

1 Page 1-5 © MAT Journals 2020. All Rights Reserved

Journal of Computer Science Engineering and

Software Testing

www.matjournals.com

 e-ISSN: 2581-6969

 Volume-6, Issue-3 (September-December, 2020)

 https://doi.org/10.46610/JOCSES.2020.v06i03.001

Performance Comparison Between Development Approaches in React:

Hooks, Functional and Classes

Jason Aaron Ancona Reyes

PG Student, Department of Computer Engineering, Universidad Da Vinci, Mexico City, Mexico

*Corresponding Author: jasonaar@hotmail.com

ABSTRACT

Nowadays, due to constant innovations in

technology, there are many available libraries to

help developers in the process of designing and

code visual and functional websites. Among all of

them, React is currently one of the most popular

in the developer community. When developers

work with React, there are three common

approaches used in the community. The purpose

of this project is to provide a comparison between

those approaches and an insight of how they

perform in a real world situation. For this task,

chrome developer tools was used for debugging.

The three different approaches (Classes,

functional and Hooks components) were tested

using 4 different projects. Each project had 3

different versions. One solely relies on state

management, the second one on an API response

and the third one an API call and the use of

Redux. After performing all tests, Hooks was the

clear winner overall but still there are developers

which use the other two approaches, classes

approach performed better than functional but it

can lead to misuse of class lifecycle which can

result in a performance downgrade, that is why

if possible, the use of functional when the manage

of state is not required is still recommended

instead of class based components for that work.

React is being updated regularly and further

improvement may be expected. Further studies

may be needed to cover new incoming features,

optimizations and improvements.

Keywords-- Hooks, javascript, programming, react,

web

INTRODUCTION

Web development has been constantly

evolving over the span of years, however, with this

evolution, many tools emerged to facilitate web

development and make it attractive to users,

JavaScript is the most commonly encountered

client-side computer language which is used by

the majority of web sites and it is supported by

all modern browsers with this increase in use and

popularity, it was inevitable that a large amount of

tools to help in the development were published [1,

2]. They can be divided into different categories:

IDEs and editors, package managers, compilers,

bundlers, libraries and frameworks. Among such

tools, React is the one whose popularity has risen

and is currently known and used worldwide. In

addition to the previous, it is maintained by

Facebook and a community of individual developers

and companies. React is a JavaScript library which

purpose is to improve the process of developing

reusable user interface (UI) components, and,

according to React official site, provides a

declarative API so that one do not have to worry

about exactly what changes on every update. This

makes writing applications a lot easier, it is currently

one of the most popular Javascript libraries available

and competes with such as Angular and Vue Js, that

is why in this work is focused on the analysis of

React, this library since it is release date has been

constantly updated and supported by it is team,

while originally there was just one standard

approach of developing, over the updates, new

approaches of developing components were

introduced, and all of them are still being supported,

that is why this work is focused on testing each

approach to evaluate and deliver an insight of how

each approach performs and compare them to each

other [3].

APPROACHES OF DEVELOPMENT IN

REACT

The first version of react to support hooks is

16.8, “Hooks” is an extension of the functional

components approach released in the version 0.14 of

React [4]. Functional components allow developers

to create components that contains methods and

events without declaring a class. The main

disadvantage of doing this was the inability to

handle intern changes of state except by depending

on a parent component which provides properties to

the child functional component. With hooks, it is

possible to provide functional components a way of

handle states and methods which were not available

before hooks [5]. Previously to these approaches

there was just one way of declaring components,

which was “Classes”. The main advantage of classes

is the ability to manage its own internal state, but it

comes with the disadvantage that every component

mailto:jasonaar@hotmail.com

2 Page 1-5 © MAT Journals 2020. All Rights Reserved

Journal of Computer Science Engineering and

Software Testing

www.matjournals.com

e-ISSN: 2581-6969

Volume-6, Issue-3 (September-December, 2020)

https://doi.org/10.46610/JOCSES.2020.v06i03.001

created this way, is not completely stateless, which

if misused can return serious performance problems

in the whole project [6]. When the previous

statement is considered, that is why there are three

actual used approaches of developing in react:

 Hooks

Hooks is a reinvention of functional

components, the implementation of hooks let

functional components to be able of handling it is

own state and exhibit features which used to be

exclusive of class based components [4].

 Functional and Classes Components

While hooks approach solely relies on

functional components, this one relies on class

components when management of state or a class

lifecycle method is needed and functional

components when neither of the before mentioned is

required, the component just use internal or external

methods and data provided from parent or other

source [5].

 Classes Components

This approach relies solely on class

components, even when it is not necessary the

ability to handle own state, the created component

will always be able to do it but it is a decision from

the developer to use this capabilities or not, whole

projects made with this approach will be made of

class based components [6].

METHODOLOGY OF PERFORMANCE

COMPARISON

In order to compare the development

approaches in React, the three previously mentioned

approaches were carried out, but to correctly

measure the result, four different projects were used

to measure the effectiveness of each one of them, all

projects have Ant design as a library of components

of UI for the realization of interfaces.

• In the first project all the components are based

on React classes, however, it uses Antd version

3.6.7 being that after version 4 several of its

components were refactored to Hooks.

• In the second project, the components are

identical to those of the project, however, it has

version 4.6.1 of Antd being the version at the

time this paper was done.

• In the third project, the components that

require state management were made using

class-based components and those without the

need of internal state using functional

components.

• The fourth project is done entirely in Hooks.

For all projects, 3 different versions were

made, which are:

• First one only consists of a page which has two

counters.

Figure 1: First version of the project.

As seen in the Fig. 1, the first counter is updated +1

when an event (click) is made on the blue button,

and the other counter is updated +1 every 300

milliseconds. The Second one, uses the external

libraries React-router-dom and Axios, in addition to

include what was done in the previous version, it

consists of a new page using Axios as an HTTP

client, a request is sent to a local server that returns

an array of 5 posts, those posts are added into the

current state and displayed in the page.

3 Page 1-5 © MAT Journals 2020. All Rights Reserved

Journal of Computer Science Engineering and

Software Testing

www.matjournals.com

 e-ISSN: 2581-6969

 Volume-6, Issue-3 (September-December, 2020)

 https://doi.org/10.46610/JOCSES.2020.v06i03.001

Figure 2: Second version of the project.

The Fig. 2, shows how the page looks when the

request has been solved successfully and the posts

are displayed on the page. The third, in addition to

including the two previous versions, now three

external libraries are added and used which are:

Redux, React-redux and Redux-saga, one more page

is created whose function is to execute a Redux

action that triggers a Redux Saga action which

makes a request to a local server. Similar to the

previous project, the request returns an array of 5

posts and those are displayed on the page, but

instead of storing them in the local state, they are

stored in redux.

Figure 3: Third version of the project.

In Fig. 3, it is shown how the page looks when the

request has been solved successfully, taking

advantage of the capabilities of Redux. It displays a

notification if the array of posts is stored in Redux

successfully.

• The hardware used for testing is:

Processor: AMD R7 3700x

• RAM: 16gb RAM 3000mhz

• Storage: 1TB ssd HP ex820

• Motherboard: Asus PRIME X570-P

• OS:Windows 10 Professional edition

Testing Environment

Tests were made in browser Google

Chrome version 85.0.4183.121 (64 bits) thanks to its

developer’s tools it is possible to reload a page and

do a profiling of the page until it is loaded or until

the user interrupts the operation, the heap snapshot

is generated after a profiling is done for the actual

4 Page 1-5 © MAT Journals 2020. All Rights Reserved

Journal of Computer Science Engineering and

Software Testing

www.matjournals.com

e-ISSN: 2581-6969

Volume-6, Issue-3 (September-December, 2020)

https://doi.org/10.46610/JOCSES.2020.v06i03.001

test. In order to provide a situation which is near to

a real-life usage, each test was carried out 30

minutes after the previous one. If tests were done in

a shorter time span, results can be compromised to

be influenced by cache memory or memory actual

allocation, each version of each project was tested

10 times and from all tests the average of all

parameters is obtained and displayed in tables. For

testing the first version in all projects, total profiled

time was managed entirely by the browser, for the

other versions it was a set period of time considering

that those versions are dependant of some external

responses and third package libraries added to

projects.

RESULTS AND COMPARISON

The performance of the test in the first

version had these results:

Table 1: First project testing results.

From Table 1, it is possible to infer that the approach

which has the better performance in time, memory

usage in snapshot, and total project size is the hooks

approach. While classes using an outdated Antd had

the poorest performance even doubling the project

size, using an updated version had better results

almost performing better than the project with ES6

syntax and almost matching it is project size. When

performing tests in second version, it was opted to

keep an average profiled time of 1500 milliseconds

in each test to avoid excluding the time of re-

rendering after obtaining the information from a

local API. The performance of the test in the second

version had these results:

Table 2: Second project testing results.

From Table 2, it is possible to notice that hooks

approach still has the best performance in time,

memory usage, and total project size. Classes

approach still obtains the worst performance in all

subjects, there is a change in the updated version,

now it outperform in all subjects the project using

ES6 syntax and even outperform in heap snapshot

size the hooks version, meanwhile the results still

the same as the first test, hooks still has the

advantage, succeeded by Class updated, then ES6

and lastly classes. When performing tests in the third

version, it was opted to keep an average profiled

time of 3000 milliseconds in each test to avoid

excluding the time of re-rendering and the manage

of internal project state done by redux.

5 Page 1-5 © MAT Journals 2020. All Rights Reserved

Journal of Computer Science Engineering and

Software Testing

www.matjournals.com

 e-ISSN: 2581-6969

 Volume-6, Issue-3 (September-December, 2020)

 https://doi.org/10.46610/JOCSES.2020.v06i03.001

The performance of the test in the third version had

these results:

Table 3: Third project testing results.

From Table 3, it is possible to notice that hooks
outperforms all other approaches similarly as done
in the first version. Curiously in this version Classes
obtain the less size in heap snapshot, but still gets
the worst performance in overall test, this could be
thanks to Antd 3.6.7, which does not have Antd
icons integrated, and thanks to this, the usage of an
icon were removed from that project, still, the
updated class version still obtain less snapshot size
than hooks and functional approach, but in size and
milliseconds of usage still hooks the clear winner.

CONCLUSION

The purpose of this paper is to provide an
insight of how each approach of programming in
react impact in the release build of a project. The
three most common approaches of developing in
React were evaluated and anti-pattern approaches
were omitted, such as using class components for
stateless components and hooks for state
managements were not tested because they are not
part of the React developer team good practices.
Hooks is clearly the winner in overall tests, this
could be inferred thanks to hooks being the most
recent approach, but still other approaches still
benefits from updates so keeping the library and
components up to date may be beneficial for old and
new projects. Contrary to expected, classes
approach had better results than functional, but
React team advise the use of functional and hooks
components over classes. This recommendation is
made to avoid the use of life cycle methods in class
components which are difficult to use correctly and
the misuse of them can lead to performance issues
as seen in the old version of Antd. Reviewing
different approaches has given us different results,
which prove that React has been improving over the
time such as hooks has been the last major update at
the time this paper was done.

DISCUSSION AND FUTURE WORK

 As mentioned, React is still evolving together
with web and javascript and currently is one of the
most popular libraries available and it is community
keep growing over time, further tests may be
required when a new feature or new improvement
has been done to the library, while currently class
components are still supported and developers team
mention that they plan to keep this support for future
versions, they advice to use hooks for new works
and use classes for legacy code support exclusively,
in the future this feature may be compromised due
to next features are destined to improve hooks or
even may bring new development approaches in
React, this may serve as a motivation to new and old
users to keep up to date with new features the library
may bring in next updates.

REFERENCES

1. Ku. Chhaya A. Khanzode, Ravindra D. Sarode

(2016), “Evolution of the world wideweb:
From web 1.0 to 6.0”, Internat. J. of Dig. Lib.
Ser., Volume 6, pp. 1-11.

2. D. Mitropoulos, P. Louridas, et al. (2019),
“Time present and time past: Analyzing
theevolution of javascript code in the wild”,
IEEE/ACM 16th International Conference on
Mining Software Repositories.

3. Facebook, “React Github” Facebook, [Online]
Available from:
https://github.com/facebook/react/.

4. Facebook, “Hooks FAQ” Facebook, [Online]
Available from:
https://en.reactjs.org/docs/hooks-faq.html.

5. Facebook, “React v0.14”, Facebook, [Online]
Available from:
https://es.reactjs.org/blog/2015/10/07/react-
v0.14.html.

6. Facebook, “React Component” Facebook,
[Online] Available from:
https://es.reactjs.org/docs/react-
component.html.

https://github.com/facebook/react/
https://en.reactjs.org/docs/hooks-faq.html
https://es.reactjs.org/blog/2015/10/07/react-v0.14.html
https://es.reactjs.org/blog/2015/10/07/react-v0.14.html

