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A B S T R A C T

Parkinson’s disease (PD) is one of the most commonest neurodegenerative chronic movement disorders,
is caused by damage to the central nervous system (CNS). The manifestations or symptoms analogous
to cardinal motoric features of PD have been mentioned as ‘Kampavata‘ in ancient Sanskrit Vedic Hindi
documents. Parkinson‘s disease was termed “Shaking Palsy” by the Galen, a famed Roman physician.
Irrespective of all the studies on PD, the formation mechanism of its symptoms remained unknown. It is
still not obvious why damage only to the substantia nigra pars compacta, a small part of the brain, causes
a wide range of symptoms. Moreover, the causes of brain damages remain to be fully elucidated. Exact
understanding of the brain function seems to be impossible. Equally, various engineering and technological
software tools are challenging to understand the behavior and performance of complex convoluted systems.
Computational models are the most significant tools in this connection. Developing computational models
and analysis for the PD has begun in recent decades which are effective not just in understanding the
disease but contributing new therapies, and its prediction and control, and also in its early diagnosis.
Modeling studies include two main groups: black-box models and gray-box models. Generally, in the black-
box modeling, regardless of the system information, the symptom is only considered as the output. Such
models, besides the computational analysis studies, increase our knowledge of the disorders behavior and
the disease symptoms. The gray-box models consider the involved structures in the symptoms appearance
as well as the final disease symptoms. These models can effectively save time and be cost-effective for
the researchers and help them select appropriate treatment mechanisms among all possible options. In
this study (survey/review paper), primary efforts are made to investigate some studies on Parkinson‘s
disease and computational analysis. Then, computational analysis of microelectrode recordings (MER)
of subthalamic nucleus (STN) neural signal acquisition of Parkinson‘s deep brain stimulation (DBS), i.e.,
MER with STN-DBS with a machine learning (ML) approach using clustering and principal component
based targeting method followed by novel algorithms will be evaluated. Finally, the results of using
such methods are presented significantly as a preliminary report. With the advent of high-speed powerful
computing machines and artificial intelligence based machine learning techniques, the researchers are fully
utilized these analyses for predicting and detecting early symptoms and signs of PD and for extracting its
feature manifestations (tremor, Bradykinesia, postural, and postural instability).

© This is an open access article distributed under the terms of the Creative Commons Attribution
License (https://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are credited.

1. Introduction

Parkinson’s disease (PD) is a chronic and complex
neurodegenerative disorder characterized by the convolution
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of fundamental manifestations of its features such as
cardinal manifestations: frequency-of-tremor, Bradykinesia,
postural instability, and rigidity. It is getting a lot of
interest due to the second most commonest neurological
neurodegenerative disease after the cancer. It is one of
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the most common diseases among the old age population,
whose age is more than 58 years. As the longevity of
the people is increasing with the development of advanced
technology, the size of the old age population above 58
years will be more and more in the coming years and the
expected growth rate of PD will also follow the trend in
the coming years. As the healthcare cost of PD is very
high, it makes an impact on the economy of the developed
countries. So, to avoid the economic impact as well as social
impact, countries have started lot of research in recent years.
The research has become more feasible with the invention
of low deep bran stimulation of subthalamic nuclei in PD
and low cost wearable sensors as well as powerful machine
learning techniques. Wearable sensor-based method has
lot of benefits such as low cost, light weight, energy
efficient and also it functions without any external aids.
So, the measurement process is much easier compared
to the image-based process as well as other traditional
methods.1 The gait analysis found to be most important tool
for analyzing various neuro-logical disorders including PD.
Spatiotemporal parameters has a huge contribution in the
gait analysis as well predicting the PD. In this paper we
have used multivariate analysis techniques with a machine
learning approach. We have used various feature selection
technique to select important features from those data.
The selected features fed into different classifiers and the
performance measures such as accuracy, precision and recall
are evaluated and then by using this computed data the
preliminary results are given.

The main pathology of Parkinson’s disease is present
in the nigrostriatal system which is characterised by the
degeneration of the dopaminergic neurons in the substantia
nigra pars compacta. Substantia nigra pars compacta is
a part of the basal ganglia which modulates the cortex
and helps in fine tuning motor activities. There are two
dopaminergic pathways involved form the striatum to the
thalamus and the cortex- direct pathway which leads to
stimulation of the cortex and the indirect pathway which
inhibits the cortex. The dopaminergic supply from the
substantia nigra pars compacta acts by D1 receptors which
activate the direct pathway and the D2 receptors which
inhibit the indirect pathway. Absence of these neurons leads
to an increased firing from the subthalamic and globus
pallidal interna neurons which leads to increased inhibition
of the thalamic neurons and cortex and overall reduced
movement.2 Figure 1 depicts the normal functioning of
basal ganglia and the abnormality in idiopathic Parkinson’s
disease.

The normal and abnormal function Basal Ganglia which
is meant for our movement and motor control is depicted
in Figure 2 (In case of the failure of the functioning of the
globus pallidus neurons, the dysfunction of the Putamen
component of the SNpc,pr, i.e., D2 and D1 receptors are
failed)

Fig. 1:

Fig. 2:

The advent of treatment with initial levodopa followed
by the armamentarium of various drugs but the medical
treatment is fraught with appearance of various side
effects such as dyskinesias and on-off phenomenon. The
dopaminergic drive in normal patients is a continuous one
and oral medications however cannot completely mimic the
normal state with drug concentrations changing from trough
to peak levels based on the time of consumption. Deep brain
stimulation of bilateral subthalamic nuclei is an effective
mode of rehabilitation in subjects (diseased conditions
who are patients) with idiopathic Parkinson’s disease (PD).
Accurate targeting and placement of micro-electro-neuro-
chips (the microelectrodes) are paramount importance for
optimal results after STN-DBS. Stereotactic assessment,
intra-operative micro-electro-neuro-sensor recording and
intra-operative stimulus effects have all been used in
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targeting, albeit the individual role of each modality is still
not known.

Of the two, i.e., STN and GP, subthalamic-nucleus
(STN) stimulation is associated with more drug reduction
compared to globus pallidal stimulation. Subthalamic nuclei
deep brain stimulation (STN DBS) involves placing two
leads, one in each subthalamic nucleus with a pulse
generator (i.e., the implanted pulse generators (IPG) placed
under the skin on the chest.

The surgery is performed under stereotactic guidance
–i.e., a stereotactic frame is placed on the head and the
nucleus is identified on the magnetic resonance imaging
(MRI) of the brain and the co-ordinates are obtained in the
vertical and the horizontal planes, then with the help of these
co-ordinates the leads are placed through a small hole on the
scalp.

For optimal therapeutic efficacy of DBS, it is imperative
to have accurate electrode lead placement.3 A small
deviation in the electrode positioning may cause it to
be misplaced in the surrounding structures such as the
corticospinal tract, red nucleus, occumulotor nerve and
other structures. Improper targeting may lead to various
side effects such as speech disorders, visual deficits with
diplopia, ocular deviations or motor stiffness.3

1.1. MRI targeting

The problem with targeting subthalamic nucleus is that it
is a small biconvex structure and not clearly identified on
the MRI due to lack of contrast between the STN and the
surrounding structures.4,5 The STN can be visualised on
the MRI but other methods such as Lozano’s technique
where a position 3 mm lateral to the superolateral
border of the red nucleus is targeted have been studied
and found to be effective areas for stimulation.6 As
the MRI techniques are not absolutely perfect, use of
electrophysiological techniques such as microelectrode
recording from the subthalamic nucleus as well as intra-
operative stimulation have helped in clearly demarcating
the STN. Microelectrode recording can identify subthalamic
neurons by their characteristic bursting pattern and their
signals clearly identify the nucleus form the surrounding
structures. On table stimulation is studied to ensure that the
there is optimal benefit with the least side effects and this is
the final test to ensure the correct targeting of the STN. All
these techniques are normally used in combination during
targeting, although the individual role of each modality
is still unknown. Since the collected data contains many
features, it is necessary to implement the feature selection
and feature extraction methods to reduce the computational
time as well as to compare the performance of the classifiers
with the selected features. In this study, we used the
MER with STN-DBS data (neural-signals) of Parkinson’s
disease at a tertiary care hospital. The datasets were
further preprocessed for modeling and feature selection

and machine learning techniques are applied to measure
the performances such as variance, root mean square
(RMS), principal components (PCs) the effective diagnostic
analysis. This study will help the clinicians to discover
suitable patterns for early diagnosis of PD. The principal
component (PC)-based tracking method is for quantifying
the effects of DBS in PD by using electromyography
(EMG) for muscle contractions. The parameters capturing
PD characteristic signal features were initially extracted
from EMG recordings. Using this approach, the original
parameters were transformed into a smaller number of PCs.
Finally, the effects of DBS were quantified by examining
the PCs in a low-dimensional feature space. Clinical
evaluation of subjects (the PD patients) showed that their
motor symptoms were effectively reduced with DBS. The
analysis results showed that the signal characteristics of 12
patients were 80% variant in our computation with DBS
on than with DBS off. These observations indicate that the
Machine learning PC-based tracking clustering method can
be used to objectively quantify the effects of DBS on the
neuromuscular function of PD patients. Further studies are
suggested to estimate the clinical sensitivity of the method
to different types of PD.

Biosignals are intelligent biological biomedical signals
which are massively curved data streams helping highly
to the development of frontier technologies’ especially in
health care sectors medical systems for clear understanding
of the disease and predicting symptoms of the disease
in early stage. Such signals are modeled and designed
by scientists and engineers (trans-disciplined). Parkinson‘s
disease (PD) is a second most chronic progressive
commonest neurodegenerative disorder, characterized by
cardinal features of tremor, Bradykinesia, rigidity and
postural instability.1,2,7,8 The disease is linked with different
anomalies in brain function and structural-composition. The
pathological hallmark of the disease is a bottomless failure
of nigrostriatal-dopamine-cells and an accrual intracellular
inclusion referred to as Lewy-bodys that are encompassed
α-syncluin aggregates. In act with dopaminergic-cell-loss,
several indeed many other neurotransmitter-systems as
well degenerate and later on Lewy-body pathology too
spreads to the motor-cortex. This makes PD prototypical
systems disorder, which can be completely tacit merely
when investigating experimentally molecular, anatomical-
structural and functional anomalies at the level of brain-
net-works. Therefore, the search for optimal cure is on for
the past two centuries since the time it was first described
by James Parkinson.9 However, scientists established that
the malady arises from insufficient quantities of the
neurotransmitter-dopamine in an important area of the brain
that controls movement, the basal ganglia.

Perhaps PD best known for its tremor slows and stiffens
movements.10 From the 1940s during the 1960s, surgeons
combated the disorder by razing areas of the brain, chosen
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more by heuristics based trial and error method than by
a lucid perceptive of neural misconduct. The so-called
lesions created by these operations repeatedly distributed
extravagant and steady-effects, thwarting the tremor and, to
some degree, further features or symptoms of this malady.
Yet minor misplacement, nonetheless, brought difficulty
rather than advantages. Such break was enduring, as dead
tissue could not be revived. The 1960s broke open a new
therapeutic-treatment for the malady and primarily set aside
the surgical-era.

One of the most effective treatments for PD is
deep brain stimulation (DBS) of the subthalamic nucleus
(STN). The procedure involves the surgical implantation
of stimulating electrodes into the STN and provides a
unique opportunity to record in vivo the related neuronal
activity, through microelectrode recordings (MERs) of
high spatio—temporal resolution. However, the optimal
placement of the stimulation electrode continues to be a
challenge, possibly due to the neuroanatomic variability
within the STN sensorimotor area.3 MERs have been used
before to enhance our understanding of how STN neurons
function and classify possible mechanisms for DBS in
PD. MER-based algorithms have also been developed to
categorize and detect the sensorimotor area within the STN
by using both the high and low-frequency content of the
recorded signals.11 The high frequencies of the MER signal
include both the electrical action potentials from neurons
located closest to the electrode tip (typically at a distance of
less than 100–300 µm) as well as smaller sub-noise level
spikes from nearby neurons known as “background-unit-
activity” designated as BUA. The combinations of these two
signals are referred to as “multiunit-activity” referred to as
MUA. The lower frequencies of the MER signal correspond
to the local field potential called LFP potentials, which
reflect the cumulative activity of a population of neurons
within a better diameter from the electrode tip (around
0.5mm–3mm). So far, most of the MER based analyses of
the STN have focused by a series of scientists3–6,11–21 on
the gross automatic detection of the STN borders.

Amirnovin et al3 conducted the study on microelectrode-
signal-recording (MER) in targeting subthalamic-nuclei
(STN) in 40 Parkinson candidates (i.e., Parkinson diseased
subjects). The predicted location (with the preoperative deep
brain stimulation with the magnetic resonance imaging,
DBS MRI) was used in 42% of the cases; however, in the
remaining 58% of the cases it was modified through MER
(MER with STN-DBS). By applying MER technique, an
average pass through the subthalamic-nucleus (STN) of 5.6
mm was attained and evaluated to 4.6 mm if the central-
tract was selected as per the MR-imaging. Application
of microelectrode-recording augmented the path through
the subthalamic-nuclei by 1 mm, increasing the likelihood
of implanting the microelectrodes with the deep brain
stimulator squarely in the STN, which is relatively an

elfin or petite target. Bour et al6 studied the outcome
of MER in 57 PD patients with STN-DBS and deduced
the following inferences. For the subthalamic-nucleus, the
central-trajectory was chosen for inserting-microelectrodes
in 50% of the cases, the channel selected had the longest
segment of STN with the MER activity in 64% of STN
DBS cases. In case the central electrode was selected for
embedding the innocuous micro electrode, this was also
the channel with the best microrecording in 78% for STN.
The final electrode-position or electrode-point in the STN,
if not placed in the central-channel, was often more lateral
than medial to the computed—evaluated target ten percent
(10%, i.e., 10 patients / 98 patients) lateral; six percent
(6%, i.e., 6/98) medial and frequently more anterior 24%
(i.e., 22/98) than posterior 10% (10/98). The mean and
standard deviation (SD) of the deepest contact-point with
respect to the magnetic resonance imaging (MRI)-based
target for the STN was 2.1 mm ± 1.5mm. The goals of
our study was to unveil the significance of intraoperative
microelectrode recordings of neural signals and elucidate
their predictive role in terms of the response to STN-DBS, to
identify the MER signal characteristic discharge patterns (or
signatures) of STN that correlate with improved symptoms
of PD as well as movement-related activity (MRA), to
experimentally investigate the correlation of microrecording
with the final-tract chosen during bilateral subthalamic-
nuclei deep brain stimulation.

The best trajectory was considered as the one with the
longest STN recordings and detectable MRA and finally
to quantify the efficacy of MER with STN DBS using
principal components based tracking method. The surgical
procedure for placing the stimulating microelectrode in
the track MERs has a 1-mm precision, both horizontally
and vertically.5 Intraoperative current stimulation (60µs
pulse width, 130 Hz frequency, 0.5- to 5.0 volts amplitude)
verified the short-term clinical improvement and identified
possible side effects.

Although anatomical structural organization provide
some clues as to what might be the function of basal ganglia
circuits in PD patients, albeit the inference of function
from anatomical structure is exploratory. One investigative
approach to studying-the-function of an area-of-the-CNS
in particular substantia-nigra (SN) is to acquire the STN
neurons with extracellular MER in locally anesthetized
PD patients.13–16 Other approaches involve inferences of
neuronal signaling from imaging studies of blood flow and
metabolism, or of changes in gene expression. By sampling
the signal of a part of the brain during behavior, one
can gain some insight into what role that part might play
in behavior. Neurons within different basal ganglia nuclei
have characteristic baseline discharge patterns that change
with movement.17,18 In this study, we followed the MER
approach. Keeping this in mind, a retrospective study was
carried out at tertiary care NIMS Hospital and research
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center (Hyderabad, Telangana State TS, South India)
with a dedicated movement disorder unit in Neurology
department of NIMS and biomedical eng. Twelve subjects
with diagnosis of PD as per United Kingdom Parkinson
disease society brain bank criteria are included in the study.

In regard to the PD symptoms prediction, Kyriaki
Kostoglou, et al4 hypothesized that a data informed
combination of features extracted from intraoperative
MER which can predict the motor improvement of PD
patients undergoing DBS surgery. Sang Jin Kim, et
al,5 hypothesized that STN-DBS will improve long term
potential (LTP) like plasticity in motor cortex of PDs.
Zuan He12 hypothesized that DBS works by reducing the
level of synchronization among the neuronal firing patterns
within the target site and proposed a desynchronization-
based closed strategy for the generation of DBS input
(nonlinear delay feedback stimulation NDFS). Sabato S,
et al.21 Investigated the therapeutic mechanisms of HF
DBS in PD by developing a computational simulation
model of cortico-BG thalamo-cortical loop in controls and
Parkinson conditions under the effects of DBS at some
frequencies. Further they found that the DBS infused in
the loop educes subtle neural changes that travel along
multiple pathways with different latencies meet in striatum.
In a US based study.11,21 high frequency (HF) DBS is
clinically recognized surgical therapy to treat Parkinsonian
movement disorders, but its mechanisms remain hazy.
Recent hypotheses imply that the therapeutic value of HF-
DBS stalks from enhancing the regularity of the firing
patterns in basal ganglia.

1.2. Literature Survey

Parkinson’s disease (PD) is one of the most commonest
neurodegenerative chronic movement disorders, is caused
by damage to the central nervous system (CNS).22–33 The
manifestations or symptoms analogous to cardinal motoric
features of PD have been mentioned as “Kampavata”
in ancient Sanskrit Vedic Hindi documents. Parkinson‘s
disease was termed “Shaking Palsy” by the Galen, a famed
Roman physician. From then on, the idiom or term ‘Shaking
Palsy‘ has been used by physicians in modern medicine.
The first modern scientific research on PD was done by the
British doctor James Parkinson.22,23,34–43

James Parkinson FGS (11 April 1755 – 21 December
1824) was an English surgeon, apothecary, geologist,
palaeontologist and was a political activist. He is best known
for his 1817 work “An Essay on the Shaking Palsy,” in which
he was the first to describe ‘paralysis agitans‘, a condition
that would later be renamed Parkinson’s disease by Jean-
Martin Charcot. Parkinson studied six PD patients and
documented a few PD symptoms for the first time. About
50 years later, Charcot, a French physician, studied some
neurologic diseases, especially multiple sclerosis (MS) and
PD. Jean-Martin Charcot was the first person to distinguish

MS and PD at a time when most neurological diseases
were collectively called shaking palsy. Charcot named
the disease “Parkinson’s Disease” after extensive studies
done by James Parkinson on PD.17 Charcot’s researches
between 1868 and 1881 are considered as a landmark in our
knowledge of PD.44 The studies on PD continued and many
other researchers made contributions to the understanding
of PD. Tretiakoff42 found an association between cell
loss in substantia-nigra and tremor,42 and this result was
confirmed by Hassler.45,46 For many decades, scientists
and researchers hard slogs on alleviating PD symptoms
were unproductive, but in the1940s and 1950s pallidotomy
and thalamotomy were introduced as two effective surgical
methods for the treatment of PD.47,48 In the 1960s, scientists
discovered that dopamine is decreased in PD patients’
brain.16 In the 1961–1962, discovering some drugs like
Levodopa that increases the amount of dopamine was a
turning point in PD history.49 Besides the progress in drug
therapy, the neurosurgical therapy for PD attracted the
attention of some researchers. In the 1990s, brain surgery
studies led to the development of new horizons in PD
treatment, and deep brain stimulation (DBS) was introduced
as a treatment method for the advanced PD stages.40 Despite
all of the studies on PD, the formation mechanism of its
symptoms remained unknown. It is still not obvious why
damage only to the substantia nigra pars compacta (SNc), a
small part of the brain, causes a wide range of symptoms.
Moreover, the causes of brain damages remain to be fully
elucidated.6,19

PD is among the most prevalent neurodegenerative
diseases, ultimately causing disability and reduction in
quality of life.50 The real cause behind PD is still unknown,
and hence, there is no cure for the disease yet.19 As a
complex disorder, PD often causes devastating symptoms.
Its main motor disturbances include Bradykinesia, postural
instability, rigidity, and resting tremor.17

The prevalence of PD is estimated at 160 per 100,000
in the general population, and annual incidence is 15–20
per 100,000.51 PD is a neurodegenerative disorder which
is related to age as well. Diagnosis rate of subjects below
the age of 40 is <10 %, with its prevalence among the
population over the age of 65 is about 1 % and rises to 3
% among the population over 85 years of age.52 In most
of the per-formed studies, it appears that PD is relatively
more common in men than in women, ranging from a
1.2:1 ratio up to a ratio of 1.5:1.10 Despite PD affecting
all ethnicities, observations demonstrate differences both in
incidence and prevalence among them. For instance, North
American and European people of Caucasian ancestry show
a high prevalence rate, while the rate among Chinese and
Japanese populations is moderate, and prevalence is lowest
among African-Americans. Because of the complications
associated with PD, it can increase the mortality rate.53
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The cost of the illness increases with the PD progress.
This creates an economic burden which affects the patients,
society, and healthcare system alike. Estimating the overall
cost depends on the country. The annual total cost in the
UK has been estimated at between £449 million and £3.3
billion.18 This figure for the annual economic cost of the
disease in the USA, both directly and indirectly, has been
estimated to be nearly $25 billion based on the data pro-
vided by the PD foundation.14

The controlling ways of the disease progression and
neuroprotective treatments are not fully discovered. All of
the symptoms and their growing process are also not certain

Yet.54 Therefore, the study of PD remains crucial for the
scientists, but studies regarding different fields of PD are
in progress. Some researchers focus on the unknown symp-
toms of PD. These symptoms are divided into two main
groups: motor symptoms and mental symptoms. Movement
disorder symptoms are known to some extent, whereas the
mental symptoms are vague.55 Other researchers have tried
to find out the causes of the disease. Moreover, it is not
clear when the destruction of the basal ganglia (BG) is
started. It is also unknown whether it is predictable or not.
Generally, PD is dependent on vague factors such as genetic
disorders, free radicals, and environmental factors.5,11

Some researchers seek to offer new and more appropriate
therapies and drugs. Although Levodopa therapy plays a
crucial role in the early stages of the disease and sup-
presses its symptoms, high doses of the drug seem to be
needed with the development of the disease.17 Gradually,
the effects of L-Dopa will decrease in some stages of
the disease. Afterward, additional medications or non-
pharmacological treatments such as DBS are required.54

Major research groups are trying to diagnose the disease
in its early stages, for it can control the progress of PD,
and as a result the severe stages of the disease can be
postponed. This process can also be very effective for
improving the patients’ living conditions.56 Some other
study groups look for a better understanding of PD and
the mechanisms of its symptoms.12 The causes of a wide
range of symptoms collectively identified as PD are still
unknown.19 Understanding the generation mechanism of
the symptoms is very useful for their improvement.

Some researches follow the PD computational studies
that can open the extant horizons for the disease
understanding. Computational studies have two distinct
fields. One group includes the computational analysis of the
symptoms, while the other tries to present proper models for
the symptoms. Although there are similarities between these
two, their objectives are quite diverse. In the computational
analysis studies, one of the disease symptoms is recorded in
a computational manner, and some features of the symptoms
are extracted through mathematical analysis and signal
processing methods, leading to a better understandings of
the symptoms’ behavior. Computational analysis of the

symptoms can be very valuable in early diagnosis of the
disease. It can also be used to quantify different stages of
PD. Obviously, various treatments are required at different
stages. Other computational studies are related to the
behavior modeling of the disease symptoms. Computational
modeling may play an important role in understanding the
behavior and performance of PD. The brain structure is
very complex, and its function still remains unclear. In the
diseased state, the complexity of the structure advances due
to the change in the neurotransmitter behavior in the brain.

Fig. 3: Block diagram of computational models, a. model black
box, b model gray box I/p – Input, O/p data – Output data

Computational modeling may help us figure out brain
functions. Modeling studies include two main groups:
black-box models and gray-box models. In black-box
modeling approach, regardless of the system information,
the symptom is only considered as the model output. The
aim of the black-box modeling is finding a mathematical
relation, which is able to produce behaviors, similar to
the disease symptoms. Such a model can be used in
distinguishing the behavior of the symptoms and long-term
predictions. The gray-box modeling approach considers the
involved structures in the symptoms appearance as well
as the final disease symptoms. In gray-box modeling, the
purpose is to produce a relation for symptoms, while the
characteristics and parameters of this relation should be
similar to physiological findings related to the symptoms
producing structures. So, in this type of modeling, each
relation that is able to simulate the disease’s symptoms is not
considered; how-ever, just the relations, which have good
similarities with the real system behavior, are considered.
Such a model can be useful in our understanding of the
involved structures in the disease diagnosis and their role.
In gray-box models, the disease process and even medical
or non-medical treatments can be investigated in order to
identify their effectiveness. A block diagram of black- and
gray-box models is presented in Figure 1.

As discussed above, there are different fields of study
in PD. Some computational studies have been done in
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past three decades concerning the dynamic behavior of the
disease. In this review paper, we will attempt to investigate
conducted computational studies on PD. For this purpose,
in Sect. 2 we introduce some of the computational analysis
studies on PD. Such studies are necessary for presentation
of a mathematical model. Section 3 reviews the black-box
models. In Sect. 4, we present gray-box models of PD that
consider some physiological findings. In Sect. 5, we provide
an investigation of reviewed models. Finally, in Sect. 6, we
draw some conclusions about difficulties in modeling and
delineate future works.

1.3. Parkinson‘s disease symptoms and computational
analysis

Disease symptoms signal recordings are necessary in
computational studies. After appropriate signal recording,
it should be processed in order to investigate the disease
output behavior. These signals and their analysis are
required for the modeling. Although some studies perform
computational analysis on the signals resulting from disease
symptoms, they do not model the disease itself. Since PD
computational models will be reviewed in the following
section, it is better to generally review recording methods
for disease symptoms.

In most cases, computational analysis of the disease is
implemented in regard to the movement symptoms. The
main symptoms of the disease, which are highly focused
on, include: tremor, finger tapping, gait disturbances,
electroencephalography (EEG) signals abnormalities, and
balance disorder. More focus has been on tremor and gait
disturbances due to their simple needed recording method.

Studies in computational analysis can help us separate
the patients from healthy people. This is very crucial,
because there is no routine test to clinically identify PD
patients. Such tests can be very helpful in early diagnosis
of the disease. In general, when the disease is diagnosed
by a physician, about 50–80% of SNc neurons are already
dam-aged.17 Diagnosis in the first stages can prevent further
damages. Using computational analysis of symptoms, we
can define a class for healthy and patients subjects that can
be a base for disease diagnosis or even its early diagnosis.
In addition, different classes could be defined for different
stages of the disease. Obviously, different stages require
various treatments.

Some studies focus on the EEG signals of various parts
of the brain that obtained from the centers involved in the
disease. In this manner, the differences between the behavior
of the control group and the PD group are examined. The
SNc is a small part of the BG that actually consists of a
very small part of the brain. This makes the analysis of
EEG and spike trains very vague. Therefore, it requires an
exact recording method. The same is true for the magnetic
resonance imaging (MRI), functional magnetic resonance
imaging (FMRI), positron emission tomography (PET), and

single-photon emission computed tomography (SPECT)
images, which clearly show the differences in brain behavior
between normal and Parkinson’s groups. It also requires
complicated processing and determination of an accurate
target.57

Hausdorff et al. have investigated the gait problems. His
group studied the gait behavior and introduced a stable long-
range correlation in the stride interval of healthy people.58,59

They concluded that the fractal structure is affected by aging
and neurodegenerative disorders.60

1.4. Related Work

Due to the significancy of the work and its importance
to the areas and fields of computer science, the artificial
intelligence (AI) machine learning techniques, are widely
employed because of its effectiveness in various fields.
Some previous works related to these fields are as follows.
The performance improvement and the avoidance of over-
fitting is one of the most important criteria for decision
making can be achieved by feature selection techniques.7

The role of the feature selection techniques is to remove
the weakly associated features and keep the strongly
associated features.8 Statistical signal processing based
algorithm feature selection technique was used to diagnosis
the PD using the voice datasets by removing the weakly
associated features from the dataset that ultimately provides
good accuracy.9,10 Machine learning techniques have been
successfully used in different fields as well as in the field of
PD. Most of the machine learning techniques were used as
a prediction model for detection as well as diagnosis of PD.
Different stages as well as severity of the PD was studied
using ML techniques. From computation, it was found that
the clustering gives clinically accepted 80% variance and
96.45% confidence levels.10 Drawing movement of PD
patients as well as normal controls was well distinguished
using machine learning techniques. An average accuracy
of 91% was found while distinguishing these two groups.3

PCA- based tracking method is successfully used to choose
first three PCs which effectively reconstruct the original data
and its corresponding features extractions.4,5

2. Objectives

To study the effectiveness of lead position with micro-
electro-neuro-sensor recordings in concluding and
determining Subthalamic Nuclei for embedding the Deep
Brain Stimulation (STN DBS) microchips (electrodes)
during bilateral STN-DBS.

To acquire the implantation of microelectrode recording
(MER) signals data of subthalamic nucleus (STN) neurons
via deep brain stimulation (DBS) in Parkinson‘s disease
(PD)

To find out the variance of 12 PD subjects micro-electro-
neuro-sensors of STN signals with DBS
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To study the correlation of microelectrode recording with
the final tract chosen during bilateral STN DBS performed
at a specialized tertiary care centre in South India.

To compute the MER signals of subthalamic nucleus
neurons with deep brain stimulation in Parkinson‘s using
multivariate techniques - principal component analysis
(PCA, a statistical mathematical latent variate factorial
or factor analysis) and clustering method with machine
learning approach

The flow of the study is organized as follows: Section
1 is the introductory part which gives the background of
the study, literature survey/ related work and computational
analysis of Parkinson‘s disease. Section 2 gives goals of
the study which are objectives. Section 3 describes about
the methodology - methods. Section 4 describes about the
preliminary results and discussions. In Section 5 inferences
were drawn and conclusions deduced.

3. Methodology

Deep brain stimulation (DBS) is an established therapy
foradvanced Parkinson’s disease (PD), with relatively
strictinclusion criteria to obtain optimal improvement of
motorfunction.13,51 However, the effects of DBS on non-
motor manifestations, such as the new onset of cognitive de-
terioration,61 have become a critical issue in recent years.

The data flow and system flowchart model of the PD
model architecture is shown in Figure 1.

Fig. 4: Architecture of the proposed system of MER with STN
DBS in Parkinson disease

A retrospective study was carried out at a tertiary care
multi-specialty hospital with a dedicated movement disorder
unit and computer science and biomedical engineering team
from South India. Fifty two patients with diagnosis of PD
as per United Kingdom Parkinson disease society brain
bank criteria were included. All the patients were willing
to undergo the procedure and fulfilled the following criteria
to be eligible for STN-DBS i.e., they had disease duration

of 6 years or more, good response to levodopa, able to
walk independently in drug “on” state and had normal
cognition. All PD patients who were wheelchair or bed
bound, had dementia or severe psychiatric disturbances
were excluded from this study. Computer Aided Stereotactic
Functional Neuro Surgery was performed in all by a
qualified neurosurgeon. Stereotactic targets were acquired
using a specialized system with a stereotactic frame (CRW)
which has a luminant MR localiser. The targeting was
performed according to Lozano’s technique – 2mm sections
are taken parallel to the plane of anterior comissure-
posterior commissure line and at the level with maximum
volume of red nucleus, STN is targeted at 3 mm lateral to
the anterolateral border of red nucleus.

The co-ordinates are entered into a stereo-calc software
which gives the co-ordinates of the STN. Another neuro
navigation software –Framelink is also used to plot the
course of the electrodes and to avoid vessels. The surgery
is performed with two burr holes on the two sides based on
the co-ordinates. Five channels with are introduced with the
central channel representing the MRI target while medial
(nearer the centre) and lateral (away from the centre) are
placed in the x axis while anterior(front) and posterior
(back) are placed in the y axis to cover an area of 5 mm
diameter.

Intra-operative recording was performed in all 5
channels. All five microelectrodes are slowly passed
through the STN and recording is performed from 10mm
above to 10mm below the STN calculated on the MRI.
STN IS identified by a high noise with a large baseline and
an irregular discharge with multiple frequencies. Figure 5
shows the microelectrode recording which is obtained from
the STN

The channel with maximum recording and the earliest
recording were recorded on both sides Intraoperative test
stimulation was performed in all channels from the level at
the onset of MER recording. Stimulation was done at 1mv,
3mv to assess the improvement in bradykinesia, rigidity
and tremor. Appearance of dyskinesias was considered to
be associated with accurate targeting. Side effects were
assessed at 5mv and 7mv to ensure that the final channel
chosen had maximum improvement with least side effects.

Correlation was assessed between the aspects of MER
and the final channel chosen in 46 patients (92 sides).

3.1. Methods

3.1.1. Multivariate Statistical Analysis Techniques for
Multidimensional Scaling

The following statistical techniques were used to perform
the multidimensional scaling for multidimensionality.
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Fig. 5: Picture of the microelectrode recording –the panel in the top
left shows recording in a single level in a single channel; the panel
in the bottom left shows the recording in the central channel over
11 mm and shows the typical firing pattern with irregular firing
and broad baseline noted from -1.00 level; the top right shows
the typical histogram frequency and the fastfourier transformation
graphs of a typical STN neuron; the bottom right shows the same
in a linear fashion

3.2. Variance

For a given population of size N (12), the σ2 (called variance
is the average of the squared deviation of each data point
from the mean-value) is mathematically represented as

σ2 = 1
N [∑

N
i=1 (xi −µ)2]..................(1)

Where (xi − µ) is the deviation of each data point from
the mean. By squaring the deviations, more weight is placed
on points that those points lie away from the mean, further.
The σ2 is the population parameter and quantifies the
dispersion in the entire population of size N. therefore, the
variance for a sample is designated by s2 which can be
computed differently

s2 = 1
n−1 [∑

n
i=1 (xi −X)2].............. (2)

3.3. Covariance matrix

Given nsets of variates denoted{X1} , ...,{Xn}, the
covariance σi j = cov(xi, x j)of xiand x jis defined by

cov(xi, x j) = [(xi, µi)(x j −µ j)]
= [xix j]− [xi] [x j]

.............. (3)

where, µi = [xi]and µ j = [x j] are the means of xi and x j
The matrix (vi j) of the quantites (vi j) = cov(xi, x j) is called
the covariance matrix. In the special case, i = j

cov [xi, x j] =
[
x2

i
]
− [xi]

2 = σ2
i ,.............(4)

giving the usual variance σii = σ2
i = var(xi). Note that

statistically independent variables are always uncorrelated,
but the converse is not necessarily true. The covariance of
two variates Xi and X j provides a measure of how strongly
correlated these variables are, and the derived quantity

cor(xi, x j) =
cov(xi,x j)

σiσ j
,..............(5)

where, σi. and σ jare the standard deviations (SDs), is
called statistical correlation of xi and x j. The covariance is
symmetric since

cov(x, y) = cov(y, x). ....................... (6)
The mean µ [σ2] and the variance Var [σ2] of σ2 are

calculated as
Var [σ2] = µ [(σ2 − σ ¯2)2] = Var[ε]................(7)
Since x is expressed as the multiplication of σ and

white Gaussian-noise W passed through H, the conditional
distribution of x given σ2 is Gaussian distribution with a
mean of zero and a variance of σ2:

P
(
x/σ2

)
= 1√

2πσ2exp −
x2

2σ2 ...............(8)

3.4. Eigen-Values

Each Eigen-value is paired with a corresponding so-called
Eigen-vector (or, in general, a corresponding right Eigen-
vector and a corresponding left Eigen-vector; there is no
analogous distinction between left and right for Eigen
values). The decomposition of a square matrix A into
Eigen-values and Eigen-vectors is known in this work as
Eigen decomposition, and the fact that this decomposition
is always possible as long as the matrix consisting of
the Eigen-vectors of A is square is known as the Eigen
decomposition theorem.

Let A be a linear transformation represented by a matrix
A. If there is a vector X ∈ Rn ̸= 0such that

AX = λX ........................(9)
for some scalar λ , then λ ,is called the Eigen-value of A

with corresponding (right) Eigen-vector X.
Let A be a k× ksquare matrixa11 ... a1k

...
. . .

...
ak1 ... akk

 ................(10)

with Eigen-value λ , then the corresponding Eigen-
vectors satisfya11 · · · a1k

...
. . .

...
ak1 . . . akk


xi

...
xk

= λ

x1
...

xk

 ,.....................(11)

which is equivalent to the homogenous system.a11 −λ . . . a1k
...

. . .
...

ak1 . . . akk −λ


x1

...
xk

=

0
...
0

..............(12)

Equation (12) can be written as
(A−λ I)X = 0,...................(13)
where, I is identity matrix. A linear system of equations

has nontrivial solutions if and only if the determinant
vanishes, so the solutions of equation (13) are given by,

det (A−λ I) = 0,.................... (14)
This equation is known as the characteristic equation of
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3.5. Jacobi’s Method

To compute Eigen values and corresponding Eigen vectors,
in our computation, we adopted the Jacobi method is a
method of solving a tridiagonal matrix equation with largest
absolute values in each row and column dominated by
the diagonal element. Each diagonal element is solved for,
and an approximate value plugged in. The process is then
iterated until it converges. It may be noted here that the
mathematical procedure is truncated due to restriction on the
length of the paper. The algorithm reviewed from numerical
algorithms group (NAG) routines Bath Information and
Data Services (BIDS), University of Bath, UK, and from
the numerical recipes in C/C++ text (Cambridge University
press19).

It is well known that sinusoidal are convenient basis for
analytical purpose but they are not efficient for processing
complex waveforms, such as STN, EEG and EMG signals.
For such signal processing, principal component analysis
(PCA) which are in some way resembles basis functions
basis vectors having orthogonality (orthogonal-functions) is
employed.

3.6. Machine Learning principal component and
clustering methods

3.7. Principal Component Analysis

Principal Component Analysis (PCA) is a statistical
(mathematics) latent variate factorial (or factor) analysis
(via dynamical systems) technique (based on heuristics
i.e., trial and error based method) mainly to deduce
the latent-dynamics (hidden features mainly for feature
classifications purposes) from parallelly acquired higher
dimensional STN neural-spiking-data. The PCA is a way
of classifying patterns in data, and expressing the data in
such a way as to underline their parities and disparities. As
the patterns in data can be hard to find in data of higher-
dimension, wherever the extra graphical-grid representation
is not obtainable, PCA is a powerful tool for analyzing
massive data and high-end therefore high-speed hardware
is necessary to process the volume of signals (data).

The algorithmic analysis is as follows. PCA requires that
the Eigen-values and the covariance matrix be formed. The
Eigen-values obtained are unique for the entire set. Indeed,
it turns out that the eigenvector with the highest Eigen-value
is the principle component of the data set. The Eigen-vector
with the largest Eigen-value is the one that will point down
the middle of the data. It is the most significant relationship
between the data dimensions.

In general, once Eigen-vectors are found from the
covariance matrix, the next step is to set them by
Eigen-value, highest to lowest decreasing order in their
magnitudes. The components with lesser significance can
be ignored, as Eigen-values with small value do not result in
much loss of data because they are negligible on electrical

baseline (the zero line). If some of the components are left
out, then the final data set will have fewer dimensions than
the original one. If originally there are nEigen-vectors, then
the final data set has onlydimensions.

Taking Eigen-vectors, which are not ignored, and
forming a matrix with Eigen-vectors in the columns forms
a feature vector. A feature vector is a vector consisting of
multiple elements or features which gives the characteristics
of the object.

Feature-vector = eig1 eig2 eig3. . . eign (15)
On forming the feature-vector, get the transpose of the

vector and then multiply it on the left of the original data
set, transposed.

Final-data = row-feature-vector × adjustment of row-
data (16)

where row-feature-vector is the matrix with the Eigen-
vectors in the columns transposed so that the Eigen-
vectors are now in the rows, with the most significant
eigenvector at the top, and the adjustment of the row-
data adjustment of row-data is the mean-adjusted data
transposed, i.e., the data items are in each column, with each
row holding a separate dimension. The principal-component
(PC) programme computes the mean-data-vector from all
row-vectors win the initial data-matrix supplied to the PC-
program. The residual data matrix was computed with
the algorithm originally designed Jacobi’s method.19,20

Upon computing the residual data-matrix, and also the
first three resulting principal-components are accumulated
on to the computer hard disc, and the variance associated
with each PC is verified and accumulated in conjunction
with. The reason is to compute three principal-component-
vectors (PCV ′s), namely PCv1, PCv2, and PCv3 of a class
of signals—waveforms. The program arranges the data
of a single signal into a matrix of the order m × n
(m < n) by splitting the signal into m-segments each of
length—n. Next, data minimization program determines PC
coefficients a1, a2, and a3 and calls or invokes a function to
operate on the following equation.14

X = G + a1.P1+ a2.P2+a3.P3+ error (17)
where, ‘X’ is the test phantom vector, ‘G’ is the mean

of class of phantom vectors, P1, P2 and P3 are the first three
PCs; a1, a2, and a3 are the principal components coefficients,
such that the following error

e2 = ∑ [X ( j) – G ( j) – a1.P1 (j)-a2.P2 (j)-a3.P3 (j)]2 (18)
is reduced.
Those coefficients which distinguishes a test-turning-

point-spectrum by a point in 2 or 3 dimensional-vector-
spaces. As a result, the PC coefficients let a representation
of STN sequence, which can be plotted in a two and/or three
dimensional-space. Figure 6 obtained with MER. The STN
was detected by a high-noise with a larger electrical baseline
(the zero-line) and irregular-discharge-patterns of multiple-
frequencies.
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Fig. 6: The MER signal patterns of STN neurons for various-
depths: -4mm to +10mm. It can be observed that the thin part of
the STN is recognized by amplifying background-noise and a rise
in discharge pace differentiated by the rhythmic-bursts-of-activity
with higher-frequencies (neurons 3, 4, 5 and 6). The negative (-4 to
-1)) values correspond with positions above the MRI-based target.
Deeper layers of the STN show a more irregular-high-frequency
discharge-patterns.

The STN was clearly characterized from dorsally located
zona-incerta and lenticular-fasciculus (field H2) by an
increase (abruptly) in background-noise level and increase
in discharge rate typically distinguished by rhythmic-bursts-
of-activity with a burst-frequency between 20Hz to 35 Hz.
Intra-operative recording was performed in 5 channels. Five
microelectrodes were passed slowly throughout the STN
and recording was performed from 10 mm dimensions
above to 10mm dimensions below the STN planned the on
MRI. The STN was identified by a high-noise with a huge
electrical baseline and irregular-discharge-patterns with
multiple-frequencies. Figure 7 shows the microelectrode
recording and the Fast Fourier Transform (FFT) which was
obtained from the STN.

Fig. 7: M microelectrode recording –the section in the top left
shows recording in a single level in a single channel; the pane in
the bottom left shows the recording in the central channel over
11 mm and shows the typical firing pattern with irregular firing
and broad baseline noted from -1.00 level; the top right shows the
typical histogram frequency and the FFT signals of a typical STN
neuron; the bottom right shows the same in a linear fashion.

Phantom density with fast Fourier transform technique
in frequency domain (FFT is an algorithm typically applied
to compute the discrete Fourier transform DST with less
number of additions and subtractions in order to estimate
the spectrum) was computed using Framelink software and
also in off-line Mat-Lab.

At the posterior level subthalamic-nuclei was
encountered lower than expected, and at anterior it
has come across higher than the expected and width of
the nuclei was minute (Figures 3 and 4). The channel
with maximum recording and the earliest recording were
recorded on equal sides.

3.8. Clustering

Microelectrode recordings of these Parkinson patients
were computed by applying principal-component tracking
method and their feature values (mean ± SD) with DBS
“on” and “off”. The PCs were solved for 12 PD candidates
by using the Eigen vectors which were computed on a high
speed Pentium computer.

Clustering Analysis is a method for grouping objects of
similar kind into respective categories. Cluster analysis is an
exploratory data analysis utility tool which aims at sorting
different objects into groups in a way that the degree of
association between two objects is maximal if they belong
to the same group else minimal. Given the above, cluster
analysis can be used to discover anatomical structures in
data without providing an explanation—interpretation. In
other words, cluster analysis simply discovers anatomical
structures in the data without explaining why they exist.
A further attempt at clustering these 12 patients by using
the principal component (PC) scores of their “differences”
in counts of signals were computed, with the following
results: The total sum of squares is 89260 while the first
two components account for 68836 = 50219 + 18617 i.e.,
accounts for about 75% of the variation in the data. This pair
of coordinates give a good enough summary representation
of the information conveyed by the distance matrix. The two
(centered) principal component scores for the 12 patients are
given in theTable 1.

4. Results and Discussions

Clinical diagnosis: 46 patients included in this study with
mean age (58.1 + 9.1 years, disease duration 8.8 + 3.64
years), UPDRS score in off/on state (52.7 + 10.6/13. 4 + 5).
Mean number of channels in which STN MER was detected
(out of 5 multiple channels) on right side = 3.5+1.1, left
= 3.6 + 1.04. 92 sides were computed. Figure 6 shows the
percentage of people with the number of channels showing
microelectrode recording.

Concordance rate with finer signal utmost width of
recording was inferred. Final channel selected (central in
39/92 42.3%, anterior 31/92 -33.7%, medial 15/92 -16.3%,
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Table 1: Principal component (PC) scores of twelve PD
candidates

PC1 PC2
-100.7286 4.9914
-135.4948 18.6261
58.9665 31.6554
-4.4131 0.9095
-80.9136 1.0355
-12.1537 -18.3320
7.9185 8.2583

-49.9930 63.3184
9.2109 -46.9489

-86.4117 -27.6721
37.5296 55.9556
0.8076 82.0194

Fig. 8: ER signal recording depicting the percentage of candidates
with the number of channels

posterior 4/92 -4.3%, lateral in 3/92 -3.2%). Concordance
with highest recording with chosen track was seen in
58.7%.62 Maximum length of (recording mean 5.3 ±
1.3mm, STN in the chosen track 48%), concordance with
either highest recording or top length was noted in 64%.
In 28 patients, final tract did not correspond either to the
tract with top recording or most width of MER. 93.48% of
patients showed STN recording in the final channel chosen.
13 patients had central tract, 8 had anterior, and 7 had
medial as final tract. Mean length of MER recording in
these channels was 2.3 ±1.8 mm. The final-tract chosen or
preferred and majority was the central seen in 42.3% trailed
with anterior in 33.7%. Concordance of last tract amid
the channel containing the maximum-recording was 58.7%,
with channel viewing paramount girth of recording (48%)
and by means of each was64%. Dearth of any MER-signal-
recording in the ending tract preferred was seen (in 6.52%).
Out of the 6 PD candidates, one candidate had no signal-
recording and probe was inserted in central-channel. Two
candidates had medial, 2 anterior and 2 central-channels as
their last-tract. And this was chosen by macrostimulation
based on.

Prognostic—diagnosis: From the Table 1, it is
experiential and experimental that the first two PCs
are sufficient to précis and discriminating between the deep
brain stimulator “ON” and “OFF” states and among the
controls and different anomalies. The first Eigen-vector is
best-mean-square-fit for the feature-vectors-of the twelve
Parkinson subjects. Thus, PC1, i.e. the principal enormity
of first Eigen-vector that explains the strength (amplitude)
of the MER signal features in relative to the mean of
the patients. We could recognize by visually inspecting
the morphological second Eigen-vector, that second
PC-emphasizes differences-between the right and left
side variables. Indeed, the unilateral-onset and persistent
asymmetry-of-symptoms support the diagnosis-of-PD in
relation to other-similar-diseases.

Figure 5 depicting the principal component (PC) scores
of the 12 Parkinson subjects, in which the points are well
sprinkled away, devoid of lucid pattern but for the case of
subjects {s6, s4, s7}. These three are close to one another as
compared to the remaining nine PD subjects. Indeed, these
three seem to form a lineal ordered set like radial curve and
thus forming ellipsoidal curves or similar to clouds which
are resembling like in the space with s4 coming between
p6 and s7. It is also suggestive that {s3, s11, s12}, {s10,
s5} may form two similar lineal ordered sets, though the
distances are much larger than in the case of the first set.
Patients {s8, s9} are isolated and are very farthest to each
other and thus explaining 80% variance. However, these
findings are to be cross—validated with clinical findings on
the same patients. It is interesting that the D group patients
do not form a cluster in this scenario. This perhaps needs
further looking into the clinical picture of patterns, other
than the C and D group—clusters.

We assessed the role of microelectrode stimulation
in assortment of the last channel-amplifier. In contrast
to the structural confinement on diagnostic imaging in
which the last zone was observed in 42.3% (only) and
microrecording be connected through last-channel in 64%,
which is analogous to our earlier investigation in which by
means of MER, a normal pass all the way through the STN
of 5.6 mm was attained compared to 4.6 mm if central-tract
was preferred as per MRI.

We state that the microelectrode-recording system is
not an absolute utility—tool to noticeably differentiate
the finest target as the row of electrode possibly might
not matchup the alignment of the subthalamic-nuclei and
the impedance of the micro-electrode could differ since
they can be influenced by the tissue of the brain and
might not demonstrate apparent micro-electrode-signal-
recording. Nevertheless, micro-electrode-recording-system
can be knowledgeable to corroborate the lucid point
of the microelectrodes and strengthen the poise of the
neurosurgeons to facilitate they are in the exact target.62
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5. Conclusions

The prime objective of this study was to decode
the predictive role of intraoperative neural signals in
STN DBS response and provide scientific insights by
revealing the most informative intraoperative MER features
and extracting STN MER “patterns” associated with
UPDRS improvement. We investigated the MER with
STN high frequency DBS in PD, recorded the STN
neural signals and applied PCA-based tracking method.
Though results are partially meaningful clinically, these
analyses could possibly be applied to longitudinal follow-
ups, microanalysis and correlations with a normal control
population in future to better comprehend the Parkinson‘s
disease with microelectrode-signal acquisition of the STN
and also global pallidal (GP) neurons meaningfully.
Absence of any recording from STN in the final tract
selected was noted in 6/92 -6.52%. Out of 6 patients, 1 had
no MER recording in any of the 5 channels and lead was
placed in central channel. 2 had medial, 2 anterior and 2
had central channels as their final tract. This was selected
based on macrostimulation. In our study, we achieved 75%
variation in scatter plot and find that MER gives proof of
correct-positioning of electrode, ensures accurate detection
of STN precincts and determines its exact coordinates in a
more objective way. MER enhances safety, accuracy and
efficacy of DBS electrode implementation. Thus, MER
confirms presence of abnormal STN neurons. Unperturbed
MER definitely can confirm clear position of electrodes and
bolsters the confidence of the neurosurgeons that they are
in the target. Availability of MER results in a vast data
regarding functioning on neurons situated deep in the brain
may further help in unraveling mysteries of brain. This study
correlated MER signal multiunit activity features with DBS
improvement.
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