1, (“Class”&&”Interface”),PF4)

 Extended Catalogue of J2EE Design Patterns by using Feature Types

The design Pattern is necessary for the production and detection of the pattern since it
includes concrete definitions and standard parameters. As a result, the Presentation tier J2EE
Patterns definitions are extracted from standard resources[1, 2, 13].

The features type for their realization is decided based on these definitions. The feature
types, as previously said, are expandable and reusable, and can be translated into a pattern
detection technique. These features can be developed to increase the quality of the image and
find other patterns. Previously, the catalog of feature types of the J2EE Design Pattern was
presented [1, 10]. However, only four patterns were realized to represent Presentation Tier
Information including Front Controller, Intercepting Filter, and Composite View Patterns [1] .
As a result, vital information about Presentation Tier along with Session management, Client
Access Control, Helper Properties, Protocol independent information, Disparate Logic
Localization, and Control Code in Multiple Views become unavailable.

In this research, all remaining Patterns of the J2EE Platform were realized to extract
complete information of J2EE Patterns relating to the Presentation Tier. As the Pattern
definitions are customizable & extendable based on feature types to accommodate new pattern
definitions or their variants. The catalog of J2EE Patterns is further extended to accommodate
new pattern definitions that pertain to the Presentation tier as well as Context Object Pattern,
Application Controller Pattern, View Helper Pattern, Dispatch View Pattern, and Service to
Worker Pattern.All the pattern definitions are developed by the existing catalog of feature types
of J2EE Design Pattern[1, 10]. However, to cater to Servlet information three more features are
introduced and added to the Catalogue of Feature Types.

Table 7. Extended Features of Features Catalogue

F. # Feature Signatures

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 40

F44 Hasclass () Extends HttpServlet

F45 HasObject of HttpServletRequest

F46 HasObject of HttpServletReponse

 Explanation of new Features

The subject class is an HttpServlet class that extends the generic Servlet Class. We can
get specified methods of Servlet Class. Feature # 44 is for the class that returns Features of
HttpServelet (mentioned in Table 8).The role of HttpServletRequest, HttpServletResponse is to
get and set HttepServlet methods. ServletRequest provides basic setter and getter methods for
requesting a Servlet. HttpServletRequest extends the Interface with getters for HTTP
communication. HttpServletResponse object receives the request from the service method and
dispatches the request to the concerning method depending on the incoming HTTP request
type. Feature # 45(Table 8) pertains to the object to receive incoming HTTP request headers
and form data. Feature # 46(Table 8) pertains to the object to setup HTTP response including
content type and response message.

Extended J2EE Pattern Detection Approach

The proposed approach is translated in the form of a Design Pattern Detection Tool
that contains the definitions of Presentation Tier Patterns. This approach used the meta-model
of the enhanced RDB model and realized the J2EE pattern instances from the source code.

The pattern detection approach for the presentation tier contains the algorithms that
used the feature type of J2EE Patterns. A combination of feature types isemployed to extract
accurate, interclass relationships among the design pattern components. The proposed approach
identifies the features within the source code by using multiple kinds of classes, object-oriented
relationships, interclass relationships, relevant objects, and a varity of methods. All these steps
support the effective realizations of pattern instances within the Presentation tier.

To detect the complete catalog of J2EE Patterns for the Presentation Tier, the existing
approach [1] needs enhancement as tool availability is deficient to observe all 9 J2EE Patterns
about Presentation Tier. For this purpose, the Pattern Detection Engine (JPDE) was upgraded
with the capability to notice patterns of the presentation tier. For this purpose, the following
extensions were applied.

 Addition of Three (3) more Features in the already available Features Catalogue.

 Extension of information in Super parsing Module (JPSP) for the addition in
meta-model forth new features.

 Addition of algorithms in Pattern Detection Module (JPDE) for the discovery of
newly added features of 5 J2EE Patterns at presentation tier.

The exiting parsing capability of Enterprise Architect (EA) [5, 6, 11] is fine-tuned by
using a super parsing module. EA is a well-versed and famous tool for the modeling of software
systems [7-9, 14]. This tool is also effectively used to recover design from the source code.
However, Enterprise Architect has a weak parsing mechanism and encounters the following
deficiencies mentioned below.

Table 8. Deficiencies of Enterprise Architect

1 Resolving Delegation of Cross language artifacts

2 Resolving Association of Cross language artifacts

3 Resolving Association among Function Parameters

4 Resolving Association Return Type Function

5 Resolving Association among Local Variables

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 41

6 Resolving Aggregation

More, the EA lacks the following relationships to resolve

 Delegation between artifacts of multiple languages

 Associations through local variables

 Associations through function’s parameters

 Associations through function return type

 Associations between cross language components

 Other forms of associations like aggregation

Extended Super Parsing Module (ESPM) and its Approach:

Initially, the raw MDB model was created using EA Tool. The deficiencies of the model
were resolved in the form of a Super parsing module. The role of the super parsing module is to
enhance the initial mete model created by the EA RDB model. To extend the existing
functionality and to cater all the information prevalent to the Presentation tier and detection of
the Presentation tier pattern, the Extended Super Parsing Module (ESPM). The ESPM is an
extended RDB Model containing the initial RDB model of EA upgraded to a super parsing
model and extended capability to have all the information to detect J2EE Presentation Tier
Design Patterns.

The existing model JPSP was reinforced to ESPM by introducing definitions of 5 J2EE
Patterns relevant to Presentation Tier (cater Presentation layer information). Although some
information was already available, however, the process for getting Servlet information features
was yet to be proposed. So, features# 44 to 46 (3 features) were introduced in ESPM Module.

The Super Parsing Module is equipped with multiple techniques including regular
expressions, parsers multiple languages like HTML, JSPs, XML, and Java, etc. This module
performs the following operations as mentioned in Table 10.

Detection of Association

1 Local variable and resolving their scope

2 Using Symbol table for Type resolution

3 Resolving weak associations

4 Association Through Local Variables

5 Association Through Operation Parameters

6 Association Through Function Return-Type

Detection of Delegation

1 Detecting Delegation By Call Scope

2 Detecting Delegation Relationship

The ESPM is displayed to J2EE Pattern Detection Tool (JPDT) enhanced with the extra
definitions of remaining presentation tier design patterns. This tool has Pattern definitions of
Presentation tier and mines through ESPM Module

Extended Visualization Tool Module for Presentation Tier Patterns (EVPM):

The extended visualization module (EVPM) is responsible for the show-case of the
Presentation Tier pattern’s instances realized from the source code of the enterprise applications.
The navigational component supports precise marking of the detected pattern instances within
the source code of the applications. Using this capability, the UML of the Pattern Instance It is
pertinent to mention that by using the visualization module all the components (that participate
in the constitution of Presentation Tier Patterns) can be individually monitored within the

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 42

source code. This process enables the dependency analysis and propagation analysis of the
source code components.

`
Figure 6. Presentation Tier Design Pattern Detection Approach

Investigation of Approach: Case Study

It is required to validate the proposed methodology for the identification of Presentation
Tier Patterns based on extended feature types (Figure7) through reliable and most recent
Enterprise Applications. For this purpose, In this section, the evaluation process is performed
on reputable medium and large-scale enterprises Applications including Java Pet Store, EJBCA,
Apache OFBIZ, Open Brava, and GeoServer, [15-25]. More, the documentation and source
code of these ERP applications is available and free to use.

3. Result and discussion

The results of the proposed approach were compared with the existing approach [1] on
earlier mentioned open source Enterprise Applications [15-25]. The outcome clearly shows the
realization of a complete catalog of Presentation Tier Patterns instances from every application.

It is pertinent to mention that the designated case studies were extensively used in medium
and large-scale applications. The manual code inspection of instances of Presentation Tier
Patterns is not possible. Keeping this fact in mind, it is ensured that the recovered instances
were manually validated.

Extraction of Source Code Metrics and Relationships

Initial stats of the results based on the tool evaluation of the selected case studies on
open-sourceEnterprise Applications are shown in Table11. During the process of presentation
Tier design pattern recovery, some object-oriented types and interclass relationships are found in
the form of classes, Packages, Interfaces, Methods, Attributes, Associations, Generalizations,
and Realizations (Shown in Table 12). All these attributes are the building block of the
Presentation Tier Design Pattern. Moreover, during this process, multiple cross-language files

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 43

and their relationships are also recovered including Java, JSP, HTML, XML, SQL, and property
files mentioned in Table 13.

Realization of Presentation Tier Pattern Instances

The tool evaluation results show the realization of Presentation Tier pattern instances
from the prescribed open-source Enterprise applications. The outcome of the evaluation is
shown in Table 15. The older version of the tool was limited for recovering Presentation tier
Patterns, while the present version is capable to recover all the Design Patterns of the
presentation tier. More the existence of recovered pattern instances is verified through manual
code inspection. We found single instances of Presentation tier Patterns in the source code; this
is due to the fewer utilization of specified pattern instances. Moreover, fewer patterns were not
realized. However, deep manual examinations we found their definitions but did not qualify for
actual pattern definition as prescribed by the sun microsystem.

The recovered pattern instances are thoroughly inspected manually within the source
code and found correct. Primarily, found some false positives but all of them were removed
when we narrow down the criteria and refine the actual pattern definition with the pattern
detection algorithm.

Moreover, we did not find some presentation tier Patterns instances from the selected
applications [15-25]. We discovered through manual research that the source code for these
patterns didnot match the stated principles offered by the solarmicro system and did not follow
the definite structure. Handling Design Patter’s Variants is another research dimension. This
research focouseson actual definitions of J2EE Design Patterns.

Table 11. Initial Metrics of Selected Software Applications (Case Study)

Table 12. Metrics of Classes, Objects, and Interclass Relationships

Source Code Metrics

Open Source Enterprise Applications

Open

bravo [15]

JPet

Store [21]

EJBCA

[22]

Geo Server

[23]

OFBiz

[24]

Application size MB 380 11.1 57.4 104 146

Directories 1,591 378 980 1,040 1,745

Lines of Code (LOC) 434,043 6,573 357,952 192,403 356,474

Blank Lines of Code (BLOC) 44,596 4,603 39,871 28,745 39,221

Physical Executable Lines of

Code (PLOC)
306,605 17,891 230,877 98,738 259,761

Logical Executable Lines of

Code (LLOC)
221,021 13,957 174,124 74,019 203,697

McCabe VG Complexity

(MVG)
38,267 1,796 23,501 13,867 43,723

Code and Comment Lines of

Code (CSLOC)
2,109 77 2,241 571 771

Comment Only Line of Code

(CLOC)
82,842 14,079 87,204 64,920 57,492

Commentary Words

(CWORDS)
508,444 103,222 505,004 276,208 392,418

Header Comment Line of

Code (HLOC)
32,930 10,828 20,230 3,778 20,805

Header Commentary Words

(HCWORD)
240,627 86,048 122,211 26,577 149,924

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 44

Table 13. Identification of Cross-Language Files

Measuring Precision and Recall

To validate the extracted pattern instances, the approach is measured by calculating the results
in terms of precision and recall metrics. These metrics help in determining the authenticity of the
Design Pattern extraction approach for the Presentation Tier. They were used to examine the
quality of the approach by identifying the relevant Presentation Tier Patterns and then
calculating the relevant instances that are recovered[25].

However, there are certain shortcomings i.e., in the case of the large source code
examination, measuring recall becomes challenging as the manual examination is difficult and
time-consuming. Identification of false negatives requirescomparison with valid and reliable
benchmarks. Achieving both precision and recall metrics at the maximum level is difficult [26].

The outcome of the case study examination validated the proposed solution from the
case study of open-source ERP applications.The detail of Presentation Tier Patterns is given in

 Open Source Enterprise Applications

Metrics

Open

bravo

[15]

JPet

Store

[21]

EJBCA

[22]

Geo

Server

[23]

OFBiz

[24]

Packages 198 128 614 144 276

Total classes 1,987 267 2,121 1,121 1,135

Abstract Classes 83 21 181 64 100

Interfaces 68 63 212 76 90

Methods 14,818 1,955 36,446 9,885 15,544

Attributes 7,232 1,132 13,253 3,275 6,153

Associations 21,662 4,307 158,334 4,826 15,185

Generalizations 1,318 43 1,225 557 707

Realizations 227 29 439 134 263

Total Connections 23,362 4,385 166,742 5,624 22,221

Cross Language

Metrics -

Open Source Applications

Open

bravo [15]

JPet

Store [21]

EJBCA

[22]

Geo Server

[23]

OFBiz

[24]

Java Files 2,387 467 3,823 1,413 2,139

XML Files 2,341 97 3252 405 2,732

HTML Files 450 37 554 75 46

JSP Files 1 98 125 146 140

SQL Files 122 5 29 5 11

All Parsed Files 4,746 541 6168 1,669 4,076

Other Files 5,753 206 3,418 3,064 5,813

Total Files 10,499 747 9,586 4,733 9,889

Cross Lang

Associations
18,862 3,729 141638 2,199 2,787

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 45

Table 15, whereas the detail of recovered Presentation Tier instances along with the false
positives and precision in Table 14 and Figure 8 respectively

Figure 8. Precision of Presentation Tier Patterns

Table 14. Precision Summary of ERP Application

Figure 9. Presentation Tier Pattern’s Recall Metrics Java Pet Store [22]

Enterprise

Applications
Instances

False

+ves
Precision

Openbravo [15] 39 4 90%

Java Pet Store [21] 38 0 100%

EJBCA [22] 54 3 94%

GeoServer [23] 42 7 83%

OFBiz [24] 43 10 77%

Total Instances 216 24 90%

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 46

Figure 10. Presentation Tier Pattern’s Precision & Recall Metrics Java Pet Store [22]

Figure 11. Presentation Tier Pattern’s F-Score Metrics Java Pet Store[22]

However, due to the absence of a benchmark, measuring recall is very difficult and manual
authentication is cumbersome and extensive especially for large source code applications. We
tried to select an application with moderate source code and it contained verified instances of
J2EE Design Patterns. J Pet store [21] found a suitable candidate as this is a medium-level
application by Sun Microsystems and is enriched with actual instances of J2EE design patterns.
The findings of manual inspection of code and recovered pattern instances supported our
approach through recall matrices are presented in Figure 9. The comparison of precision and
Recall metrics is staged in Figure 10. The F-Score is a measure between precision and Recall. In
our case study for JPet Store, the F-score is 0.89, which is quite healthy. The F-Score measure is
mounted in Figure 11.

Discussion

The present approach supports the realization of J2EE Design Patterns. These patterns contain
cross-language artifacts that require the identification of all cross-language components that
participate in the pattern’s construct. Initially, the concept of cross-language code analysis and
standard for the realization of J2EE Patterns was presented. For this purpose, a catalog for the
recovery of J2EE Design Patterns was offered that was capable to realize only 10 J2EE Design
Patterns dispersed on all layers of the software application.

However, when we discuss specifically presentation tier design patterns, it is observed that the
earlier approach supports the recovery of only three design patterns prevailing to presentation

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 47

tier including Composite View, Front Controller, and Intercepting Filter patterns (Sr # 1 to 3 in
Table 15). This approach was deficient to provide complete information of the presentation tier
revealed by design pattern recovery. As a result, a more comprehensive methodology was
needed to ensure the complete recovery of design patterns at the presentation tier.

The existing method is enhanced to recover all Presentation Tier design pattern instances.
Initially, the Catalogue of feature types is expanded by three extra features, resulting in an
extended catalog of customizable and extendable feature types. Secondly, to extract all the
complete artifacts that participated in the definition of presentation level design pattern, the
existing module was upgraded in the form of an Extended Super Parsing module (ESPM).
Thirdly, the existing pattern detection module JPDT enhanced to extended JPDT i.e., EPDT. In
this module, the new pattern definitions were added in the form of a pattern detection algorithm
to realize all the instances of presentation design pattern instances within the source code. Last
but not least the exiting visualization module is extended to EPVM to show and navigate the
recovered presentation tier design pattern instance within the source code.

Table 15. Presentation Tier Design Pattern Instances Extracted (Case Study ERP

Applications)

Instances of

Presentation Tier J2EE

Design Patterns

Open-Source Applications

Open-

bravo

[15]

JPet

Store

[22]

EJBCA

[26]

Geo

Server

[27]

OFBiz[24]

1 Composite View 11 1 2 13 11

2 Front Controller 2 3 2 1 1

3 Intercepting Filter 2 1 4 1 1

4 Context Object 4 5 11 7 15

5 View Helper 1 12 6 15 1

6 Service-To-Worker 1 5 5 3 1

7 Dispatcher View 7 9 3 1 3

8 Application Controller 11 2 21 1 10

Total Pattern Instances 39 38 54 42 43

Threats to Validity

This section addresses issues about the proposed approach's acceptability in terms of its
validity, which refers to validity which means the confirmation of the approach through
empirical results and demonstrating that the suggested research is a substantial contribution with
proof of concept.

Internal validity metrics ensure the technique validated by tools or methodology is reliable
[28].The current approach aids in the detection of multilingual J2EE Design Patterns'
presentation tier. The prior method could only discover a few patterns related to presentation
tier patterns; nevertheless, all of the current pattern definitions are an extension of past
research.Standard pattern definitions and their related attributes are derived from authentic and
dependable resources utilizing an adaptive and expandable feature to avoid risks to internal
validity[2, 25, 29-31].

This approach is implemented in the J2EE Pattern Detection Tool, which is capable of
extracting Patterndescriptionsfrom the source code of designated applications. The results
validate the approach through open-source ERPs [15-25] . However, manual inspection of the
outcome is needed to avoid false positives. In this regard, community participation is necessary

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 48

to strengthen the results and reduction of the effect of biases. For further evaluation, the results
shall be available on the GitHub repository. As already discussed, the previous approaches can’t
support the detection of presentation tier design patterns in a multilingual environment. The
external validity demands generalization of approach on large scale. For this purpose, we initial
tested our system on JPET Store [22] by sun microsystems, then we further evaluated our
approach on famous and commonly used medium/ large scaled ERPs [15-25] .All of these
applications are open source and their documentation is available for further validation [32-36].
All the extracted pattern instances for the presentation tier are manually inspected and found
correct, however, generalization in terms of precision and recall for all presentation tier pattern
instances is quite challenging. The pattern definitions are customizable and extendable to
accommodate for any variation in existing patterns or any addition of new pattern definitions.
This nature of feature types generalizes the approach to accommodate any kind of pattern
definitions and is scalable to detect them within the source code of multiple object-oriented
languages.

4. Conclusion

In this research, customizable and extendable definitions are proposed that enable the
extraction of presentation tier information in the form of design pattern recovery. The approach
is validated from a reliable open-source multilingual ERP application. The approach is
customizable and extendable to accommodate variants and new design definitions. The
technique is validated on J2EE Design Patterns detection. At present we are working on the
detection of patterns of integration tier and business application tier. Moreover, we are acting on
the detection of recurring design definitions and variants handling.
Acknowledgement.

We would like to thank with deep sense of gratitude to Dr. ZaighamMushtaq for his keen
interest, inspiring guidance and endless support with our work at all stages.
Author’s Contribution.
Designing The Experiment: ZaighamMushtaq, Ghulam Rasool
Performed The Experiments: ZaighamMushtaq, Ghulam Rasool
Analyzing The Data: ZaighamMushtaq
Code, Designed the Software or Performed the Computation Work

ZaighamMushtaq, Ghulam Rasool

Work or Revised It Critically for Important Content:
ZaighamMushtaq

Conflict of interest. Authors has no conflict of interest for publishing this manuscript in IJIST.
Project details. The aim of this research is the reusability of exiting code and design pattern
recovery of lagecy application. The ultimate goal of this project is to create automated
documentation of existing legacy code/

References
1 Mushtaq, Z., Rasool, G., and Shahzad, B.: ‘Detection of J2EE Patterns based on Customizable

Features’, INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE
AND APPLICATIONS, 2017, 8, (1), pp. 361-376

2 Alur, D., Malks, D., Crupi, J., Booch, G., and Fowler, M.: ‘Core J2EE Patterns (Core Design
Series): Best Practices and Design Strategies. Mountain View, CA, USA: Sun Microsystems’, in
Editor (Ed.)^(Eds.): ‘Book Core J2EE Patterns (Core Design Series): Best Practices and
Design Strategies. Mountain View, CA, USA: Sun Microsystems’ (Inc, 2003, edn.), pp.

3 Aniche, M., Yoder, J., and Kon, F.: ‘Current challenges in practical object-oriented software design’,
in Editor (Ed.)^(Eds.): ‘Book Current challenges in practical object-oriented software
design’ (IEEE, 2019, edn.), pp. 113-116

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 49

4 Fowler, M.: ‘Patterns of enterprise application architecture.-Addison-Wesley Longman Publishing Co’,
2002

5 Tiwari, K.: ‘Study and Assessment of Reverse Engineering Tool’, 2020
6 Belfadel, A., Amdouni, E., Laval, J., Cherifi, C.B., and Moalla, N.: ‘Towards software reuse

through an enterprise architecture-based software capability profile’, Enterprise Information Systems,
2020, pp. 1-42

7 Afzal, K.: ‘Formal Verification of Software Models in MDE’, 2017
8 Ibrahim, L.M., and Ibrahim, K.A.: ‘Constructing an Add-in Tool for Enterprise Architect v7. 5 To

Measure the Quality of Object Oriented Design (Class Diagram)’, International Journal of
Computer Science and Information Security, 2015, 13, (7), pp. 72

9 Gahalaut, A.K., and Khandnor, P.: ‘Reverse engineering: an essence for software re-engineering and
program analysis’, International Journal of Engineering Science and Technology, 2010, 2,
(06), pp. 2296-2303

10 Mushtaq, Z.: ‘Multilingual Source Code Analysis for Recovery of J2EE Environment’, 2017
11 Fekete, A., and Cserép, M.: ‘Incremental Parsing of Large Legacy C/C++ Software’, in Editor

(Ed.)^(Eds.): ‘Book Incremental Parsing of Large Legacy C/C++ Software’ (2018, edn.),
pp. 51-54

12 Fowler, M.: ‘Patterns of Enterprise Application Architecture: Pattern Enterpr Applica Arch’
(Addison-Wesley, 2012. 2012)

13 Rubis, R.: ‘Patterns for Enterprise Application Design and Development’, Florida Atlantic
University, 2017

14 Mark, C.: ‘Sun Certified Enterprise Architect For Java Ee Study Guide, 2/E’ (Pearson
Education India, 2010. 2010)

15 Ortiz, J.C.V.: ‘DiseÃ±o de un software que integre una tienda online con Openbravo ERP’, Revista
Matices Tecnológicos, 2018, 7

16 Jain, A., Gupta, S., Vyas, M., Pathy, D., Khare, G., Rajan, A., and Rawat, A.: ‘Open source
EJBCA public key infrastructure for e-governance enabled software systems in RRCAT’: ‘ICT Based
Innovations’ (Springer, 2018), pp. 127-139

17 Ryoo, H.-G., Kim, S., Kim, J.-S., and Li, K.-J.: ‘Development of an extension of GeoServer for
handling 3D spatial data’, in Editor (Ed.)^(Eds.): ‘Book Development of an extension of
GeoServer for handling 3D spatial data’ (2017, edn.), pp. 6

18 AS, M.P.: ‘ERP OPEN SOURCE APACHE OFBIZ’, Jurnal E-Komtek (Elektro-Komputer-
Teknik), 2018, 2, (2), pp. 129-133

19 Aversano, L., Guardabascio, D., and Tortorella, M.: ‘Analysis of the documentation of ERP
software projects’, Procedia computer science, 2017, 121, pp. 423-430

20 Rychkova, I., Regev, G., Le, L.-S., and Wegmann, A.: ‘From business to IT with SEAM: The
J2EE Pet Store example’, in Editor (Ed.)^(Eds.): ‘Book From business to IT with SEAM:
The J2EE Pet Store example’ (IEEE, 2007, edn.), pp. 495-495

21 Schuts, M.: ‘Industrial experiences in applying domain specific languages for system evolution’, [Sl: sn],
2017.

22 Technology, O.: ‘Java Pet Store’, 2021, 1.3.1_02
https://www.oracle.com/java/technologies/petstore-v1312.html

23 Kalyanam, R., Zhao, L., Song, C., Biehl, L., Kearney, D., Kim, I.L., Shin, J., Villoria, N.,
and Merwade, V.: ‘MyGeoHub—A sustainable and evolving geospatial science gateway’, Future
Generation Computer Systems, 2019, 94, pp. 820-832

24 OFBiz, A.: ‘Apache OFBiz’, 2021 https://blogs.apache.org/ofbiz/entry/apache-ofbiz-
news-may-2021

25 Crupi, J., and Baerveldt, F.: ‘Implementing Sun Microsystems’ Core J2EE Patterns’, Compuware
White Paper, 2004

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 50

26 AB, P.S.: ‘EJBCA Enterprise’, 2021 https://www.primekey.com/products/ejbca-
enterprise/

27 Foundation, O.S.G.: ‘GeoServer’, 2021 http://geoserver.org/
28 Elish, M.O., and Mohammed, M.A.: ‘Quantitative analysis of fault density in design patterns: An

empirical study’, Information and Software Technology, 2015, 66, pp. 58-72
29 Crawford, W., and Kaplan, J.: ‘J2EE Design Patterns: Patterns in the Real World’ (" O'Reilly

Media, Inc.", 2003. 2003)
30 Alur, D., Crupi, J., and Malks, D.: ‘Core J2EE patterns: best practices and design strategies’ (Gulf

Professional Publishing, 2003. 2003)
31 Johnson, R., and Hoeller, J.: ‘Expert one on one J2EE development without EJB’ (John Wiley &

Sons, 2004. 2004)
32. http://geoserver.org/download/, accessed 01102016 2016
33. http://www.openbravo.com/product-download/, accessed 01102016 2016
34. https://www.primekey.se/technologies/products-overview/ejbca-enterprise/
35. https://www.ejbca.org/index.html, accessed 01102016 2016
36. http://ofbiz.apache.org/download.html; , accessed 01102016 2016

Copyright © by authors and 50Sea. This work is licensed under

Creative Commons Attribution 4.0 International License.

http://geoserver.org/download/
http://www.openbravo.com/product-download/
http://www.primekey.se/technologies/products-overview/ejbca-enterprise/
http://www.ejbca.org/index.html

