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A B S T R A C T

Retinitis pigmentosa (RP) is a common retinal dystrophy that affects millions of individuals, of both
sexes, worldwide. The age of onset and the phenotypic characteristics vary between patients of different
ethnicities. It may be syndromic when it coexists with several syndromes, like Usher syndrome, or non-
syndromic. It follows autosomal dominant, autosomal recessive or X-linked inheritance. RP is genetically
heterogeneous with, approximately, one hundred genes identified to date. The present mini review includes
articles about the pathogenesis of syndromic and non-syndromic RP. Eighty-seven papers written in English
and published in the last decade, about the pathogenesis of RP were reviewed and analyzed in order to
summarize and highlight the major genes implicated in RP. We identified more than 80 genes associated
with syndromic and 30 genes with non-syndromic RP. Among them RHO and RPGR, followed by PRPH2,
PRPF31 and RP2 are the major genes involved in RP.

© 2020 Published by Innovative Publication. This is an open access article under the CC BY-NC license
(https://creativecommons.org/licenses/by-nc/4.0/)

1. Introduction

Retinitis pigmentosa (RP) is the most common type
of retinal dystrophy.1–5 affecting millions of individuals
around the world.6 It was first described by A.C. van Trigt
in 1853, while F.C. Donders was the first that recognized
this clinical condition in 1857.7 It is characterized by
abnormalities of rods and cones, the photoreceptors of the
retina, initially of the middle periphery of the retina and
progressively reaching the central retina.2,5–7

The age of onset varies among different patients, but
usually it ranges from early childhood to mid-adulthood.7,8

It may affect the clinical manifestations as early RP onset
appears mostly with rapid progress, while other patients
remain asymptomatic until the fifth decade of life.7 The first
symptom of RP is usually nyctalopia (night blindness) and
difficulties in dark to light and light to dark adaptation.1,5,9
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Dyschromatopsia and blue-yellow defects color vision may
be present in advanced cases of RP, whereas in other
patients color vision may be normal.5,7 Also, photopsia,
photophobia, myopia and hyperopia are often presented
in RP patients.7 Progressive vision loss, often leading to
tunnel vision or blindness characterizes advanced RP.1 The
retinal findings also include bone-spicule formations and
attenuation of blood vessels, a waxy pallor of the optic
nerve, shortening of the photoreceptor outer segments and
abnormal ERG.7

RP may be accompanied with multiple clinical
conditions including nystagmus, refractive error,
macular hole, epiretinal membrane, cystoid macular
edema, posterior subcapsular cataract, secondary retinal
vasoproliferative tumors, vitreous cysts and optic nerve
head and fiber layer drusen.7

The present review included articles about the
pathogenesis of syndromic and non-syndromic RP by
searching the PubMed and the Google Scholar databases.
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Only papers published in the last decade and written in
English were selected and analyzed. Keywords used in this
review were “retinitis pigmentosa”, “genes“, “autosomal
dominant“, “autosomal recessive“, “X-linked RP“. In total,
87 articles were reviewed and analyzed. Most scientifically
recognized and recent papers were selected and focused in
the review. The present article attempts to summarize and
highlight the major genes implicated in the pathogenesis of
autosomal dominant, autosomal recessive and X-linked RP.

2. Epidemiology of RP

RP may appear as syndromic (20-30% of all cases), when
it is accompanied with systemic manifestations including
developmental abnormalities and neurosensory disorders,
and non-syndromic (70-80% of all cases), without other
clinical manifestations.9 The prevalence of non-syndromic
RP varies from 1:9000 to 1:750.7

RP also appears as autosomal dominant RP (adRP) in
20-40% of all cases (better prognosis), autosomal recessive
RP (arRP) in 30-50% of all cases and X-linked RP
(xlRP), the most severe form, in 5-15% of all cases.1–4

Digenic, mitochondrial and de novo mutations have been
also reported,3,4 whereas sporadic RP exhibits in almost
30% of all cases.1,3 RP also appears more severe among
males.10

Approximately 30 different syndromes may provoke
RP. The most frequent syndromes are Usher, Bardet-
Biedl syndrome (BBS), Bassen-Kornzweig syndrome
(abetalipoproteinemia), Refsum’s disease and α-tocopherol
transport protein deficiency.9 Usher syndrome is associated
with 10-20% of all syndromic RP cases affecting 1:12,000
to 1:30,000 in different populations.11 12-15 genes
implicated with Usher syndrome may also be responsible
for RP. Among them USH2A (1q41), MYO7A and
(11q13.5), are the most important or better described to
date.9

Syndromic RP is also appeared in BBS, which is
inherited in an autosomal recessive manner. 5-6% of all
RP cases are associated with BBS,9 which is characterized
by fundus abnormalities, pigmentary retinal dystrophy,
and systemic manifestations including kidney disease,
polydactyly, obesity, female genitourinary malformations
and developmental delay.11 The manifestations may be
different among patients depending on the specific gene and
the specific mutation within the gene that is affected.7

There are twenty one genes implicated with BBS, most
of which may be associated with syndromic RP. Again,
among them BBS1 (11q13), TTC8/BBS8 (14q32.11) and
CEP290/BBS14 (12q21.32), are the most important or
better described to date. However, approximately 30% of
BBS cases have not been associated with any identifiable
mutation in any of these genes.11,12

3. Genetic aspects of RP

At a genetic level it is reported that RP is complicated
and heterogeneous,1,2 whereas more than 80 genes are
implicated with non-syndromic RP and more than 30 genes
with syndromic RP.3,6,7 These genes are mostly associated
with metabolic functions of the neuroretina and/or RPE and
especially the function of the photoreceptor.13

The first identified gene was RHO gene, whereas
every year new genes are reported to be implicated with
different RP subtypes.7 It seems that there are more than
3100 mutations associated with non-syndromic RP,2,3,6

whereas 1200 mutations are implicated with Usher and
BBS syndromes. Except for the genetic heterogeneity, it
seems that mutations in the same gene or even the exact
same mutations may provoke different phenotypes among
different patients.6 This may be associated with the role
that several genetic and/or environmental factors may have
in the phenotypic expression of RP.7 Moreover, although
new mutations are reported to be at the same rate worldwide
there are differences in the prevalence of some RP mutations
among different populations. Interestingly, RHO mutations
accounts for 30% of Americans of European origin, but
only 10% in Chinese patients. On the other hand, RPGR
mutations are presented with the same prevalence in RP
patients worldwide.14

Worldwide databases are suggesting that there are twenty
seven genes responsible for adRP, fifty five for arRP and
six for xlRP,1,15 including genes implicated with both
adRP and arRP, such as BEST1, IMPDH1, NRL, NR2E3,
RHO, RPE65 and RP1, and genes implicated with RP and
macular degeneration including ABCA4, PRPH2, PRPF31
and C8orf37.1 Also, other genes are implicated in both
RP and Leber congenital amaurosis (LCA) (i.e., CRB1,
CRX, RPE65, IMPDH1) while others are implicated in both
RP and cone-rod dystrophy (CRD) (i.e., ABCA4, C8orf37,
RPGR, CRX, PROM1).2,6

The most prevalent genes that cause adRP are RHO (26%
of all cases), RP1 (6% of all cases) and PRPF31 (5% of all
cases).16 adRP genes cause approximately 50-75% of RP
cases, depending on the populations screened.14 However,
it is difficult to screen efficiently the mutations implicated
with adRP as some mutations reported may be proved to
be nonpathogenic and novel mutations that are associated
with adRP pathogenesis have not as yet included in the
public domain.6 Tables 1 and 2 report the major genes that
are implicated in either both arRP and adRP or adRP in
particular.

Among the putative fifty five genes that are implicated in
arRP pathogenesis and thought to cause 2-5% of all cases,
RPE65 (1p31.2), PDE6B (4p16.3), ABCA4 (1p22.1), CRB1
(1q31.3), USH2A (1q41), C2orf71 (2p23.2), RHO (3q22.1),
PROM1 (4p15.32), TULP1 (6p21.31), C8orf37 (8q22.1),
NRL (14q11.2), SPATA7 (14q31.3), are the most important
or better described to date.11,12
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Table 1: Genes implicated both in autosomal dominant and recessive RP pathogenesis

GENE 11,12,14 Chromosome Other Diseases
BEST111,12,14 11q12.3 Leber congenital amaurosis
NR2E311,12,14 15q23 Goldmann–Favre, enhanced S-cone

syndrome
NRL 11,12,14 14q11.2
RHO11,12,14 3q22.1 Congenital stationary night blindness
RP111,12,14 8q12.1
RPE6511,12,14 1p31.2 Leber congenital amaurosis

Table 2: Genes implicated in autosomal dominant RP pathogenesis

Gene 11,14 Chromosome Other diseases
CA411,14 17q23.2
CRX11,14 19q13.32 Leber congenital amaurosis, Cone–rod

dystrophy
FSCN211,14 17q25.3
GUCA1B11,14 6p21.1 Macular dystrophy
HK111,14 10q22.1
IMPDH1 11,14 7q32.1 Leber congenital amaurosis
KLHL711,14 7p15.3
OR2W3 11,14 1q44
PRPF311,14 1q21.2
PRPF611,14 20q13.33
PRPF811,14 17p13.3
PRPF31 11,14 19q13.42
PRPH2 (RDS) 11,14 6p21.1 Adult vitelliform macular dystrophy,

Cone–rod dystrophy, Central areolar
choroidal dystrophy

RDH12 11,14 14q24.1 Leber congenital amaurosis
ROM111,14 11q12.3 RP with macular degeneration
RP911,14 7p14.3
SEMA4A11,14 1q22 Cone–rod dystrophy
SNRNP20011,14 2q11.2
SPP211,14 2q37.1
TOPORS11,14 9p21.1

Table 3: Genes implicated in X-linked RP pathogenesis

GENE 6,17 Chromosome Other diseases
OFD1-RP23 6,17 Xp22.2
RP26,17 Xp11.23
RP66,17 Xp21.3-p21.2
RP24 6,17 Xq26-q27
RP34 6,17 Xq28-qter
RPGR Xp11.4 Macular dystrophy, Cone dystrophy,

Atrophic macular degeneration, Leber
congenital amaurosis
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Finally, there are six loci implicated in xlRP.6,17 Most
xlRP cases are associated with RPGR mutations (70-90%),
whereas RP2 mutations also account for 6-20% of xlRP
cases.17 Mutations in the ORF15 region are implicated in
30-60% of xlRP cases. Approximately 80% of xlRP cases
are associated with RPGR and RP2 mutations indicating
that these genes may be target candidates for gene therapy
or other therapeutic approaches.11 Table 3 reports the major
genes that are implicated in xlRP.

4. Diagnostic approach of RP

It must be stretched that the genetic heterogeneity makes
the genotype-phenotype correlation difficult, although
genetic and molecular diagnosis may be crucial for the
genetic counseling and the selection of the appropriate
management.3 There are several methods used for the
detection of mutations implicated with several inherited
diseases like RP, including deletion detection, linkage
mapping and subclone sequencing.14 Also, specific
genotyping microarrays and the gene-by-gene analysis
with Sanger sequencing are used for mutation screening.
New technologies like next-generation sequencing (NGS)
provide the chance to screen effectively RP patients, as
high sensitivity and efficiency are significant characteristics
of this method, although the disease is genetically
heterogeneous.3 Moreover, new techniques such as,
targeted retinal-gene capture NGS, whole-exome NGS
and whole-genome NGS may be important in mutation
screening. The aim of effective genetic testing is to
incorporate genetic information into clinical care and
counseling. Thus, the management of several genetic
disorders may be based on the results of such methods.14

As mentioned above, RP is characterized by extremely
high genetic heterogeneity. This, characteristic provoked a
great many attempts to map and analyze the genes and
the mutations that provoke and progress different types
of RP. Below we review the major genes responsible for
adRP, arRP and xlRP as well some other important genes
implicated in the pathogenesis of the main RP types.

5. Major GENES involved in adRP, arRP and xlRP
Pathogenesis

5.1. RHO GENE

RHO gene (RP4, Retinitis Pigmentosa 4, Opsin-2) which
belongs to the GPCR (G protein coupled receptors) family
of genes, is located on 3q22.1 chromosome and encodes
rhodopsin - the protein mostly associated with rods.6,15 It
is comprised of 348 amino acids with 7 transmembrane
domains, a luminal N terminus and a cytoplasmic C
terminus. It also has 11-cis-retinal attachment site (lys296),
a site significant for active rhodopsin. The inner segment of
rod photoreceptors synthesizes rhodopsin, which mediates
vision in dim light.15

The most frequent gene accounting for 20-30% of adRP
cases is RHO.2,3,6,15 There are approximately 150 mutations
in RHO associated with RP worldwide. Characteristically,
p.P23H which is estimated to be responsible for 12% of
RP cases in USA was the first gene defect reported.13,14

The prevalence of RHO mutations in adRP differs among
different populations. It is estimated to be between 16% and
35% in Western population. Many adRP cases associated
with RHO mutations have been also reported in Israeli
and Palestinian populations,18 in Spanish,19 Japanese,20

Korean,21 and Iranian22 patients. Moreover, more severe
cases have been reported in Swedish families.16

In addition, RHO has been also implicated with the
pathogenesis of arRP, although only few cases have been
reported.13,15 Most arRP cases associated with RHO gene
mutations have been identified in Chinese families, whereas
p.P347L is thought to be the most common mutation.15

6. RPGR GENE - RP2 GENE

The RPGR gene which is localized on chromosome
Xp11.4,6,23 is associated with 70-90% of xlRP cases. In
addition 6-20% of xlRP cases are related with RP2 gene
mutations and a lower percent with mutations in the OFD1
gene. ORF15 is the RPGR exon that has most disease
associated mutations, accounting for approximately 50-
60% of all cases.10,24 More specifically, mutations in this
exon have been associated with several X-linked retinal
degenerations including xlRP, macular dystrophy, cone
dystrophy (CD) and atrophic macular degeneration.6,10,23–25

Most ORF15 mutations are frameshift mutations, resulting
in truncated products of this exon and affect ORF15
glutamylation.10,24 In addition, mutations in exon ORF15
and TTLL5 gene contribute to a common disease
pathway.17

It is reported that a large deletion in RP2 and 4
frameshift mutations in RPGR caused xlRP in Chinese
patients.10 Similarly, there are xlRP cases among Jordanian,
Japanese or patients of other ethnicities with disease-
causing mutation in RP2 or RPGR.20,26 RPGR gene
mutation may also cause LCA or RP of early onset, whereas
in other benign cases visual acuity was stable until the age
of forty.27

Males appear with nyctalopia and visual impairment,
while carrier females have milder phenotypes, mainly
characterized by various degrees of myopia.23 In addition,
RPGR variants have also been related with several systemic
manifestations,28 whereas blindness is estimated to be
caused in 20% of these RP patients at approximately the
age of 40.29 Systemic manifestations may also contribute to
the verification of several pathogenic variants.28
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7. Other important genes involved in adRP and arRP
pathogenesis

7.1. PRPH2/RDS GENE and ROM1 GENE

The PRPH2 gene which is located on 6p21.1, contains 3
exons and encodes peripherin 2, a glycoprotein of 39-kDa
with 346 amino acids.2,6 The ROM1 gene encodes rod
outer-membrane protein 1, and along with PRPH2 gene is
thought to be significant for the formation and function of
rod and cone outer segments.13

PRPH2, also known as retinal degeneration slow/RDS,
is major causative gene of adRP and CRD.19,25,27,30

More than 151 mutations have been identified in PRPH2,
most of which may produce different RP phenotypes
even among family members. Mutations in this gene
may also cause secondary defects in tissues like choroid
and retinal epithelium pigment.31 indicating the role
of this gene in RP.13 PRPH2 mutations are associated
with adRP, autosomal dominant macular degeneration,1,6

macular pattern dystrophies13 and autosomal dominant
Stargardt disease -like phenotypes.32 There are also cases
of dominant adult onset vitelliform macular dystrophy
carrying mutations in PRPH2 gene.2,33

Although, there is no absolute linkage between ROM1
mutations and monogenic adRP,31 there are cases of
autosomal digenic RP in patients heterozygous for both
a PRPH2 mutation and a ROM1 mutation.2,6,34 However,
there are individuals appearing with ROM1 alterations in
the absence of PRPH2 mutations.13 The appearance of
different phenotypes in patients with mutations in the same
gene remains under investigation.35–37 Characteristically,
there are cases where genes modify the PRPH2 phenotypes,
including the role of ROM1 in PRPH2/ROM1 digenic RP
and the interaction of ABCA4 with PRPH2 in other cases.31

The prevalence PRPH2 gene mutations related adRP
varies among different populations, ranging from 0% in
Mexico to 4.7% in Belgium and 10.3% in France.38,39

As a result this gene is estimated to be the second
major gene for adRP pathogenesis, next to RHO, in
Western populations. Some major mechanisms degrading
the expression of PRPH2 protein are sequence variants,
aberrant mRNA splicing, problems in protein localization,
and protein degradation.38

8. PRPF31, PRPF3, PRPF8 and SNRNP200 GENEs

PRPF31 gene, which is located on chromosome 19
(19q13.42),2 consisting of 14 exons and encoding a 499
amino acids protein is estimated to be the third, next to
RHO and PRPH2 genes, major causative gene of adRP.40

Over forty PRPF31 gene mutations have been identified in
adRP patients, whereas it may also be a causative gene of
macular degeneration.1 Moreover, PRPF31 disease-causing
mutations cause different phenotypes, as some carriers are
asymptomatic while others are blind. However, nyctalopia

is mostly appeared from infancy to 4 years old.40 Hence,
genetic modifiers may be responsible for phenotypical
variability.16

PRPF31’s mutation prevalence in adRP differs among
different populations ranging from 1% to 8%.41 More
specifically, in Europe the prevalence is estimated to be
6.7% while in the USA the frequency is around 5%.16 On
the other hand, PRPF31’s mutations are very rare in East
Asian population.20

PRPF3, PRPF8 and SNRNP200 which encodes
processing factors 3,8 and 31, respectively, are important
causative genes of RP.2,4 More specifically, PRPF8
and SNRNP200 mutations are major causative genes in
Belgium,38 and may be responsible for about 38% of adRP
cases according to several reports.4

PRPF3 gene (RP 18, SNRNP90) appears to be causative
in three mutations: T494M which is implicated with adRP
pathogenesis in families from America, Denmark, England,
Japan, Korea, Spain, P493S which is associated with
sporadic RP in Germany, UK and USA and A489D which
mainly appears in Spain. However, these mutations are very
rare in adRP patients in East Asia.42

9. PDE6 GENE

PDE6A, PDE6B and PDE6G are subunits form PDE6
complex. The PDE6 complex encodes a protein that
contribute to the function of rod phototransduction. Hence,
absence of PDE6 may provoke rode-cone devolution.
Defects in rod-specific cyclic guanosine monophosphate
(cGMP) phosphodiesterase 6 (PDE6) gene family which
effect the phototransduction cascade are responsible for
about 8% of diagnosed arRP cases. Absence of PDE6 may
cause rod-cone degeneration, but the mechanism remains
unclear.12

Each one of the subunits may also affect the function of
photoreceptors. More specifically, mutations in PDE6A and
PDE6B cause arRP, while heterozygous carriers are at great
risk of visual impairments. On the contrary, PDE6G provoke
early onset arRP.12

Mutations in PDE6B gene, which is localized
on chromosome 4 (4p16.3), encoding cGMP
phosphodiesterase beta subunit, are mostly associated
with arRP.6,43 Especially, these mutations are responsible
for many arRP cases in specific ethnic groups, including
Caucasians and Korean population.21,44 These patients
are characterized by early onset of RP, nyctalopia and
photophobia,43,45 whereas congenital stationary nyctalopia
inherited in a dominant manner is also associated with
PDE6B mutations.6

10. CRB1 GENE

The CRB1 gene is located on chromosome 1 (1q31.3),
consists of twelve exons and eleven introns and encodes
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2 extra-cellular signal proteins of 1376 and 1406 amino
acids long.6,46 It is thought to be very important for the
development of the retina.35,46

To date, more than 200 mutation associated with arRP
have been identified in CRB1.35 It is estimated that patients
with null mutations (i.e., nonsense mutations) on two
alleles of CRB1 gene mostly present with more severe
phenotypes including LCA, whereas milder phenotypes
like RP may be caused after missense mutation on at
least one allele.47,48 CRB1 mutations may also cause
various phenotypes including retinal dystrophies like RP,
LCA, and CRD, or isolated macular dystrophy and
foveal retinoschisis.6,25,47,49. Additionally, CRB1 mutations
account for 3% to 9% of non-syndromic arRP50 and 9-
15% of LCA cases.51 Also, childhood CRD with macular
cystic degeneration and autosomal dominant Stargardt
disease phenotypes appear frequently.52 However, clinical
variability in patients with same CRB1 mutations indicates
that arRP associated with CRB1 may also be modulated by
other factors.53

RP patients with CRB1 mutations are mostly
characterized by gradual vision from mid periphery,
progressive photoreceptor degeneration, hyperopia, visual
impairment, and in severe cases blindness.7,47.

CRB1 mutations mostly appear in Israel and Spain
causing autosomal recessive retinal degeneration of early
onset.35,48 Moreover, many Thai families carry these
mutations,54 whereas it is estimated that in German
patients with LCA mostly carry CRB1 mutations55. CRB1
mutations, have been also identified in Danish LCA patients
(7%)56, in Brazilian CRD patients46,and Tunisian RP
patients57.

11. ABCA4 GENE

The ABCA4 gene is localized on chromosome 1 (1p13)
and consists of fifty exons.58. It encodes an ATP-
binding cassette (ABC) transporter protein which is mainly
located on the rims of photoreceptor discs.6,58–61 The role
of this protein is significant during photo transduction
as it transfers the phosphatidylethanolamine (PE) and
the N-retinylidene-phosphatidylethanolamine (NRPE) from
the lumen of the outer segment disc membranes of
photoreceptors to the cytoplasmic leaflet. Thus, it protects
the photoreceptors from toxic retinoid.58,60,61

There are over 800 ABCA4 mutations reported to be
associated with RP. Although, these mutations may be
deletions of several exons or only single base substitutions,
most are missense mutations.58 The phenotype may vary,
depending on their effect on regulatory regions of the gene
and the amino acid composition of the protein.62 The
variants are heterogeneous, while most are related with
retinal dystrophies.21,25 They may also cause autosomal
recessive Stargardt disease, CD or CRD and arRP.45,61–64

Characteristically, ABCA4 is the major causative gene for

autosomal recessive Stargardt disease and arCRD,65 while
it also may cause Usher syndrome.3,66 Homozygous or
compound heterozygous arRP have been associated with
twenty seven missense mutations, nine splicing mutations,
four deletions, and a complex rearrangement.67

There are also significant differences among various
ethnicities. Characteristically, mutation p.G1961E is
estimated to be the most frequent one in European patients.
On the other hand, p.A1773V and p.G818E are identified,
respectively, in 17% and 15% of the cases in Mexico63 but
appear more frequently in RP patients from Europe and
America59.

12. PROM1 GENE

The PROM 1 gene is localized on chromosome 4
(4p15.32),6,34,68 consists of twenty-seven exons and
encodes prominin-1, a five-transmembrane domain
glycoprotein6,34. Stem and progenitor cells from neural
and hematopoietic systems mainly express prominin-1.
Additionally, it is expressed by photoreceptor, glial, and
epithelial cells of various adult organs. More specifically,
PROM1 enhances disk membrane morphogenesis, as
it is mostly found at the base of outer segments of
photoreceptors.68

Over 35 mutations of the PROM 1 gene have been
identified,34 most of them implicated in several retinal
degenerative phenotypes, like arRP affecting the macula,
autosomal dominant Stargardt disease, autosomal dominant
macular dystrophies with bull’s eye and CRD.1,69 However,
probably there is a relationship between each mutation and
the phenotype that is apparent. Characteristically, autosomal
dominant Stargardt disease and macular dystrophy with
bull’s eye are associated with missense mutations, while
nonsense mutations and frameshift mutations may cause RP,
CRD or other forms of macular degeneration.34,70

There are many arRP cases reported in China and
Thailand that are related with PROM1 mutations.34 while
recessive PROM1 mutations have been associated with
progressive RP, affecting the macula, in Spanish families.71

13. RP1 GENE

RP1 gene (retinitis pigmentosa 1) is localized on
chromosome 8 (8q12), contains 4 exons and encodes
oxygen-regulated protein 1 with 2156 amino acids, which
contributes to the development of rods and cons, the
organization of outer segments and the regulation of
photoreceptor microtubules.72,73 RP1 gene mutations are
implicated with both adRP and arRP1,3,38, accounting for
approximately 5.5% and 1% of cases, respectively.73 These
mutations usually cause RP with good prognosis,72 whereas
it is also reported that there is association with arCRD and
autosomal recessive macular dystrophy.74
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Over 150 mutations have been identified, mostly
truncation variants. Deleterious effects of truncated RP1
protein seem to also have a major role. However, the effect
of RP1 mutation on RP inheritance remains unclear.73

Almost 3% of adRP cases in North America carry a
nonsense mutation at codon 677 (p.R677). In addition,
adRP-causing mutations have been also identified in
patients from Spain,19 Japan,20 Korea.21 and Iran,22,
whereas arRP-causing mutations have been identified in
Spanish patients.73

14. RPE65 GENE

The RPE65 gene is localized on chromosome 1 (1p31.2),
encodes a 65 kDa retinol isomerase called retinal
pigment epithelium-specific protein which produces 11-
cis retinal from all-trans retinol.2,6,75 Over 100 mutations
are associated with the pathogenesis of arLCA,2,6,75–78

RP.6,75–77 adult onset vitelliform macular dystrophy79 and
CRD.80 Although it may produce both adRP and arRP, it is
mostly associated with arRP.75 RPE65 variants are mostly
appeared in Caucasian populations, while high prevalence
is also reported in India.56 On the contrary, there are many
adRP cases reported in Irish population,75,79 16% of LCA
cases are also associated with RPE65 mutations.80

RPE65 mutations are mostly associated with retinal
dystrophies, with recessive inheritance and loss of protein
function. c.1430G>A (D477G) mutation may cause adRP
affecting both choroid and macula, with delayed onset.75

The phenotype varies, as there are mild or severe cases in
carriers of D477G mutation, while central vision defect is
a frequent manifestation. This characteristic differs from
typical RP which is characterized by progressive vision loss
from the periphery to the posterior pole.79,81

Some frequent manifestations of RP caused by
RPE65 mutations are early onset, keratoconus, nystagmus,
clumped pigment in later stages,57 visual impairment,
high hyperopia, night blindness, and photophobia during
childhood.82 Additionally, better prognosis characterizes
cases where visual symptoms appear after infancy.49

15. USH2A GENE

The USH2A gene is localized in 1q41,6 consists of 72
exons and encodes usherin, a protein with 5202 amino
acids. Mutations in this gene may cause 10-15% of
arRP cases and approximately half of the Usher type
2 cases. Barely 7% of RP patients in North America
and 4% of Japanese arRP patients appear to carry such
mutations, while the USH2A prevalence appears higher
in Spanish patients83 and Caucasian populations84 and it
is rare in Israeli66 and arRP Korean patients21. However,
the disease-causing mutations of the USH2A gene differ
between various ethnicities84. It is noted that RP is mostly
associated with mutations in USH2A and EYS in the

Japanese population.20,85 As these mutations may cause
either non-syndromic RP or RP and Usher syndrome,
hearing examination is vital in these patients3. Specific
mutations are related with hearing loss related RP in China
and Thailand.86 Moreover, non-syndromic RP with late
onset may be caused by USH2A mutations.45

16. CRX GENE

CRX gene is located on chromosome 19 (19q13.33),
contains four exons and encodes a 299-amino acid
homeodomain transcription factor.2,6 CRX and NRL are
genes implicated in RP pathogenesis, controlling the
expression of photoreceptor cell specific genes. The
mutations may affect the development of photoreceptor
cells, causing photoreceptor cell degeneration13 and leading
to severely decreased visual acuity from the first year of
life.49 The phenotype of RP may be heterogeneous, with
incomplete penetrance and influence by other genes87. CRX
mutations are also implicated with ad, ar and de novo
LCA, adCRD2,6,13 and adRP.27,76 Characteristically, CRX
is thought to be the major causative gene in CRD25,30.
Moreover, these mutations have been reported in Japanese
arRP patients.20

17. Conclusions

RP is a retinal dystrophy characterized by extremely
widepgenetic heterogeneity. Several different genes
with variousmutations are implicated in RP, syndromic
and/ornon-syndromic. Simultaneously, the same mutations
could be associated with different phenotypes among
patientseven of the same origin. Global literature reports
that over 3000 mutations in approximately 100 genes
havebeen identified in cases of non-syndromic RP and
morethan 1200 mutation in syndromic RP cases. In
addition, overlapping of clinical phenotypes may make
difficult toverify particular genotype-phenotype correlation.
Thus, itseems that RP diagnosis and genetic association
withparticular mutations can be problematic.

However, it would promising if future research attempted
to reveal all RP pathogenic mutations and relate them
with precise phenotypic characteristics. Moreover, genetic
diagnosis may provide significant information for the
possibility of using gene therapy. Thus, better screening
of disease causing mutations may provide the appropriate
information for more effective clinical care and counseling.
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