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 In this paper, a blood supply chain network (BSCN) is designed to reduce the 
total cost of the supply chain network under demand and transportation costs. 
The network levels considered for modeling include blood donation clusters, 
permanent and temporary blood transfusion centers, major laboratory centers 
and blood supply points. Other goals included determining the optimal number 
and location of potential facilities, optimal allocation of the flow of goods 
between the selected facilities and determining the most suitable transport route 
to distribute the goods to customer areas in uncertainty conditions. This study 
addresses the issue of blood prishability from blood sampling to distribution to 
customer demand areas. Given that the model was NP-hard, the MFGO 
algorithm were used to solve the model with a priority-based solution. The results 
of the design of the experiments showed the high efficiency of the MFGO 
algorithm in comparison with the PSO algorithm in finding efficient solutions. 
Also, the mean of the objective function in robust approach is more than the one 
in the deterministic approach, while the standard deviation of the first objective 
function in the robust approach is less than the one in the deterministic approach 
at all levels of the uncertainty factor. 
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1. Introduction  

Supply Chain is a set of organizations which are linked together by material, information, and financial 

flows. Such organizations include enterprises that produce raw materials and components of products and 

provide services such as distribution, storage, wholesale, and retail. In this set, final customers are 

considered the last level of the chain and one of the members of these organizations (Ghahremani Nahr et 

al., 2020). In general, supply chain includes facilities such as raw material suppliers, manufacturing centers, 

warehouses, wholesalers and retailers, distribution centers, and customers in which material and 

information flows exist within and between them (Nozari et al., 2019). In other words, supply chain consists 

of various components involved in a network that begins with the production of the raw material, and ends 

with its transport to warehouses, distribution centers, and customer satisfaction (Ghanbarzadeh et al., 2021). 

In the meantime, one of the most important types of supply chain network is blood supply chain. Blood 

supply chain has been the focus of attention in recent years due to the importance of this vital and rare 

product in health systems. Healthy and adequate blood supply as well as its management are of particular 

concern to the human race. Hence, the collection and management of blood distribution which is raised in 

the form of blood supply chain management, requires comprehensive and accurate management and 

planning because blood supply chain has complexities that differentiate it from the supply chain of ordinary 

goods. Blood is one of the most critical perishable substances in nature, which is closely related to the lives 

of humans (Sadeghi et al., 2021). One of the most significant reasons for the importance of blood and blood 

products is its human origin and that it cannot be artificially produced. In addition, blood products such as 

red blood cells, platelets and plasma have a different life span and require special storage conditions. On 

the other hand, blood supply chain, which involves processes for collecting, producing, storing and 

distributing blood and blood products from donors to blood recipients, is associated with uncertainty. This 

uncertainty is obvious in both supply and demand because blood supply from donors is relatively unplanned 

and uncertain, and demand for this product does not enjoy a constant rate. Therefore, matching supply and 

demand in blood supply chain requires designing a proper supply chain network to supply blood and blood 

derivatives (Jabbarzadeh et al., 2014). Therefore, since blood is one of the most important needs of each 

patient in various critical situations and that one of the concerns of health centers is the phenomenon of 

deficiency or bloody perishability, blood supply chain management attempts to bridge the gap between 

blood supplyers and consumers, resulting in a lack of exposure to lacking and minimizing the risk of blood 

products perishability and reducing costs. Therefore, in this paper, a BSCN is designed with the objective 

of reducing the total cost of the network that simultaneously optimizes the number and location of potential 

facilities, optimizes the flow of blood groups between selected centers and optimizes the appropriate 

routing of transport and distribution of blood groups to demand centers. 

2. Literature Review 

The design of a BSCN requires a number of strategic and operational decisions, including decisions on the 

location of blood collection centers and how blood donors are allocated to blood collection centers, the 

number and location of donation points, and so on. Because the demand for blood after a quake is different 

in different periods (in the first 24 hours of the earthquake, demand is much higher), the design of a blood 

supply chain is part of a dynamic network design (Jabbarzadeh et al., 2014). Research on the management 

of the supply chain of perishable products, and in particular on blood products, began specifically by Van 

Zyl (Van Zyl, 1963). From the first articles published in the field of dynamic supply chain design, one can 

refer to the Ballo article in 1968, in which a mathematical model was presented for the dynamic location 

problem with different periods (Ballo, 1968). Given the importance of perishability, authors categorized 

perishable goods into fixed and variable types according to their shelf life in their articles. Sampson et al., 

examined the problem of relocation of blood donation bases in Norfolk, Virginia, and provided conclusions 

on the timing of information collection and blood distribution products (Sampson et al., 1996). Pereira 
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developed a comprehensive mathematical model for designing a BSCN. He aimed at answering the 

questions such as: 1. Where to establish blood centers? 2. Allocation of donors to blood centers and 3. Place 

of construction of blood collection centers (Pereira, 2005). Hijema et al., in order to minimize shortage and 

waste, presented a Markov dynamic process (MDP) and a simulation approach in which two types of 

demand were proposed in accordance with different types of patients. In his proposed model, he considered 

the young platelets used to meet the needs of patients with oncological and hematological disorders, while 

for general surgery, the use of platelets of any age (up to the maximum shelf life) is permissible (Hijema 

et al., 2007). Ghandforoush and Sen, in order to assist regional blood transfusion centers to generate and 

collect platelets on a daily basis, developed a non-convex integer program to create a DSS system. The 

goal was to minimize the total daily cost, which included collection, production and costs of shortages. 

Although collection and production constraints were taken into consideration, the inventory variable was 

not added to the model. He concluded that the rate of supply and production should be proportionate in 

demand (Ghandforoush and Sen, 2010). Fahimnia and colleagues presented a two-objective randomized 

mathematical model for designing an efficient and effective blood supply network. In addition to 

minimizing the total cost of the chain, including the costs of moving temporary blood donation sites, 

operating costs in blood centers, the cost of transporting and keeping inventory, and the costs of temporary 

blood donations, they also minimized overall transport time. They considered a supply chain including 

blood donors, blood collection centers, local and regional blood donation centers and demand points, 

including hospitals and medical centers. (Fahimnia et al., 2015). Gunpinar and centeno addressed the 

single-level inventory (distribution) for perishable items (blood) in hospitals. Their proposed optimization 

model for blood supply chain included donors, blood banks, mobile centers and patients, as well as internal 

factors such as capacity, demand and delivery time to minimize total cost (Gunpinar and centeno, 2015). 

Ghasemi et al., strived to consider the problems mentioned by installing appropriate and suitable new bases 

for blood and building backup bases and using available equipment, including available mobile bases and 

buses for receiving blood in the east of Mazandaran province so as to minimize these problems to a 

desirable extent. Therefore, a three-objective mathematic planning model was considered based on 

minimizing deficiencies, costs, and maximizing the timely receipt of blood using GAMS software and 

Pareto solutions (Ghasemi et al., 2017). Osorio et al., presented a simulation-optimization model for 

production planning in the blood supply chain. They showed that the mathematical model provided by 

them can largely prevent the occurrence of shortages (Osorio et al., 2017). Zahiri et al., presented a multi-

level, bi-objective supply chain network, taking into consideration reducing network design costs and 

reducing the maximum unmet demand. They considered uncertain parameters such as demand and 

transport costs and used a robust planning method to control the parameters (Zahiri et al., 2017). Khalilpour 

and Arshadi Khamseh, presented a multi-objective mathematical model for designing an efficient BSCN 

in earthquake through a comprehensive study of the real world. A three-step supply chain including blood 

donors, blood collection sites (permanent and temporary) and blood centers that were essential for the 

design of the supply chain network were considered. (Khalilpour and Arshadi Khamseh, 2017). Habibi et 

al. presented a multi-objective linear programming model for the design of a post-crisis blood supply chain. 

A three-level model consisting of donors, blood collection centers (permanent and temporary) and blood 

centers were considered. Their aim was to determine the number and location of facilities, the allocation 

of blood to various facilities, and minimization of the costs and shortcomings that were in conflict with 

each other (Habibi et al., 2018).  

Arani et al. considered a new mixed-integer programming model to design a BSCN with a sustainable 

ancillary supply. They developed a scenario-based stochastic optimization model and a modified multi-

echelon programming approach to solve it by examining a blood supply routing problem with supply and 

demand uncertainties (Arani et al., 2021). Fazli-Khalaf et al. presented a new three-objective mathematical 

model for designing an emergency BSCN. In this model, they consider five categories including blood 

donor groups, blood collection facilities, laboratories, blood centers and hospitals. And two robust potential 
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resilience probability (RPFCCP) programming programs and a potential resilience resilience programming 

model to provide robust and robust solutions for decision makers (Fazli-Khalaf et al., 2019). Salehi et al. 

presented a robust multi-echelon stochastic model for the design of the blood supply network considering 

a possible natural disaster, which consists of three layers; the donation areas are blood collection centers 

and a blood transfusion center. The mathematical model was implemented and evaluated using a simulation 

method (Salehi et al., 2019). Samani et al. proposed a multi-objective mixed integer linear programming 

model to design an integrated BSCN for disaster relief. Numerical experiments were performed to validate 

the proposed model and its solution method, and also, a real case study was presented to show the 

application of the proposed model (Samani et al., 2019). Rahmani provided a robust and reliable model for 

a dynamic emergency blood network design problem. They used a robust approach to control uncertainty. 

A numerical example was widely used to illustrate the effect of considering disruption scenarios. The 

performance of the proposed model was evaluated using a series of test problems in different sizes. The 

results showed that the performance of the model was quite satisfactory (Rahmani, 2019). Samani et al. 

approached an advanced perspective involving a two-phase prevention policy in which the risk of 

disruption is reduced through a combined method using a fuzzy hierarchical process and gray logic analysis 

to determine the possibilities of excess blood. They developed a robust formula for controlling network 

reliability under low-cost disruption scenarios and developed an integrated fuzzy measurement-based 

approach to protect the network from uncertainty (Samani et al., 2019). Asadpour et al. designed a multi-

objective BSCN model considering blood corruption. They used the method of achieving the ideal to solve 

their two-objective model. The model presented by them leads to a reduction in covid transfer rate 

(Asadpour et al., 2021). Abbasi et al. developed a new way to solve large size problems based on machine 

learning. They used this method to solve the problem of BSCN (Abbasi et al., 2020). Shokouhifar et al. 

presented an inventory management model for age-distinct platelets in supply / demand uncertainties for 

lateral transport blood supply chains. They solved the problem using the supra-innovative Wall 

optimization algorithm (Shokouhifar et al., 2021). Samani et al. used a robust optimization method to 

control uncertain parameters in the BSCN. The results show that relevant managers should be aware of the 

behavior of blood donors, people affected by the disaster and the effect of disruption in the design of the 

BSCN (Samani et al., 2020). Araújo et al. proposed a new integer linear programming model for tactical 

and operational blood supply chain planning. In this model, several products, several periods and corruption 

are considered in a wide planning horizon (Araújo et al., 2020).  

Accordingly, in this paper, we will work on the development of previous work, taking into account the 

shelf life of products across the network and routing vehicles in the distribution of goods, to fill this research 

gap. Table (1) compares some of the most important articles published on blood supply chain. 
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Table (1): Comparison of some of the most important articles on BSCN 
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Şahin et al. 2007 - * - - - - - - -  * - 3 -  * - - - - - 
Nagurney et al 2012  * -  * - - - - - -  * - 7 - - - - - - - 

Li & Liao 2012  * - - -  * - - - -  * - 1  * - - - - - - 
Sha & Huang 2012  * - - - - - - - -  * - 2  * - - - - - - 
Bozorgi et al 2014  * - - - - - - - -  * - 3 - - - - - - - 
Jabbarzadeh. 2014  * - - - - - - - -  * - 3  *  * - - - -  * 
Arvan et al. 2015  * - -  * -  * - - - -  * 4 - - - - - - - 

Fahimnia al. 2015  * - -  * -  * - - -  * - 4  * - - - - -  * 
Ghasemi et al 2016  * - - - - -  *  * -  * - 4 -  *  * - - - - 
Kohneh et al. 2016  * - - - - -  * - - -  * 5  *  * - - -  *  * 

Salehi et al 2017  * - - - - - - - - -  * 3  *  * - - - -  * 
khalilpourazari 2017  * - -  * -  * - - -  * - 3  *  *  *  *  * -  * 

Zahiri et al 2017  * - - - - - - - - -  * 5  *  * - - - - - 
Heydari et al 2018 * - - - - - - * - - * 3 - * * - - - - 

Fazli-Khalaf et al 
2019 

* - - - - * * - 
- 

- * 3 * - * - - - * 

Khalilpour et al 2020 * - - * - - - * - * - 6 * * - - * - * 

Samani et al 2020 * - - - - - * - - * * 4 * - - * * - * 

Araújo et al 2020 * - - - - - - - * * * 3 * * - - - * * 

Asadpour et al 2021 * - - - - - - - * * - 3 - * - - * - * 

Shokuhifar et al 2021 * - - - - - - * - - * 3 - * - - * - * 

Soltani et al 2021 * - - * - - - - * * * 3 * - - - * * - 

Dehghani et al., 2021 * * - - - - * - * * * 4 * - - * - - - 

Present study  * - - - - - - - - -  * 5  * - -  * - -  * 

3. Mathematical Model 

In this paper, a robust multi echelon BSCN has been designed. According to Figure (1), the BSCN echelons 

include blood donation centers, temporary and permanent blood sampling centers, laboratory and blood 

demand centers (Hospitals). In this network, blood donation clusters refer to permanent or temporary blood 

centers for blood donation. Temporary blood transfusion centers also send blood groups to permanent blood 

transfusion centers after transfusion from donation clusters. The central laboratory centers also store part 

of the blood groups in their temporary storage, taking into account the perishability time of blood and the 

time of blood donation, and send the other part to the demand centers according to the customer's request. 

In this section, each primary laboratory center, taking into account the closest demand centers, uses the 

available vehicles to distribute blood groups. In this section, the routing of the vehicle arises. Therefore, 

the main model of BSCN can be modeled according to the following assumptions: 

• The problem is multi-period and its planning horizon is mid-term. 

• The location of the permant and primary blood transfusion centers and the main potential lab 

centers and the number of them are unknown. 

• The demand and transportation costs are considered as uncertain. 

• The capacity of potential facilities is already known. 

• Shortage is not allowed and all customer demand for all products must be provided. 
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Figure (1): The proposed BSCN 

According to the assumptions stated, the main objective of this paper is to determine the optimal number 

and location of potential facilities, allocation of the flow of goods between selected locations and routing 

vehicles in the transport of blood groups to demand centers in such a way that the total cost of the supply 

chain network is minimized. Therefore, for modeling, the indices, parameters and decision variables of the 

blood supply chain network problem are defined as follows: 

3.1 Indices 

 

𝑖 = {1, … , 𝐼} The index of blood donation clusters 

𝑗 = {1, … , 𝐽} The index of temporary blood transfusion centers 

𝑘 = {1, … , 𝐾} The index of permanent blood transfusion centers 

𝑙, 𝑙′ = {1, … , 𝐿} The index of the potential centers of the central laboratory 

𝑚, 𝑐 = {1, … , 𝐶} The index of blood demand centers 

𝑏 = {1, … , 𝐵} The index of type of blood group and blood derivatives 

𝑡 = {1, … , 𝑇} The index of time period  

𝑟 = {1, … , 𝑇} The index of blood transfusion time 

𝑣 = {1, … , 𝑉} The index of vehicle  

3.2 Parameters 

𝐺𝑗 The establishing cost the temporary blood tansfusion center j 

𝐻𝑘 The establishing cost a permanent blood tansfusion center k 

I I I 

J J J J 

K K K 

L L 

C 
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𝑈𝑙 The establishing cost the central laboratory center l 

𝐹𝑣 The fixed cost of using the vehicle v  

𝑇𝑖𝑗 Cost per unit for blood donation cluster i and temporary blood tansfusion center j 

𝑇𝑖𝑘 
Cost per unit transport between blood donation cluster i and permanent blood donation center 

k 

𝑇𝑗𝑘 
The transportation cost per unit between the temporary blood transfusion center j and the 

permanent blood transfusion center k 

𝑇𝑘𝑙 
The transportation cost per unit between the permanent blood transfusion center k and the 

central laboratory center l   

𝑇𝑙𝑙′ The transportation cost per unit between the central laboratory centers l and 𝑙′ 

𝑇𝑙c The transportation cost between the central laboratory center l and customer c  𝑙, 𝑐 ∈ 𝐿 ∪ 𝐶 

ℎ𝑘𝑏 
Maintenance cost per blood group b in the temporary warehouse of the permanent blood 

transfusion center k 

ℎ𝑙𝑏
′  

Maintenance cost per blood group b in the temporary warehouse of the central laboratory center 

l   

𝐶𝑙𝑏 The distribution cost per blood group b by the central laboratory center l 

𝐷𝑐𝑏𝑡 Demand for a blood center c from a blood group b at period t 

𝑢𝑏 The perishability time of a blood group b 

𝑐𝑎𝑗𝑏 The capacity of the temporary blood transfusion center j from the blood group b 

𝑐𝑎𝑘𝑏 
Temporary storage capacity of the permanent blood transfusion center k from the blood group 

b 

𝑐𝑎𝑙𝑏 Temporary warehouse capacity of the central laboratory center l of the blood group b 

𝑐𝑎𝑣 Vehicle capacity v 

𝜋𝑐𝑏𝑡 Penalty cost of unmet demand for a blood center c from a blood group b at period t 

 

3.3 Decision variables 

𝑋𝑖𝑘𝑏𝑡 
The amount of blood group b transported between the donation cluster i and the permanent 

blood transfusion center k at period t. 

𝑅𝑖𝑗𝑏𝑡 
The amount of blood group b transported between the donation cluster i and the temporary 

blood transfusion center j at period t. 

𝑌𝑗𝑘𝑏𝑡 
The amount of blood group b transported between and the temporary blood transfusion center 

j and the permanent blood transfusion center k at period t. 

𝑊𝑘𝑙𝑏𝑡 
The amount of blood group b transported between the permanent blood transfusion center and 

the central laboratory center l at period t 

𝑆𝑙𝑙′𝑏𝑡 
The amount of blood group b transported between the central laboratory center l and l’ at 

period t 

𝑉′
𝑙𝑏𝑡 The total amount of blood group b transmitted to the central laboratory centers l at  period t 

𝑇𝑘𝑙𝑏𝑡𝑟 
The amount of blood group b transfused between the permanent blood transfusion center k 

and the central laboratory center l for a time period t and blood donated at period r 

𝐴𝑙′𝑙𝑏𝑡𝑟 
The amount of blood group b transfused between the central laboratory centers l and 𝑙′at 

period t and blood donated at period r 

𝐵𝑙𝑐𝑏𝑡𝑟 
The amount of blood group b transfused between the central laboratory center l and blood 

demand center c at period t and blood donated at period r 

𝑄𝑘𝑏𝑡𝑟 
The inventory level of blood group 𝑏 in the p warehouse of the permanent blood transfusion 

center k at period t and blood donated at period r 
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𝑄𝑙𝑏𝑡𝑟
′  

Level of inventory of the blood group b in the temporary warehouse of the central laboratory 

center 𝑙 at period t and blood donated at period r 

𝑍𝑗 If a temporary blood transfusion center j is established, it is 1 and otherwise 0. 

𝑍𝑘 If the Permanent Blood transfusion center k is established, it will be 1 and otherwise 0. 

𝑍𝑙 If the central laboratory center l is established, it will be 1 and otherwise 0. 

𝑍𝑙𝑐𝑡 
If the blood demand center c is allocated to the the central laboratory center l at period t, it 

will be 1 and otherwise 0. 

𝑍𝑙𝑐𝑣𝑡 
If the blood center c is visited by the vehicle v after the central laboratory center l at period t, 

it will be 1 and otherwise 0.        𝑙, 𝑐 ∈ 𝐿 ∪ 𝐶 

𝑈𝑐𝑣𝑡 Auxiliary variable for the elimination constraint 

𝜎𝑐𝑏𝑡 Percentage of unmet demand center c from the blood group b at period t   

𝐴𝑣𝑡 If the vehicle  v  period t is used, it will be 1 and otherwise 0. 

Regarding the indices, parameters, and decision variables, the robust multi echelon BSCN is modeled as a 

mixed integer non linear mathematical programming model as follows: 

𝑀𝑖𝑛𝜔1 = ∑ 𝐺𝑗𝑍𝑗

𝐽

𝑗=1

+ ∑ 𝐻𝑘𝑍𝑘

𝐾

𝑘=1

+ ∑ 𝑈𝑙𝑍𝐿

𝐿

𝑙=1

+ ∑ ∑ ∑ ∑ ℎ𝑘𝑏𝑄𝑘𝑏𝑡𝑟

𝑡

𝑟=1

𝑇

𝑡=1

𝐵

𝑏=1

𝐾

𝑘=1

+ 

∑ ∑ ∑ ∑ ℎ𝑙𝑏
′ 𝑄𝑙𝑏𝑡𝑟

′

𝑡

𝑟=1

𝑇

𝑡=1

𝐵

𝑏=1

𝐿

𝑙=1

+ ∑ ∑ ∑ ∑ �̃�𝑖𝑗

𝑇

𝑡=1

𝑋𝑖𝑗𝑏𝑡

𝐵

𝑏=1

𝐽

𝑗=1

𝐼

𝑖=1

+ ∑ ∑ ∑ ∑ �̃�𝑖𝑘

𝑇

𝑡=1

𝑅𝑖𝑘𝑏𝑡

𝐵

𝑏=1

𝐾

𝑘=1

𝐼

𝑖=1

+ 

∑ ∑ ∑ ∑ �̃�𝑗𝑘𝑌𝑗𝑘𝑏𝑡

𝑇

𝑡=1

𝐵

𝑏=1

𝐾

𝑘=1

𝐽

𝑗=1

+ ∑ ∑ ∑ ∑ �̃�𝑘𝑙

𝑇

𝑡=1

𝑊𝑘𝑙𝑏𝑡

𝐵

𝑏=1

𝐿

𝑙=1

𝐾

𝑘=1

+ ∑ ∑ ∑ ∑ �̃�𝑙𝑐

𝑇

𝑡=1

𝑍𝑙𝑐𝑣𝑡

𝑉

𝑣=1

𝐿∪𝐶

𝑐=1

𝐿∪𝐶

𝑙=1

+ 

∑ ∑ ∑ ∑ �̃�𝑙𝑙′

𝑇

𝑡=1

𝑆𝑙𝑙′𝑏𝑡

𝐵

𝑏=1

𝐿

𝑙′=1
𝑙′≠𝑙

𝐿

𝑙=1

+ ∑ ∑ ∑ 𝐶𝑙𝑏

𝑇

𝑡=1

𝑉′
𝑙𝑏𝑡

𝐵
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𝐿
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𝑇

𝑡=1

𝐴𝑣𝑡

𝑉

𝑣=1

+ 

∑ ∑ ∑ ∑ 𝜋𝑐𝑏𝑡𝜎𝑐𝑏𝑡�̃�𝑐𝑏𝑡𝑍𝑙𝑐𝑡

𝐿

𝑙=1

𝑇

𝑡=1

𝐵

𝑏=1

𝐶

𝑐=1

 

(1) 

𝑠. 𝑡.:  

∑ 𝑋𝑖𝑗𝑏𝑡

𝐼

𝑖=1

= ∑ 𝑌𝑗𝑘𝑏𝑡

𝐾

𝑘=1

, ∀𝑗, 𝑏, 𝑡 (2) 

∑ 𝑄𝑘𝑏𝑡𝑟

𝑡

𝑟=1

= ∑ 𝑌𝑗𝑘𝑏𝑡

𝐽

𝑗=1

+ ∑ 𝑅𝑖𝑘𝑏𝑡

𝐼

𝑖=1

− ∑ 𝑊𝑘𝑙𝑏𝑡

𝐿

𝑙=1

, ∀𝑘, 𝑏, 𝑡 = 1 < 𝑢𝑏 (3) 

∑ 𝑄𝑘𝑏𝑡𝑟

𝑡

𝑟=1

= ∑ 𝑄𝑘𝑏𝑡−1𝑟

𝑡−1

𝑟=1

+ ∑ 𝑌𝑗𝑘𝑏𝑡

𝐽

𝑗=1

+ ∑ 𝑅𝑖𝑘𝑏𝑡

𝐼

𝑖=1

− ∑ 𝑊𝑘𝑙𝑏𝑡

𝐿

𝑙=1

,      ∀𝑘, 𝑏, 1 < 𝑡 < 𝑢𝑏 (4) 

∑ 𝑄𝑘𝑏𝑡𝑟

𝑡

𝑟=𝑡+1−𝑢𝑏

= ∑ 𝑄𝑘𝑏𝑡−1𝑟

𝑡−1

𝑟=𝑡+1−𝑢𝑏

+ ∑ 𝑌𝑗𝑘𝑏𝑡

𝐽

𝑗=1

+ ∑ 𝑅𝑖𝑘𝑏𝑡

𝐼

𝑖=1

− ∑ 𝑊𝑘𝑙𝑏𝑡

𝐿

𝑙=1

, ∀𝑘, 𝑏, 𝑡 ≥ 𝑢𝑏 (5) 

𝑊𝑘𝑙𝑏𝑡 = ∑ 𝑇𝑘𝑙𝑏𝑡𝑟

𝑡

𝑟=1

,     ∀𝑘, 𝑙, 𝑏, 𝑡 < 𝑢𝑏 (6) 

𝑊𝑘𝑙𝑏𝑡 = ∑ 𝑇𝑘𝑙𝑏𝑡𝑟

𝑡

𝑟=𝑡+1−𝑢𝑏

 , ∀𝑘, 𝑙, 𝑏, 𝑡 ≥ 𝑢𝑏 (7) 
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𝑄𝑘𝑏𝑡𝑟 = ∑ 𝑌𝑗𝑘𝑏𝑡

𝐽

𝑗=1

+ ∑ 𝑅𝑖𝑘𝑏𝑡

𝐼

𝑖=1

− ∑ 𝑇𝑘𝑙𝑏𝑡𝑟

𝐿

𝑙=1

,     ∀𝑘, 𝑏, 𝑡 = 𝑟 (8) 

𝑄𝑘𝑏𝑡𝑟 = 𝑄𝑘𝑏𝑡−1𝑟 − ∑ 𝑇𝑘𝑙𝑏𝑡𝑟

𝐿

𝑙=1

,     ∀𝑘, 𝑏, 𝑡 − 𝑟 < 𝑢𝑏 (9) 

∑ 𝑄𝑙𝑏𝑡𝑟
′

𝑡

𝑟=1

= ∑ 𝑊𝑘𝑙𝑏𝑡

𝐾

𝑘=1

− 𝑉′
𝑙𝑏𝑡 + ∑ 𝑆𝑙′𝑙𝑏𝑡

𝐿

𝑙′=1
𝑙′≠𝑙

− ∑ 𝑆𝑙𝑙′𝑏𝑡

𝐿

𝑙′=1
𝑙′≠𝑙

,     ∀𝑙, 𝑏, 𝑡 = 1 < 𝑢𝑏 (10) 

∑ 𝑄𝑙𝑏𝑡𝑟
′

𝑡

𝑟=1

= ∑ 𝑄𝑙𝑏𝑡−1𝑟
′

𝑡−1

𝑟=1

+ ∑ 𝑊𝑘𝑙𝑏𝑡

𝐾

𝑘=1

− 𝑉′
𝑙𝑏𝑡 + ∑ 𝑆𝑙′𝑙𝑏𝑡

𝐿

𝑙′=1
𝑙′≠𝑙

− ∑ 𝑆𝑙𝑙′𝑏𝑡

𝐿

𝑙′=1
𝑙′≠𝑙

,     ∀𝑙, 𝑏, 1 < 𝑡 < 𝑢𝑏 (11) 

∑ 𝑄𝑙𝑏𝑡𝑟
′

𝑡

𝑟=𝑡−𝑢𝑏
+1

= ∑ 𝑄𝑙𝑏𝑡−1𝑟
′

𝑡−1

𝑟=𝑡−
𝑢𝑏+1

+ ∑ 𝑊𝑘𝑙𝑏𝑡

𝐾

𝑘=1

− 𝑉′
𝑙𝑏𝑡 + ∑ 𝑆𝑙′𝑙𝑏𝑡

𝐿

𝑙′=1
𝑙′≠𝑙

− ∑ 𝑆𝑙𝑙′𝑏𝑡

𝐿

𝑙′=1
𝑙′≠𝑙

,     ∀𝑙, 𝑏, 𝑡 ≥ 𝑢𝑏 (12) 

𝑉′
𝑙𝑏𝑡 = ∑ ∑ 𝐵𝑙𝑐𝑏𝑡𝑟

𝐶

𝑐=1

𝑡

𝑟=1

,     ∀𝑙, 𝑐, 𝑏, 𝑡 < 𝑢𝑏 (13) 

𝑉′
𝑙𝑏𝑡 = ∑ ∑ 𝐵𝑙𝑐𝑏𝑡𝑟

𝐶

𝑐=1

𝑡

𝑟=𝑡−𝑢𝑏+1

, ∀𝑙, 𝑐, 𝑏, 𝑡 ≥ 𝑢𝑏 (14) 

𝑆𝑙𝑙′𝑏𝑡 = ∑ 𝐴𝑙′𝑙𝑏𝑡𝑟

𝑡

𝑟=1

,     ∀𝑙, 𝑙′, 𝑏, 𝑡 < 𝑢𝑏 (15) 

𝑆𝑙𝑙′𝑏𝑡 = ∑ 𝐴𝑙′𝑙𝑏𝑡𝑟

𝑡

𝑟=𝑡−𝑢𝑏+1

,     ∀𝑙, 𝑙′, 𝑏, 𝑡 ≥ 𝑢𝑏 (16) 

𝑄𝑙𝑏𝑡𝑟
′ = ∑ 𝑇𝑘𝑙𝑏𝑡𝑟

𝐾

𝑘=1

− ∑ 𝐵𝑙𝑐𝑏𝑡𝑟

𝐶

𝑐=1

+ ∑ 𝐴𝑙′𝑙𝑏𝑡𝑟

𝐿

𝑙′=1
𝑙′≠𝑙

− ∑ 𝐴𝑙𝑙′𝑏𝑡𝑟

𝐿

𝑙′=1
𝑙′≠𝑙

,      ∀𝑙, 𝑏, 𝑡 = 𝑟 (17) 

𝑄𝑙𝑏𝑡𝑟
′ = 𝑄𝑙𝑏𝑡−1𝑟

′ − ∑ 𝐵𝑙𝑐𝑏𝑡𝑟

𝐶

𝑐=1

− ∑ 𝐴𝑙𝑙′𝑏𝑡𝑟

𝐿

𝑙′=1
𝑙′≠𝑙

,     ∀𝑙, 𝑏, 𝑡 − 𝑟 < 𝑢𝑏 (18) 

∑ 𝑌𝑗𝑘𝑏𝑡

𝐾

𝑘=1

≤ 𝑐𝑎𝑗𝑏𝑍𝑗,     ∀𝑗, 𝑏, 𝑡 (19) 

∑ 𝑊𝑘𝑙𝑏𝑡

𝐾

𝑘=1

+ ∑ 𝑆𝑙′𝑙𝑏𝑡

𝐿

𝑙′=1
𝑙′≠𝑙

≤ 𝑐𝑎𝑙𝑏𝑍𝑙 ,     ∀𝑙, 𝑏, 𝑡 (20) 

∑ 𝑌𝑗𝑘𝑏𝑡

𝐽

𝑗=1

+ ∑ 𝑅𝑖𝑘𝑏𝑡

𝐼

𝑖=1

≤ 𝑐𝑎𝑘𝑏𝑍𝑘 ,     ∀𝑘, 𝑏, 𝑡 (21) 

𝑉′
𝑙𝑏𝑡 = ∑ 𝜎𝑐𝑏𝑡�̃�𝑐𝑏𝑡𝑍𝑙𝑐𝑡

𝐶

𝑐=1

,     ∀𝑙, 𝑏, 𝑡 (22) 

∑ ∑ ∑ 𝜎𝑐𝑏𝑡�̃�𝑐𝑏𝑡𝑍𝑙𝑐𝑣𝑡

𝐵

𝑏=1

𝐶∪𝐿

𝑙=1

𝐶

𝑐=1

≤ 𝑐𝑎𝑣𝐴𝑣𝑡,     ∀𝑣, 𝑡 (23) 
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∑ ∑ 𝑍𝑙𝑐𝑣𝑡

𝐶∪𝐿

𝑙=1

𝑉

𝑣=1

= 1,     ∀𝑐, 𝑡 (24) 

𝑈𝑚𝑣𝑡 − 𝑈𝑐𝑣𝑡 + 𝐶𝑍𝑚𝑐𝑣𝑡 ≤ 𝐶 − 1,     ∀𝑚, 𝑐 ∈ 𝐶, 𝑣, 𝑡 (25) 

∑ 𝑍𝑙𝑐𝑣𝑡

𝐶∪𝐿

𝑐=1

= ∑ 𝑍𝑐𝑙𝑣𝑡

𝐶∪𝐿

𝑐=1

,     ∀𝑣, 𝑡, 𝑙 ∈ 𝐶 ∪ 𝐿 (26) 

∑ ∑ 𝑍𝑙𝑐𝑣𝑡

𝐶

𝑐=1

𝐿

𝑙=1

≤ 1,     ∀𝑣, 𝑡 (27) 

∑ 𝑉′
𝑙𝑏𝑡

𝐵

𝑏=1

≤ ∑ 𝑐𝑎𝑙𝑏

𝐵

𝑏=1

𝑍𝑙 ,     ∀𝑙, 𝑡 (28) 

−𝑍𝑙𝑐𝑡 + ∑(𝑍𝑙𝑢𝑣𝑡 + 𝑍𝑢𝑐𝑣𝑡)

𝐶∪𝐿

𝑢=1

≤ 1,     ∀𝑙, 𝑐, 𝑣, 𝑡 (29) 

𝑄𝑘𝑏𝑡𝑟 = 0,     ∀𝑘, 𝑏, 𝑡 < 𝑟 (30) 

𝑄𝑙𝑏𝑡𝑟
′ = 0,     ∀𝑙, 𝑏, 𝑡 < 𝑟 (31) 

𝑋𝑖𝑗𝑏𝑡 , 𝑅𝑖𝑘𝑏𝑡, 𝑌𝑗𝑘𝑏𝑡 , 𝑊𝑘𝑙𝑏𝑡 , 𝑆𝑙′𝑙𝑏𝑡, 𝑈𝑙𝑣𝑡 , 𝜎𝑐𝑏𝑡 ≥ 0,     ∀𝑖, 𝑗, 𝑘, 𝑐, 𝑙, 𝑙′, 𝑏, 𝑣, 𝑡 (32) 

𝐵𝑙𝑐𝑏𝑡𝑟 , 𝐴𝑙𝑙′𝑏𝑡𝑟, 𝑇𝑘𝑙𝑏𝑡𝑟 , 𝑄𝑙𝑏𝑡𝑟
′ , 𝑄𝑘𝑏𝑡𝑟 ≥ 0,     ∀𝑙, 𝑙′, 𝑐, 𝑘, 𝑏, 𝑡, 𝑟 (33) 

𝑍𝑗 , 𝑍𝑙 , 𝑍𝑘 , 𝑍𝑙𝑐𝑡 , 𝑍𝑙𝑐𝑣𝑡 ∈ {0,1},    ∀𝑖, 𝑘, 𝑙, 𝑣, 𝑡, 𝑐, 𝑏 (34) 

Equation (1) shows the first objective function and includes minimizing the costs of the entire supply chain 

network (construction costs, maintenance costs, and transport costs of blood group between centers). 

Constraint (2) shows the equilibrium relation in the transport of blood groups from blood donation clusters 

to main blood transfusion centers. Constraints (3) to (5) are related to the amount of blood groups stored in 

the temporary stores of the primary blood transfusion centers at the time of blood donation, with regard to 

the time of perishability of each blood group and at any time period. Constraints (6) and (7) show the 

transport of blood groups from the main blood transfusion centers to the central laboratory centers with 

regard to the perishability of the blood groups. Constraints (8) and (9) indicate the level of inventory of 

each blood group in the temporary storage of primary blood donation centers and constraints (10) to (12) 

reflect the level of inventory of each type of blood group in temporary warehouses of the primary 

laboratory. Constraints (13) and (14) show the amount of the transport of blood groups from the central 

laboratory centers to all demand points in each time period. Constraints (15) and (16) indicate the transfer 

of blood groups between the central laboratory centers according to the demand of the customer centers 

and the perishability time. Constraints (17) and (18) show the equilibrium relationship at the central 

laboratory centers and ensures that the blood groups are transferred to demand points before the period of 

blood corruptions. Constraints (19) to (21) are related to the capacity constraints of the temporary blood 

transfusion centers, the central laboratory centers and permanent blood transfusion centers, and ensure that 

the center can not be used until the center has been established. Constraint (22) ensures that each central 

laboratory center can only be allocated to a blood supply center. Constraint (23) shows the total flow of 

products (demand) in the central labratory centers for transfer to demand centers. Constraint (24) shows 

the maximum carrying capacity of blood groups by the available vehicle. Constraint (25) is the restriction 

related to the removal of the sub-tour. Constraint (26) ensures that the vehicle can only enter and exit from 

any demand center once. Constraints (27) to (29) ensures that the start and end routing points of vehicle in 

the distribution of blood groups to the demand centers are the central laboratory centers. Constraints (30) 

and (31) show the rational relationships in the inventory of blood groups in the temporary warehouses of 

the primary blood transfusion centers and the central laboratory. Constraints (32) to (34) show the type and 

gender of the decision variables. 

3.4 The deterministic model of BSCN 
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The proposed model presented in the previous section is related to the model in an uncertain state. This 

model has been developed based on the robust optimization model provided by Ben Tal and Nemirovski 

(1999). Ben Tal et al. (1999) showed that in a limited framework, a robust model can be transformed into 

an equilibrium problem from a semi-immutable problem where the set 𝑢𝑏𝑜𝑥 is replaced by the boundary 

set 𝑢𝑒𝑥𝑡. In this problem, 𝑢𝑒𝑥𝑡 includes the maximum values in the set 𝑢𝑏𝑜𝑥. Regarding the index, the 

parameter and decision variables of the proposed non-linear math programming model are the integer as 

follows: 

𝑀𝑖𝑛𝜔1 = 𝑍𝑐𝑜𝑠𝑡 (35) 

𝑠. 𝑡.:  

∑ 𝐺𝑗𝑍𝑗

𝐽

𝑗=1

+ ∑ 𝐻𝑘𝑍𝑘

𝐾

𝑘=1

+ ∑ 𝑈𝑙𝑍𝐿

𝐿

𝑙=1

+ ∑ ∑ ∑ ∑ ℎ𝑘𝑏𝑄𝑘𝑏𝑡𝑟

𝑡

𝑟=1

𝑇

𝑡=1

𝐵

𝑏=1

𝐾

𝑘=1

+ 

∑ ∑ ∑ ∑ ℎ𝑙𝑏
′ 𝑄𝑙𝑏𝑡𝑟

′

𝑡

𝑟=1

𝑇

𝑡=1

𝐵

𝑏=1

𝐿

𝑙=1

+ ∑ ∑ ∑ ∑(𝑇𝑖𝑗𝑋𝑖𝑗𝑏𝑡 + 𝜂𝑖𝑗𝑏𝑡
𝑖𝑗

)

𝑇

𝑡=1

𝐵

𝑏=1

𝐽

𝑗=1

𝐼

𝑖=1

+ 

∑ ∑ ∑ ∑(𝑇𝑖𝑘𝑅𝑖𝑘𝑏𝑡 + 𝜂𝑖𝑘𝑏𝑡
𝑖𝑘 )

𝑇

𝑡=1

𝐵

𝑏=1

𝐾

𝑘=1

𝐼

𝑖=1

+ ∑ ∑ ∑ ∑(𝑇𝑗𝑘𝑌𝑗𝑘𝑏𝑡 + 𝜂𝑗𝑘𝑏𝑡
𝑗𝑘

)

𝑇

𝑡=1

𝐵

𝑏=1

𝐾

𝑘=1

𝐽

𝑗=1

+ 

∑ ∑ ∑ ∑(𝑇𝑘𝑙𝑊𝑘𝑙𝑏𝑡 + 𝜂𝑘𝑙𝑏𝑡
𝑘𝑙 )

𝑇

𝑡=1

𝐵

𝑏=1

𝐿

𝑙=1

𝐾

𝑘=1

+ ∑ ∑ ∑ ∑(𝑇𝑙𝑐𝑍𝑙𝑐𝑣𝑡 + 𝜂𝑙𝑐𝑣𝑡
𝑙𝑐 )

𝑇

𝑡=1

𝑉

𝑣=1

𝐿∪𝐶

𝑐=1

𝐿∪𝐶

𝑙=1

+ 

∑ ∑ ∑ ∑ (𝑇𝑙𝑙′𝑆𝑙𝑙′𝑏𝑡 + 𝜂𝑙𝑙′𝑏𝑡
𝑙𝑙′

)

𝑇

𝑡=1

𝐵

𝑏=1

𝐿

𝑙′=1
𝑙′≠𝑙

𝐿

𝑙=1

+ ∑ ∑ ∑ 𝐶𝑙𝑏

𝑇

𝑡=1

𝑉′
𝑙𝑏𝑡

𝐵

𝑏=1

𝐿

𝑙=1

+ ∑ ∑ 𝐹𝑣

𝑇

𝑡=1

𝐴𝑣𝑡

𝑉

𝑣=1

+ 

∑ ∑ ∑ ∑ 𝜋𝑐𝑏𝑡𝜎𝑐𝑏𝑡[𝜌�̅�𝑐𝑏𝑡 + (1 − 𝜌)�̅�𝑐𝑏𝑡]𝑍𝑙𝑐𝑡

𝐿

𝑙=1

𝑇

𝑡=1

𝐵

𝑏=1

𝐶

𝑐=1

≤ 𝑍𝑐𝑜𝑠𝑡 

(36) 

𝜌𝑖𝑗𝑇𝑖𝑗𝑋𝑖𝑗𝑏𝑡 ≤ 𝜂𝑖𝑗𝑏𝑡
𝑖𝑗

,     ∀𝑖, 𝑗, 𝑏, 𝑡 (37) 

𝜌𝑖𝑗𝑇𝑖𝑗𝑋𝑖𝑗𝑏𝑡 ≥ −𝜂𝑖𝑗𝑏𝑡
𝑖𝑗

,     ∀𝑖, 𝑗, 𝑏, 𝑡 (38) 

𝜌𝑖𝑘𝑇𝑖𝑘𝑅𝑖𝑘𝑏𝑡 ≤ 𝜂𝑖𝑘𝑏𝑡
𝑖𝑘 ,     ∀𝑖, 𝑘, 𝑏, 𝑡 (39) 

𝜌𝑖𝑘𝑇𝑖𝑘𝑅𝑖𝑘𝑏𝑡 ≥ −𝜂𝑖𝑘𝑏𝑡
𝑖𝑘 ,     ∀𝑖, 𝑘, 𝑏, 𝑡 (40) 

𝜌𝑗𝑘𝑇𝑗𝑘𝑌𝑗𝑘𝑏𝑡 ≤ 𝜂𝑗𝑘𝑏𝑡
𝑗𝑘

,     ∀𝑗, 𝑘, 𝑏, 𝑡 (41) 

𝜌𝑗𝑘𝑇𝑗𝑘𝑌𝑗𝑘𝑏𝑡 ≥ −𝜂𝑗𝑘𝑏𝑡
𝑗𝑘

,     ∀𝑗, 𝑘, 𝑏, 𝑡 (42) 

𝜌𝑘𝑙𝑇𝑘𝑙𝑊𝑘𝑙𝑏𝑡 ≤ 𝜂𝑘𝑙𝑏𝑡
𝑘𝑙 ,     ∀𝑘, 𝑙, 𝑏, 𝑡 (43) 

𝜌𝑘𝑙𝑇𝑘𝑙𝑊𝑘𝑙𝑏𝑡 ≥ −𝜂𝑘𝑙𝑏𝑡
𝑘𝑙 ,     ∀𝑘, 𝑙, 𝑏, 𝑡 (44) 

𝜌𝑙𝑐𝑇𝑙𝑐𝑍𝑙𝑐𝑣𝑡 ≤ 𝜂𝑙𝑐𝑣𝑡
𝑙𝑐 ,     ∀𝑙, 𝑐, 𝑣, 𝑡 (45) 

𝜌𝑙𝑐𝑇𝑙𝑐𝑍𝑙𝑐𝑣𝑡 ≥ −𝜂𝑙𝑐𝑣𝑡
𝑙𝑐 ,     ∀𝑙, 𝑐, 𝑣, 𝑡 (46) 

𝜌𝑙𝑙′
𝑇𝑙𝑙′𝑆𝑙𝑙′𝑏𝑡 ≤ 𝜂𝑙𝑙′𝑏𝑡

𝑙𝑙′
,     ∀𝑙, 𝑙′, 𝑏, 𝑡 (47) 

𝜌𝑙𝑙′
𝑇𝑙𝑙′𝑆𝑙𝑙′𝑏𝑡 ≥ −𝜂𝑙𝑙′𝑏𝑡

𝑙𝑙′
,     ∀𝑙, 𝑙′, 𝑏, 𝑡 (48) 

𝑉′
𝑙𝑏𝑡 = ∑ 𝜎𝑐𝑏𝑡[𝜌�̅�𝑐𝑏𝑡 + (1 − 𝜌)�̅�𝑐𝑏𝑡]𝑍𝑙𝑐𝑡

𝐶

𝑐=1

,     ∀𝑙, 𝑏, 𝑡 (49) 

∑ ∑ ∑ 𝜎𝑐𝑏𝑡[𝜌�̅�𝑐𝑏𝑡 + (1 − 𝜌)�̅�𝑐𝑏𝑡]𝑍𝑙𝑐𝑣𝑡

𝐵

𝑏=1

𝐶∪𝐿

𝑙=1

𝐶

𝑐=1

≤ 𝑐𝑎𝑣𝐴𝑣𝑡,     ∀𝑣, 𝑡 (50) 

Eqs. (2-21) and Eqs. (24-35) (51) 
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4. Solution method 

The outcome of the proposed model is an MINLP one. The SCN design problem's NP-hardness has been 

demonstrated in several studies (Ghahremani et al., 2020). The developed model includes three various 

problems which are location, routing and allocation problems. So, this model can be reduced to the facility 

location problem that shown this problem is NP-hard. That is why the mentioned BSCN problem is 

introduced as NP-Hard in this study. Accurate review of this problem by exact solutions is time-consuming 

and often impractical. So, in order to reach to near-optimal solutions many meta-heuristic algorithms with 

various representations have been proposed, but they are not efficient. In the next section, an FMGO 

algorithm was described.  

4.1. Hybrid Moth-Flame Optimization and Genetic Algorithm 

Moths as a group of insects are very similar to butterflies. One of the most interesting behaviour of moths 

is their unique navigation approach. To travel long distances in straight path, they fly by keeping a fixed 

angle with respect to the moon. This effective approach is called transverse orientation (Mirjalili, 2015). 

The effectiveness of the transverse orientation strongly depends on the distance of the light source. For 

example, when the light source is close to the moth, the moth starts flying in a spiral path around the light. 

This spiral fly path eventually converges the moth to the light. Using this behaviour and mathematical 

modelling, the Moth-Flame Optimization algorithm is proposed by Mirjalili (2015) and genetic operators 

is proposed. 

In the MFO algorithm, the moths are considered as the candidate solutions and their position is considered 

as a vector of decision variables. Therefore, each moth can fly in the solution space of the problem freely. 

𝑀𝑂 = [

𝑚𝑜1,1 … 𝑚𝑜1,𝑛

⋮ ⋱ ⋮
𝑚𝑜𝑛𝑝𝑜𝑝,1 … 𝑚𝑜𝑛𝑝𝑜𝑝,𝑛

] (52) 

 

where 𝑛𝑝𝑜𝑝 is the number of moths in initial population and 𝑛 presents the number of decision variables. 

Another basic concept of the MFGOA algorithm is the flame matrix. Since each moth flies around its 

corresponding flame, therefore, the flame matrix is in the same size as the moth’s matrix. 

𝐹𝑥 = [

𝐹𝑙1,1 … 𝐹𝑙1,𝑛

⋮ ⋱ ⋮
𝐹𝑙𝑛𝑝𝑜𝑝,1 … 𝐹𝑙𝑛𝑝𝑜𝑝,𝑛

] (53) 

where 𝑛𝑝𝑜𝑝 and 𝑛 are the number of moths and number of decision variables, respectively. The difference 

between moth and flame is that the moth flies around its corresponding flame to find better solutions, while 

the flame is the best solution obtained so far by the moth. Since, the flying path of the moths is spiral around 

their corresponding flame, therefore, a logarithmic spiral function is defined to set a spiral fly path for the 

moths (Mirjalili, 2015). 

𝑀𝑜𝑖
𝑋+1 = |𝑀𝑜𝑖

𝑋 − 𝐹𝑙𝑖|. 𝑒𝑏𝑡. cos(2𝜋𝑡) + 𝐹𝑙𝑖 (54) 

The parameter 𝑡 is 𝑏 random uniform number between -1 and 1 which defines the closeness of the next 

position of the moth to its corresponding flame. To explore the solution space more effectively in the first 

iterations and exploitation of the solution space in last iterations, an adaptive procedure is proposed to 

reduce the values of the parameter t over the iterations. 

𝑏 = −1 + 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡 (
−1

max 𝑖𝑡
) (55) 

𝑡 = (𝑏 − 1). 𝑟𝑎𝑛𝑑() + 1 (56) 

where 𝑀𝑎𝑥𝑖𝑡 is the maximum number of iterations. Mirjalili (2015) defineda as convergence 

constantwhich decreases linearly from - 1 to - 2 over the course of iterations.  

In addition to the above-mentioned solution search method, the crossover and mutation operators have been 

used to achieve near-optimal solutions. In Figure (2), the operator with two-point crossover is illustrated. 
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Parents 
𝑋𝑖

𝑡      

𝑋𝑗
𝑡      

       

Children 
𝑌𝑖

𝑡      

𝑌𝑗
𝑡      

 

Figure (2): Two-point crossover operator 

Two crossover points in the two-point crossover, are chosen randomly, from the parent chromosomes. The 

genes between the two points in parent's chromosome are swapped. Figure (3) shows the performance of 

the mutation operator. 

 

Parents 𝑋𝑖
𝑡      

       

Children 𝑌𝑖
𝑡      

 

Figure (3): Mutation operator 

This operator replaces the selected gene with a random amount. According to the presented contents and 

moving the ant-lions for search the near-optimal solution, the crossover and mutation operators of the 

genetic algorithm have been used. In the following, an chromosome to solve the BSCN design is discussed. 

4.2. Designing the chromosome BSCN  

As it is shown in Figure (4), consider a layer of SCN with (|𝐾|) sources, (|𝐽|) depots and (|𝐺|) products 

at (|𝑇|) periods. This chromosome's length is (|𝐾| + |𝐽|) ∗ [|𝐺|. |𝑇|] and each cell's location represents the 

priorities of each node (Ghahremani et al., 2019). For example, Fig 5 shows an chromosome with 3 sources, 

4 depots, 2 products and 3 periods. Also, in this Fig, the demand of each product for depots, potential 

capacities for sources and transportation costs between nodes are shown. 
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𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = 𝑺𝒐𝒖𝒓𝒄𝒆𝒔
[
2 5 1 4
4 3 2 6
5 2 7 3

]

𝑫𝒆𝒑𝒐𝒕𝒔

 

chromosome {(|𝐾| + |𝐽|) ∗ [|𝑃|. |𝑇|]} 

 

Period Nodes Source-1 Source-2 Source-3 Depot-1 Depot-2 Depot-3 Depot-4 

Period 
1 

Product 1 2 7 6 1 3 5 4 

Product 2 1 5 3 2 6 4 7 

Period 
2 

Product 1 7 6 1 3 4 2 5 

Product 2 2 4 6 7 2 3 1 

Period 
3 

Product 1 3 2 4 7 1 6 5 

Product 2 4 1 7 2 6 3 5 
 

Figure (4): A sample of BSCN chromosome  

The following two steps are considered to decode the chromosome: 

Step 1. For any period, the first product, select the position of the highest priority between sources. If the 

chosen sources potential capacity is greater than the all warehouse ' demand sum, non-selected sources' 

priority is reduced to zero. Else, select the highest priority between non-selected sources. Continue this step 

until the sum of all selected sources' capacity becomes greater than the sum of all depots' demand. 

At this step, the location of resources to be selected is specified. 

Step 2. Select the position of the highest priority between Nodes. If the node position is between sources, 

refer to (A), else (B). 

A. Select the minimum transportation cost between the selected source and all depots. The optimal 

flow between selected nodes is the minimum of the (depot demand and source capacity). If the 

value of depot demand or source capacity becomes zero, reduce the node's priority to zero. 

B. Select the minimum transportation cost between the selected depot and all sources. The optimal 

flow between selected nodes is the minimum of the (depot demand and source capacity). If the 

value of depot demand or source capacity becomes zero, reduce the node's priority to zero. 

Step 3. Repeat this process in order to make all priorities equal to zero. 

At the end, do the same for all products. 

The decoding of the presented example in Figure (4) for period 1 is shown in Figure (5). 
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Product 1 Product 2 

  

 

 

 

 

 

 

 

 

 

 

𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = 𝑺𝒐𝒖𝒓𝒄𝒆𝒔
[
2 5 1 4
4 3 2 6
5 2 7 3

]

𝑫𝒆𝒑𝒐𝒕𝒔

 

 

chromosome {(|𝐾| + |𝐽|) ∗ (|𝑃|. |𝑇|)} 

 

period Nodes Source-1 Source-2 Source-3 Depot-1 Depot-2 Depot-3 Depot-4 

period 1 Product 1 0 7 6 1 3 5 4 

Product 2 0 5 3 2 6 4 7 
 

Figure (5): Decoding the sample chromosome for period 1 

As it is mentioned, this is a multi-echelon, multiproduct, BSCN design, problem and the initial presented 

solution must include these items. Figure (6) is shown the encoding which is priority-based is presented by 

a matrix, where 𝐵, 𝑇, 𝐼, 𝐽 , 𝐾,  𝐿, 𝐶 , and 𝑉 estpectively gives the number of blood grups, time periods, 

donation clusters, temporary blood transfusion centers, permanent blood transfusion centers, central 

laboratory, demand centers and vehicles in the BSCN.  

  

𝐶 𝐿 𝐿 𝐿 𝐿 𝐾 𝐾 𝐽 𝐾 𝐼 𝐽 𝐼 

(|𝐿| + |𝐶|)
∗ (|𝑉|. |𝑇|) 

(|𝐿| + |𝐿|)
∗ (|𝑃|. |𝑇|) 

(|𝐾| + |𝐿|)
∗ (|𝑃|. |𝑇|) 

(|𝐽| + |𝐾|)
∗ (|𝑃|. |𝑇|) 

(|𝐼| + |𝐾|)
∗ (|𝑃|. |𝑇|) 

(|𝐼| + |𝐽|)
∗ (|𝑃|. |𝑇|) 

Figure (6): The final solution of the BSCN 

5. Computational results 

In this section, in order to solve the sample problems, 15 sample problems according to Table (2) were 

randomly generated in MATLAB software. Because of the lack of access to real data, random data was 

used based on uniform distribution in accordance with Table (3). Also, for better analysis of algorithms, 

from each sample problem, 5 replicates were performed in the same range within the defined data set. 

Finally, the means of each of the indicators were evaluated and compared as the basis for comparison. 
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Table (2): The size of the designed Sample problems 

Sample 

problem 𝑖 𝑗 𝑘 𝑙, 𝑙′ 𝑚, 𝑐 𝑏 𝑡 𝑟 𝑣 

1 5 4 4 6 8 2 4 4 4 

2 6 6 4 6 9 3 4 4 4 

3 6 6 4 7 10 3 4 4 4 

4 8 10 5 8 12 3 4 4 5 

5 12 12 10 9 16 3 5 5 5 

6 13 15 12 11 17 4 5 5 6 

7 14 15 14 12 18 4 5 5 6 

8 17 15 15 12 20 5 5 5 6 

9 17 16 16 13 21 5 6 6 7 

10 19 16 16 14 24 5 6 6 7 

11 19 17 16 15 25 5 6 6 7 

12 20 18 17 15 26 7 7 7 7 

13 20 19 17 16 27 7 7 7 8 

14 20 19 17 16 28 7 8 8 8 

15 20 20 20 20 30 8 8 8 8 

 

 

Table (3): The boundaries of the parameters produced on the basis of uniform distribution 

Deterministic 

parameter 
Interval boundaries Deterministic parameter Interval boundaries 

𝐺𝑗 ~𝑈(10000,20000) 𝜋𝑐𝑏𝑡 ~𝑈(1000,2000) 

𝐻𝑘 ~𝑈(20000,30000) 𝑐𝑎𝑗𝑏 , 𝑐𝑎𝑘𝑏 , 𝑐𝑎𝑙𝑏  ~𝑈(3000,5000) 

𝑈𝑙 ~𝑈(50000,60000) 𝑐𝑎𝑣  ~𝑈(500,800) 

𝐹𝑣 ~𝑈(200,300) 𝐷𝑐𝑏𝑡  ~𝑈(120,150) 

ℎ𝑘𝑏 ~𝑈(1,2) 𝑇𝑖𝑗 , 𝑇𝑖𝑘 , 𝑇𝑗𝑘 , 𝑇𝑘𝑙 , 𝑇𝑙𝑙′ , 𝑇𝑙c ~𝑈(10,20) 

ℎ𝑙𝑏
′  ~𝑈(1,2) 𝑢𝑏 ~𝑈(1,3) 

𝐶𝑙𝑏 ~𝑈(10,20)   

Before solving sample problems by meta-heuristic algorithms, the initial parameters of each of the 

algorithms must be adjusted to increase their efficiency in finding effective solutions. Therefore, in this 

section, the parameter of meta-heuristic algorithms is first set by Taguchi method. To adjust the parameter, 

response variable is used. This variable is a combination of the five criteria provided and its value is 

calculated using equation (57).  

𝑅𝑃𝐷 =
Algsol − Minsol

Minsol
 

(57) 

In this relation, Algsol and Minsol are respectively the values of 𝑅𝑖 for each replication of the test and the 

best solution. After converting the value of 𝑅𝑖 to RPD, according to the structure of the Taguchi parameter 

design, the S/N ratio is calculated based on RPD. Then, the average S/N ratio of experiments is calculated 

for each parameter level. The best value of each parameter has the least amount of mean averages, in fact, 

the levels of the optimal factors that result in at least the average averages. After performing the Taguchi 

test, the results, mean averages and average S/N ratio for each level of factors in the FMGO and PSO 

algorithms for the presented model are given in Figure (7). 
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FMGO PSO 

  

  
Figure (7): The mean averages and S/N Ratio for the FMGO and PSO Algorithms 

According to the graphs obtained from Figure (7), the optimal level of factors of the FMGO and 

PSO algorithms is: 

Table (4): The optimal levels of the factor used for the algorithms 

Level of optimal 

factor 
Level of factor 

3 
Level of factor 

2 
Level of factor 

1 Parameter Algorithm 

70 100 70 50 nPop 

FMGO 0.2 0.8 0.5 0.2 pc 

0.2 0.4 0.3 0.2 pm 

100 100 75 50 nParticle 

PSO 
70 150 100 70 nRep 

0.7 0.7 0.6 0.5 W 
1 1.5 1.25 1 C1 

1 1.5 1.25 1 C2 

 

After determining the optimal parameters of the meta-heuristics algorithms and their parameter tuning, the 

sample problems are solved by the meta-heuristic algorithms and the average results are selected as the 

basis of the comparison. Table (5) show the average of 5 problems designed for each sample problem in 

different sizes. This table contains the mean of the objective function and the computational time. 
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Table (5): The mean of objective function and the CPU-time in large scale sample problems 

Sample 
problem 

FMGO PSO 
Objective function CPU time Objective function CPU time 

1 495858.69 36.46 533806.72 34.4 

2 776699.89 108 778692.87 39.07 

3 871134.25 170.3 881581.31 51.66 

4 1046187.5 242.53 1033814.6 95.93 

5 1653146.4 335.5 1674913.5 131.2 

6 2353344.2 434.4 2369557.6 280.5 

7 2450251.7 545.77 2500890.6 349.16 

8 3434001.9 669.07 3416474.1 494.7 

9 4334688.4 819.6 4301936 723.16 

10 4817592.1 959.67 4860023.4 980.4 

11 5020566.3 1040.13 5040590.1 1328.75 

12 8500502.4 1326 8540218.4 1834.56 

13 8759033.2 1528.37 8887924.2 2337.3 

14 10251099 1802.27 10361986 2983.04 

15 12554017 2640 12608666 3957.9 

 

Tables (5) show the average of the results obtained from solving the sample problems with meta-

heuristic algorithms. Figure (8) and (9) show the average variations of the objective functionand 

the computational time in different sample problems with the FMGO and PSO algorithms. 

 
Figure (8): Comparing the means of the first objective function in sample problems with meta-heuristic 

algorithms 

According to Figure (8), it can be concluded that the FMGO algorithm has better results than the PSO 

algorithm for the sample problems (12) to (15). This shows that in the very large dimensions, the efficiency 

of the FMGO algorithm will be greater in achieving the results of the first objective function 
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Figure (9): Comparison of computational time averages in sample problems with meta-heuristic algorithms 

Given Figure (9), it can be seen that computational time increases exponentially with increasing sample 

size, which is the reason for the NP-Hard problem. However, the PSO algorithm for medium sized problems 

is better than the computational time of the FMGO algorithm, but with increasing size, the computational 

time gained by this algorithm has been greatly increased. 

In order to analyze the results, t-test was used at 95% confidence level to compare the mean values of each 

index. Therefore, if the P-value test statistic for each index was less than 0.05, the null hypothesis is rejected 

and shows that there is a significant difference between the mean of that index and if the P-value test 

statistic is greater than 0.95; the assumption is rejected and indicative that there is no significant difference 

in the mean of that index. Table (6) shows the output results of the t-test at a confidence level of 95% for 

the difference in the mean of objective function and CPU-time indices. 

Table (6): The output results of t-test on the means of the objective function and the CPU-time indices  

Algorithm Index Number 
of sample Mean SD 95% confidence 

level 
T-value P-value 

FMGO Objective 
function 

75 4487875 3831512 

(55917  *7144 ) 2.77 0.015 

PSO 75 4519405 3859336 

FMGO CPU-
time 

75 844 730 

(88  *483- ) 1.48 0.16 

PSO 75 1041 1220 

According to the results obtained from the t-test on the mean of objective function and CPU-time indices, 

it can be concluded that because of the lower value of the P-value test on the objective function than 0.05, 

only between the mean of the first objective function derived from, there is a significant difference in the 

problem solving with the meta-heuristic algorithms FMGO and PSO. Given the P-value of other indices, 

there is no significant difference between their means. Therefore, by considering the means of the objective 

function and CPU-time the FMGO algorithm is more efficient than the PSO algorithm in solving the BSCN 

problem. 



59 

 

After verifying and validating the proposed model, to analyze the model's sensitivity, uncertainty rate is 

selected, and changes of the OBFV for the first sample problem in this analysis are shown in Table (7). 

Table (7): Changings of the OBFV by applying changes to the uncertainty rates 

Uncertainty rates (𝜌) OBFV 

0.1 527883.3 
0.2 534265.5 
0.3 543648.4 
0.4 564793.3 
0.5 589577.9 
0.6 627543.2 
0.7 663654.2 
0.8 694678.5 
0.9 724876.8 

According to Table (7), with increasing the uncertainty rate, the demands are increased and the OBFV are 

increased. Figure (10) shows the trend of changes to OBFV in different uncertainty rates. 

 

Figure (10): Changes in the OBFV by changing the uncertainty rates 

According to (11), the mean of the objective function in robust approach is more than the one in the 

deterministic approach, while the standard deviation of the first objective function in the robust approach 

is less than the one in the deterministic approach at all levels of the uncertainty factor.  
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Figure (11): Comparison of objective function based on deterministic and robust approach 

6. Conclusions 

In this paper, a BSCN was designed and modeled in terms of uncertainty and considering the perishability 

nature of blood. The objective function considered for this model were to minimize the cost of the entire 

supply chain network. At first, a non-deterministic model of the problem was designed and demand and 

transportion costs were considered uncertain. Then a robust optimization model was presented for 

controlling non-deterministic parameters. In order to solve the model, 15 sample problems were randomly 

generated and in order to generate more realistic answers, 5 problems were designed in the same size and 

the means of the objective function and computational time were analyzed as the basis for evaluation and 

comparison. Firstly, using statistical tests including t-test, the significant difference of the indices was 

evaluated. It was observed that there was only a significant difference between the means of the objective 

function obtained from solving sample problems using FMGO and PSO algorithms. The output result 

indicated the FMGO algorithm was more efficient than the PSO algorithm in solving the BSCN problem. 

Also, the mean of the objective function in robust approach is more than the one in the deterministic 

approach, while the standard deviation of the first objective function in the robust approach is less than the 

one in the deterministic approach at all levels of the uncertainty factor.  Suggestions for future research are 

listed below: 

1. Using other meta-heuristic algorithms such as ant lion algorithm 

2. Considering more non-deterministic parameters with regard to environment uncertainty 

3. Considering vehicle routing between the other levels of the supply chain network 

4. Implementing the model of BSCN designed in a case study 

5. Using the DEA method to select the optimal solutions among from the efficient solutions  
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