
Revista Innovación y Software

Vol. 1, No. 2, Mes Septiembre-Febrero, 2020

ISSN: 2708-0935

Pág. 12-26

https://revistas.ulasalle.edu.pe/innosoft

Facultad de Ingeniería

Universidad La Salle, Arequipa, Perú

facin.innosoft@ulasalle.edu.pe

12

Tipo de artículo: Artículos originales

Temática: Programación paralela y distribuida

Recibido: 22/09/2020 | Aceptado: 23/09/2020 | Publicado: 30/09/2020

MPI vs OpenMP: Un caso de estudio sobre la generación del

conjunto de Mandelbrot

MPI vs OpenMP: A case study on parallel generation of Mandelbrot

set

Ernesto Soto Gómez 1[0000-0001-6521-2221]*

1 Universidad de las Ciencias Informáticas. Carretera a San Antonio de los Baños, Km. 2 1⁄2. Torrens, La Lisa, La

Habana, Cuba. esoto@uci.cu

* Autor para correspondencia: esoto@uci.cu

Resumen

Algunas de las herramientas más populares hoy en día para la programación paralela son Interfaz de Paso de Mensajes

y Multiprocesamiento Abierto. Es de interés comparar estas herramientas en la resolución de los mismos tipos de

problemas, debido a la utilización de diferentes enfoques en la comunicación entre tareas. Este trabajo tiene como

objetivo contribuir a este empeño al ejecutar pruebas en una arquitectura de memoria compartida y centralizada en el

caso de problemas con una solución completamente paralela. El caso de estudio seleccionado fue la computación

paralela del conjunto de Mandelbrot. Las pruebas se realizaron para diferentes límites de iteración, cantidad de

procesadores y variantes de implementación en C++. Los resultados muestran un mejor desempeño en el caso de

Multiprocesamiento Abierto.

Palabras clave: C++, computación paralela, conjunto de Mandelbrot, MPI, OpenMP.

Abstract

Nowadays, some of the most popular tools for parallel programming are Message Passing Interface and Open Multi-

Processing. It is of interest to compare these tools in solving the same kind of problems, because of the use of different

approaches to inter-task communication. This work attempts to contribute to this goal by running trials in a centralized

shared memory architecture in the case of problems with an entirely parallel solution. The selected case study was the

parallel computation of Mandelbrot set. Trials were conducted for different iteration limits, processors amount, and

C++ implementation variants. The results show better performance in the case of Open Multi-Processing.

Keywords: C++, Mandelbrot set, MPI, OpenMP, parallel computing.

https://revistas.ulasalle.edu.pe/innosoft
mailto:facin.innosoft@ulasalle.edu.pe
https://orcid.org/0000-0001-6521-2221
mailto:esoto@uci.cu
mailto:esoto@uci.cu

Revista Innovación y Software

Vol. 1, No. 2, Mes Septiembre-Febrero, 2020

ISSN: 2708-0935

Pág. 12-26

https://revistas.ulasalle.edu.pe/innosoft

Facultad de Ingeniería

Universidad La Salle, Arequipa, Perú

facin.innosoft@ulasalle.edu.pe

13

Introduction

There are diverse tools for parallel programming. Some of the most popular nowadays are Message Passing Interface

(MPI)1 and Open Multi-Processing (OpenMP)2. Both tools are essentially dissimilar because of the use of different

approaches to inter-task communication: OpenMP uses shared-memory (tasks are realized by using threads in the same

operating system process) [1,2] but MPI uses message-passing (tasks are realized by using a different operating system

processes) [3,4]. For this reason, it is of interest to compare these tools in solving the same kind of problems. That is,

which is the best in computing the same kind of solution for the same kind of problems taking into account that Do the

concerned tools use different inter-task communication mechanisms? This article attempts to contribute to the answer

of this question in a centralized shared memory architecture [5] in the case of problems with an entirely parallel solution,

that is, a solution with the absolute absence of the need for synchronization –except for the gathering of the partial

solutions from several subtasks in order to construct one final solution–.

To accomplish this goal, the parallel generation of the Mandelbrot set has been chosen as an example. This case has

been studied in the parallel computing context, usually as a didactic example [1,6,7] because it can be generated from

a simple mathematical expression. Also, the Mandelbrot set is a fractal: a figure that possesses a detailed structure in a

wide range of scales. Fractal geometrical relations are found in several natural structures, thereby fractals are of great

interest to science [8]. This last point adds to the motivation of the study of this example.

The parallel computing of the Mandelbrot set has been already studied in the case of MPI and OpenMP independently

from each other [1, 9, 10]. The current work makes comparisons between the straightforward sequential implementation

and corresponding parallel versions implemented in MPI and OpenMP with different schedule strategies. C++ has been

used as the programming language and the comparisons were made for different iteration limits and number of

processors. All generated data as well as all used code may be found in https://github.com/EStog/mandelbrotc-/tree/0.1.

The current document is structured in the following manner. First, the fundamental theoretical elements, the proposed

sequential algorithm, and the corresponding parallel versions are exposed. Second, the characteristics of the experiment

and the obtained results are described. Last, final remarks are made.

Methods and materials

1 https://www.open-mpi.org/
2 https://www.openmp.org/

https://revistas.ulasalle.edu.pe/innosoft
mailto:facin.innosoft@ulasalle.edu.pe
https://github.com/EStog/mandelbrotc-/tree/0.1
https://www.open-mpi.org/
https://www.openmp.org/

Revista Innovación y Software

Vol. 1, No. 2, Mes Septiembre-Febrero, 2020

ISSN: 2708-0935

Pág. 12-26

https://revistas.ulasalle.edu.pe/innosoft

Facultad de Ingeniería

Universidad La Salle, Arequipa, Perú

facin.innosoft@ulasalle.edu.pe

14

Sequential implementation

The Mandelbrot set is the set of all c ∈ ℂ for which the recurrence relation (Equation 1):

𝑧𝑛 = 𝑧𝑛−1
2 + 𝑐 (1)

does not diverge with zn ∈ ℂ and z0 = 0.

It is known [6,7] that such sequence does not diverge when (Equation 2):

|𝑧𝑛| ≤ 2 (2)

for all zn ∈ ℂ where3 (Equation 3):

|𝑧𝑛| = √ℜ(𝑧𝑛)
2 + ℑ(𝑧𝑛)

2 (3)

As a way of visualization, the values of c that are members of the Mandelbrot set may be drawn in the complex plane.

Figure 1 shows images of the Mandelbrot set. The images were generated by using the C++ solution developed for this

research.

(a) iteration limit = 10 (b) iteration limit = 20

(c) iteration limit = 40 (d) iteration limit = 80

Figure 1. Representation of the Mandelbrot set in the complex plane.

3 ℜ(z) and =ℑ(z) stands for real and imaginary parts, respectively.

https://revistas.ulasalle.edu.pe/innosoft
mailto:facin.innosoft@ulasalle.edu.pe

Revista Innovación y Software

Vol. 1, No. 2, Mes Septiembre-Febrero, 2020

ISSN: 2708-0935

Pág. 12-26

https://revistas.ulasalle.edu.pe/innosoft

Facultad de Ingeniería

Universidad La Salle, Arequipa, Perú

facin.innosoft@ulasalle.edu.pe

15

A straightforward algorithm that gives an approximation of the Mandelbrot set is to move along a subset of a discrete

version of the domain of c and verify that zn does not diverge by using (Equation 2). The generation of the sequence

determined by (Equation 1) is made while a given iteration limit is not exceeded [6,7]. A sequential C++ implementation

of the mentioned algorithm is given in (Listing 1).

__

Listing 1. Sequential C++ implementation of the straightforward algorithm to approximately compute the Mandelbrot

set.

__

1 void compute_mandelbrot_subset(int* result, int iter_limit, int x_resolution,

2 int y_resolution, double x_begin, double y_begin) {

3 double x_step = (x_end-x_begin) / (x_resolution-1);

4 double y_step = (y_end-y_begin) / (y_resolution-1);

5 int i, j;

6 complex<double> c, z;

7 for (i = 0; i < x_resolution * y_resolution; i++) {

8 c = complex<double>(x_begin + (i % x_resolution) * x_step,

9 y_begin + (i / x_resolution) * y_step);

10 z = 0; j = 0;

11 while (norm(z) <= 4 && j < iter_limit) { z = z*z + c; j++; }

12 result[i-start] = j;

13 }

14 }

Procedure compute_mandelbrot_set in (Listing 1) receives an array result where the computed set will be stored.

Although it represents the complex plane, result is a unidimensional array. This will allow the implementation of similar

parallel versions for MPI and OpenMP even though, in the moment of the visualization of the set in a two-dimensional

space, some transformations must be done. The mandelbrot set and its complement are given as an array of integers.

Each of these values is the number of iterations before 2 is found true. This is useful when visualizing the mandelbrot

set. Figure 1 shows some examples. The images were generated for different iteration limits with a similar procedure4

to those described in [10] and [7, pp. 103–108]. The iteration limit is given by parameter iter_limit. Parameters

x_resolution and y_resolution stand for how big the computed set is, that is, the amount of computed detail. In this case,

the length of result is the product of x_resolution and y_resolution. Parameters x_begin, x_end, y_begin, and y_end

4 See procedure print_result in https://github.com/EStog/mandelbrotc-/tree/0.1/code/common/print_result.cpp

https://revistas.ulasalle.edu.pe/innosoft
mailto:facin.innosoft@ulasalle.edu.pe
https://github.com/EStog/mandelbrotc-/tree/0.1/code/common/print_result.cpp

Revista Innovación y Software

Vol. 1, No. 2, Mes Septiembre-Febrero, 2020

ISSN: 2708-0935

Pág. 12-26

https://revistas.ulasalle.edu.pe/innosoft

Facultad de Ingeniería

Universidad La Salle, Arequipa, Perú

facin.innosoft@ulasalle.edu.pe

16

denote the domain of real and imaginary dimensions, respectively. That is, if5 c = x + yi then x ∈ [x_begin,x_end] and

y ∈ [y_begin,y_end]. When visualizing the set, the ranges are usually around x ∈ [−2.5,1] and y ∈ [−1,1]. Variables

x_step and y_step determine the level of discretization of the plane, that is, the width of the steps taken in each

dimension. The full C++ sequential implementation may be found in folder code/mandelbrot_sequential6.

Parallel implementation

The parallel computing of zn may be difficult due to the nonlinear character of (Equation 1). Moreover, if (Equation 1)

is expanded the following relations hold (Equation 4 and 5):

𝑅𝑒(𝑧𝑛) = ℜ(𝑧𝑛−1)
2 − ℑ(𝑧𝑛−1)

2 +ℜ(c) (4)

𝐼𝑚(𝑧𝑛) = 2ℜ(𝑧𝑛−1)ℑ(𝑧𝑛−1) + ℑ(c) (5)

May be observed that (Equation 4) and (Equation 5) reference to each other recursively, making more difficult the

problem of the parallel computing of zn. For these reasons, normally, the parallel computing of the Mandelbrot set is

realized by making parallel computations of the iterations. In this case, the plane is divided into parts. In the proposed

sequential procedure, result a unidimensional array, which means that only one loop must be parallelized.

Implementation in OpenMP is straightforward by using directive omp for [1, pp. 53–78]. The fact that a unidimensional

array has been chosen to store the solution simplifies the division of its range, making it possible to use the same

procedure code in the sequential version as well as in the OpenMP implementation and in each subtask of the MPI

implementation. In both parallel versions, because each part is independent among each other, it is not necessary to

synchronize the execution of the tasks. The C++ code for this procedure is shown in (Listing 2). Its implementation

may be found in file code/common/compute_mandelbrot_subset.cpp7.

In this case, parameters start and end mark the beginning and the ending of the corresponding part. This will allow

using the procedure in each subtask in the MPI implementation. In the sequential version, the procedure is called with

start=0 and end=x_resolution*y_resolution. When the procedure is used by the sequential and MPI variants the

directives of OpenMP have not effect because the compiler flags for OpenMP are no used. Also, in this general

procedure, all the other referenced variables (x_resolution, x_begin, y_begin, x_step, and y_step) are defined as global

5 i denotes the imaginary unit. That is, i2 = -1.
6 https://github.com/EStog/mandelbrotc-/tree/0.1/code/mandelbrot_sequential
7 https://github.com/EStog/mandelbrotc-/tree/0.1/code/common/compute_mandelbrot_subset.cpp

https://revistas.ulasalle.edu.pe/innosoft
mailto:facin.innosoft@ulasalle.edu.pe
https://github.com/EStog/mandelbrotc-/tree/0.1/code/mandelbrot_sequential
https://github.com/EStog/mandelbrotc-/tree/0.1/code/common/compute_mandelbrot_subset.cpp

Revista Innovación y Software

Vol. 1, No. 2, Mes Septiembre-Febrero, 2020

ISSN: 2708-0935

Pág. 12-26

https://revistas.ulasalle.edu.pe/innosoft

Facultad de Ingeniería

Universidad La Salle, Arequipa, Perú

facin.innosoft@ulasalle.edu.pe

17

constants because their values will not change while the execution of the programs. The full C++ implementation using

OpenMP may be found in folder code/mandelbrot_openmp8.

__

Listing 2. C++ procedure used to compute the Mandelbrot set in the sequential implementation as well as in the parallel

ones.

__

1 void compute_mandelbrot_subset(int* result, int iter_limit, int start, int end) {

2 int i, j;

3 complex<double> c, z;

4

5 # pragma omp parallel shared(result, iter_limit, start, end) private(i, j, c, z)

6 # pragma omp for schedule(runtime)

7 for (i = start; i < end; i++) {

8 c = complex<double>(x_begin + (i % x_resolution) * x_step,

9 y_begin + (i / x_resolution) * y_step);

10 z = 0; j = 0;

11 while (norm(z) <= 4 && j < iter_limit) { z = z*z + c; j++; }

12 result[i-start] = j;

13 }

14 }

__

In the case of MPI, partition of the loop has to be done by hand. That is, to follow the master-slave procedure [11]:

1. Divide the range of the array into p parts, approximately of the same size, where p is the number of available

processors.

2. Compute the i-th part by using processor i.

3. Group the result of each partial computation together into one array.

In MPI, two variants may be considered to realize this procedure. One of the variants is to use MPI_Send and MPI_Recv

functions to send and receive messages directly between the processors [12,13]. One of the processors, the master,

distribute the tasks between the others and group the results together into one array. That processor also computes a

part of the whole solution. The C++ code for this processor is shown in (Listing 3). The other processors, the slaves,

only receive the indexes that define a part to be computed. After generated, they send the part to the master. The C++

code for these processors are shown in (Listing 4). In the two cases (master and slaves)

8 https://github.com/EStog/mandelbrotc-/tree/0.1/code/mandelbrot_openmp

https://revistas.ulasalle.edu.pe/innosoft
mailto:facin.innosoft@ulasalle.edu.pe
https://github.com/EStog/mandelbrotc-/tree/0.1/code/mandelbrot_openmp

Revista Innovación y Software

Vol. 1, No. 2, Mes Septiembre-Febrero, 2020

ISSN: 2708-0935

Pág. 12-26

https://revistas.ulasalle.edu.pe/innosoft

Facultad de Ingeniería

Universidad La Salle, Arequipa, Perú

facin.innosoft@ulasalle.edu.pe

18

part_width=result_size/processors_amount. The full C++ implementation using MPI with MPI_Send and MPI_Recv

functions may be found in folder code/mandelbrot_mpi_send_recv9.

The other variant in MPI is to use MPI_Gather function which allows gathering the partial computations of each slave

into one array [12]. Its use, in this case, is very concise as can be seen in (Listing 5). After space has been reserved for

arrays result and partial_result, only remains to compute the part in each processor –including the master– and then

gather this result by using MPI_gather function. In this case part_width=result_size/processors_amount and

start=current_processor*part_width. The complete C++ implementation may be found in folder

code/mandelbrot_mpi_gather10.

__

Listing 3. C++ code executed by the master in one of the MPI implementation variants.

__

1 // distribute tasks

2 int start, end = 0;

3 for (int i = 1; i < processors_amount; i++) {

4 start = end; end += part_width;

5 int message[2] = {start, end};

6 MPI_Send(message, 2, MPI_INT, i, 0, MPI_COMM_WORLD);

7 }

8 compute_mandelbrot_subset(current+end, iter_limit, end, result_size);

9 // join pieces together

10 for (int i = 1; i < processors_amount; i++) {

11 MPI_Recv(current, part_width, MPI_INT, i, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

12 current += part_width;

13 }

__

Listing 4. C++ code executed by the slaves in the MPI implementation.

__

1 int message[2];

2 MPI_Recv(message, 2, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

3 int* partial_result = new int[part_width];

4 compute_mandelbrot_subset(partial_result, iter_limit, message[0], message[1]);

9 https://github.com/EStog/mandelbrotc-/tree/0.1/code/mandelbrot_mpi_send_rec
10 https://github.com/EStog/mandelbrotc-/tree/0.1/code/mandelbrot_mpi_gather

https://revistas.ulasalle.edu.pe/innosoft
mailto:facin.innosoft@ulasalle.edu.pe
https://github.com/EStog/mandelbrotc-/tree/0.1/code/mandelbrot_mpi_send_recv
https://github.com/EStog/mandelbrotc-/tree/0.1/code/mandelbrot_mpi_gather

Revista Innovación y Software

Vol. 1, No. 2, Mes Septiembre-Febrero, 2020

ISSN: 2708-0935

Pág. 12-26

https://revistas.ulasalle.edu.pe/innosoft

Facultad de Ingeniería

Universidad La Salle, Arequipa, Perú

facin.innosoft@ulasalle.edu.pe

19

5 MPI_Send(partial_result, part_width, MPI_INT, 0, 0, MPI_COMM_WORLD);

6 delete[] partial_result;

__

Listing 5. C++ code for MPI using MPI_gather function.

__

1 compute_mandelbrot_subset(partial_result, iter_limit, start, start+part_width);

2 MPI_Gather(partial_result, part_width, MPI_INT, result, part_width, MPI_INT, 0, MPI_COMM_WORLD);

Results and discussion

Execution environment

The trials consisted in running each implementation for iteration limits 100, 1000, 10000, and 100000 and with one,

two, four, and eight processors. In the case of OpenMP the schedule strategies static, dynamic, and guided were

considered. The scheduling strategy and the number of processors were passed to the program through environment

variables OMP_SCHEDULE and OMP_NUM_THREADS [12]. Each combination of program, iteration limit, and the

number of processors were executed three times and the average of the results was studied by using high-performance

computing metrics. Each program was executed in random order with respect to each other, each iteration limit and

number of processors in a machine dedicated solely to the running of the trials11. Also, the considered resolution –that

is, the size of the computed set– was 1024x1024.

The running machine was a computer model HP Notebook - 15-db0069wm12. In Tables 1 and 2 it is shown relevant

information about the running machine and operating system as well as programming and execution tools and libraries,

respectively. In file data/info.txt13 may be found information that was automatically recorded at the beginning of the

whole experiment by using program inxi14 in root mode15.

11 X graphics and other services like AppArmor were deactivated.
12 https://support.hp.com/us-en/product/hp-15-db0000-laptop-pc/20395843/model/24094114/document/c06125323
13 https://github.com/EStog/mandelbrotc-/tree/0.1/data/info.txt
14 See Linux man page by using command man inxi.
15 The used command line was sudo inxi -Ffmxxx -t c20 -z -! 31.

https://revistas.ulasalle.edu.pe/innosoft
mailto:facin.innosoft@ulasalle.edu.pe
https://support.hp.com/us-en/product/hp-15-db0000-laptop-pc/20395843/model/24094114/document/c06125323
https://github.com/EStog/mandelbrotc-/tree/0.1/data/info.txt

Revista Innovación y Software

Vol. 1, No. 2, Mes Septiembre-Febrero, 2020

ISSN: 2708-0935

Pág. 12-26

https://revistas.ulasalle.edu.pe/innosoft

Facultad de Ingeniería

Universidad La Salle, Arequipa, Perú

facin.innosoft@ulasalle.edu.pe

20

A Python 3 script was developed for the purpose of automatically recording the results to a csv file called

data/run_data.csv16 and plotting the data by using Python libraries pandas [14] and seaborn [14], respectively. These

results may be found in folder data17. The whole Python program may be found in folder trials_runner18.

Table 1. Characteristics of the running machine and operating system.

Model HP Notebook - 15-db0069wm

Microprocessor AMD Ryzen™ 5 2500U Quad-Core

RAM 8 GB DDR4-2400 SDRAM

Operating System OpenSUSE Leap 15.1

Type 64 bits

Kernel 4.12.14-lp151.28.40-default

Table 2. Development and execution tools and libraries.

Tools and libraries Name Version OpenSUSE package

C++ compiler GNU Compiler for C/C++ 7.5.0 gcc 7-lp151.3.5

Building system CMake 3.10.2 cmake 3.10.2-lp151.4.1

MPI development and

programming environment
Local Area Multicomputer (LAM) 7.1.4 lam 7.1.4-lp151.2.38

MPI library OpenMPI 1.10.7
openmpi

1.10.7-lp151.11.4

OpenMP library
GNU Offloading and Multi

Processing Runtime Library
8.2.1

libgomp1

8.2.1+r264010-lp151.1.33

Execution time

Although OpenMP and MPI provide specialized functions to measure the execution time of a program [12,15], the

execution time was measured by using a method that is valid to all the considered implementations. The function

clock_gettime and the clock CLOCK_MONOTONIC_RAW19 were used to obtain a monotonic raw hardware-based real-

time that cannot be disturbed by system calls. This allowed having a normalized and non-biased way of measuring time.

16 https://github.com/EStog/mandelbrotc-/tree/0.1/data/run_data.csv
17 https://github.com/EStog/mandelbrotc-/tree/0.1/data
18 https://github.com/EStog/mandelbrotc-/tree/0.1/trials_runner
19 See Linux man page for clock_gettime(3) by using command man 3 clock_gettime.

https://revistas.ulasalle.edu.pe/innosoft
mailto:facin.innosoft@ulasalle.edu.pe
https://github.com/EStog/mandelbrotc-/tree/0.1/data/run_data.csv
https://github.com/EStog/mandelbrotc-/tree/0.1/data
https://github.com/EStog/mandelbrotc-/tree/0.1/trials_runner

Revista Innovación y Software

Vol. 1, No. 2, Mes Septiembre-Febrero, 2020

ISSN: 2708-0935

Pág. 12-26

https://revistas.ulasalle.edu.pe/innosoft

Facultad de Ingeniería

Universidad La Salle, Arequipa, Perú

facin.innosoft@ulasalle.edu.pe

21

Only the master and main thread execution time were measured in the case of MPI and OpenMP, respectively. Also, in

all variants, only the code involved in computing the mandelbrot set was measured. That is, initialization and finalization

code, including the allocation and deallocation of result array, was not measured. In (Listing 6) is shown the function

used to obtain the current time. This function may be found in file code/common/now.cpp20.

__

Listing 6. C++ function used to obtain current time.

__

1 #include <ctime>

2 #include <cstdlib>

3

4 double now() {

5 struct timespec tp;

6 if (clock_gettime(CLOCK_MONOTONIC_RAW, &tp) != 0) exit(1);

7 return tp.tv_sec + tp.tv_nsec / (double)1000000000;

8 }

The obtained execution time is showed in Figure 2. The graphics show how MPI variants have the worst execution time

while OpenMP implementation is best when using a dynamic schedule. Also, it is important to notice that the three

OpenMP schedules variants behave with different performances. Moreover, in spite of the fact that both use the same

basic strategy, OpenMP with a static schedule has better results than the MPI implementations in these trials. This may

be due to the fact that each slave has to allocate memory to store the computed part –and deallocate it at the end– and

later sent it to the master. This may cause an overhead that is not seen in the OpenMP variants. Finally, it is observed

that MPI variant with MPI_Send and MPI_Recv functions obtained better results than the variant with MPI_gather

function. This suggests that, in some cases, it is better to use low-level functions than high-level functions to build a

concrete solution in order to manifest better performance.

20 https://github.com/EStog/mandelbrotc-/tree/0.1/code/common/now.cpp

https://revistas.ulasalle.edu.pe/innosoft
mailto:facin.innosoft@ulasalle.edu.pe
https://github.com/EStog/mandelbrotc-/tree/0.1/code/common/now.cpp

Revista Innovación y Software

Vol. 1, No. 2, Mes Septiembre-Febrero, 2020

ISSN: 2708-0935

Pág. 12-26

https://revistas.ulasalle.edu.pe/innosoft

Facultad de Ingeniería

Universidad La Salle, Arequipa, Perú

facin.innosoft@ulasalle.edu.pe

22

Figure 2. Execution time in seconds. Lower is better.

Speedup

Speedup is a high-performance computing metric that gives an idea of how much the parallel execution time is better

than the sequential execution time. The obtained value is better while closer to the number of available processors. The

speedup for p processors is (Equation 6):

𝑆(𝑝) =
𝑡(1)

𝑡(𝑝)
 (6)

Here t(1) is the sequential execution time and t(p) is the execution time when p processors are available in the considered

parallel alternative [16–18].

The obtained results for speedup are shown in Figure 3. The graphics show in a better manner the performance

difference between the variants. Also, it is noticed that the speedup for four and eight processors do not come near to

these values. This suggests that an increase of processors amount will not bring much more improvement to performance

in the case of the considered resolution (1024x1024).

https://revistas.ulasalle.edu.pe/innosoft
mailto:facin.innosoft@ulasalle.edu.pe

Revista Innovación y Software

Vol. 1, No. 2, Mes Septiembre-Febrero, 2020

ISSN: 2708-0935

Pág. 12-26

https://revistas.ulasalle.edu.pe/innosoft

Facultad de Ingeniería

Universidad La Salle, Arequipa, Perú

facin.innosoft@ulasalle.edu.pe

23

Figure 3. Speedup. Higher is better.

Parallel efficiency

Parallel efficiency is a high-performance computing metric that gives an idea of how much the speedup is close to the

number of available processors, that is, how well the parallel program had used the available computational resources

(processors in this case). The best-case scenery is when the speedup equals the number of available processors, meaning

that the parallel program had maximum exploitation of the available processing units.

The parallel efficiency for p processors is (Equation 7) [16–18]:

𝐸(𝑝) =
𝑆(𝑝)

𝑝
 (7)

The obtained results are shown in Figure 4. The graphics show the decrease of parallel efficiency with the increment of

processors amount. The results are consistent in each iteration limit. This reaffirm the idea that an increase of processors

amount will not bring better performance, which is more obvious in the case of MPI. In this case, the decrease in

efficiency may be due to the fact that the resolution has been taken constant in these trials, and there will be a moment

when the parts to compute become too small. This may bring as a consequence that little gain in performance is obtained

by computing the parts in a parallel manner because the time that takes to transmit a message is almost the same as the

time to compute apart.

https://revistas.ulasalle.edu.pe/innosoft
mailto:facin.innosoft@ulasalle.edu.pe

Revista Innovación y Software

Vol. 1, No. 2, Mes Septiembre-Febrero, 2020

ISSN: 2708-0935

Pág. 12-26

https://revistas.ulasalle.edu.pe/innosoft

Facultad de Ingeniería

Universidad La Salle, Arequipa, Perú

facin.innosoft@ulasalle.edu.pe

24

Figure 4. Parallel efficiency. Higher is better.

Conclusions

In the present work, a comparison of the parallel generation of Mandelbrot set by using OpenMP and MPI has been

conducted. The trials were executed for different iteration limits, the number of processors, and C++ implementation

variants. In this case, and in general, OpenMP obtained better performance results than the MPI implementations. It is

worth to notice that, although the present work is a case study and for that reason, results should not be taken as

conclusive, the conducted trials may contribute to further research and study. Also, running scripts, images, as well as

C++ source code is provided to allow reproduction and enhancing of the experiments. Moreover, the current work may

be used as a didactic example to the study of the performance of parallel programs.

References

[1] R. Trobec, B. Slivnik, P. Bulić, and B. Robič, “Programming Multi-core and Shared Memory Multiprocessors

Using OpenMP,” in Introduction to Parallel Computing: From Algorithms to Programming on State-of-the-Art

Platforms, ser. Undergraduate Topics in Computer Science, R. Trobec, B. Slivnik, P. Bulić, and B. Robič, Eds.

Cham: Springer International Publishing, 2018, pp. 47–86.

https://revistas.ulasalle.edu.pe/innosoft
mailto:facin.innosoft@ulasalle.edu.pe

Revista Innovación y Software

Vol. 1, No. 2, Mes Septiembre-Febrero, 2020

ISSN: 2708-0935

Pág. 12-26

https://revistas.ulasalle.edu.pe/innosoft

Facultad de Ingeniería

Universidad La Salle, Arequipa, Perú

facin.innosoft@ulasalle.edu.pe

25

[2] M. J. Quinn, “Shared-Memory Programming,” in Parallel Programming in C with MPI and OpenMP. McGraw-

Hill Education, 2003, pp. 404–435.

[3] R. Trobec, B. Slivnik, P. Bulić, and B. Robič, “MPI Processes and Messaging,” in Introduction to Parallel

Computing: From Algorithms to Programming on State-of-the-Art Platforms, ser. Undergraduate Topics in

Computer Science, R. Trobec, B. Slivnik, P. Bulić, and B. Robič, Eds. Cham: Springer International Publishing,

2018, pp. 87–132.

[4] M. J. Quinn, “Message-Passing Programming,” in Parallel Programming in C with MPI and OpenMP. McGraw-

Hill Education, 2003, pp. 93–114.

[5] P. Czarnul, “Generic Taxonomy of Parallel Computing Systems,” in Parallel Programming for Modern High

Performance Computing Systems. Chapman & Hall/CRC, 2018, pp. 11–12.

[6] M. McCool, J. Reinders, and A. Robison, “Mandelbrot,” in Structured Parallel Programming: Patterns for

Efficient Computation. Morgan Kaufmann, Jun. 2012, pp. 131–143.

[7] J. M. Stewart, “Two-Dimensional Graphics,” in Python for Scientists, 2nd ed. Cambridge University Press, 2017,

pp. 82–108.

[8] I. Stewart and A. C. Clarke, “The Nature of Fractal Geometry,” in The Colours of Infinity: The Beauty and Power

of Fractals. Clear Press Ltd, 2004, pp. 2–23.

[9] M. Tracolli, “Parallel generation of a Mandelbrot set,” VIRT&L-COMM, Apr. 2016. [Online]. Available:

http://services.chm.unipg.it/ojs/index.php/virtlcomm/article/view/112

[10] John Burkardt, “MANDEBRTOT - ASCII Portable Pixel Map (PPM) Image of the Mandelbrot Set,” Mar. 2020.

[Online]. Available: https://people.sc.fsu.edu/~jburkardt/cpp_src/mandelbrot_openmp/ mandelbrot_openmp.html

[11] P. Czarnul, “Master-Slave,” in Parallel Programming for Modern High Performance Computing Systems.

Chapman & Hall/CRC, 2018, pp. 35–39.

[12] ——, “Message Passing Interface (MPI),” in Parallel Programming for Modern High Performance Computing

Systems. Chapman & Hall/CRC, 2018, pp. 74–102.

[13] M. J. Quinn, “Floyd’s Algorithm,” in Parallel Programming in C with MPI and OpenMP. McGraw-Hill Education,

2003, pp. 137–158.

[14] W. McKinney, “Plotting and Visualization,” in Python for Data Analysis: Data Wrangling with Pandas, NumPy,

and IPython, 2nd ed. O’Reilly Media, Inc., 2017, pp. 250–283.

[15] P. Czarnul, “OpenMP,” in Parallel Programming for Modern High Performance Computing Systems. Chapman

& Hall/CRC, 2018, pp. 102–118.

https://revistas.ulasalle.edu.pe/innosoft
mailto:facin.innosoft@ulasalle.edu.pe
http://services.chm.unipg.it/ojs/index.php/virtlcomm/article/view/112
https://people.sc.fsu.edu/~jburkardt/cpp_src/mandelbrot_openmp/mandelbrot_openmp.html
https://people.sc.fsu.edu/~jburkardt/cpp_src/mandelbrot_openmp/mandelbrot_openmp.html

Revista Innovación y Software

Vol. 1, No. 2, Mes Septiembre-Febrero, 2020

ISSN: 2708-0935

Pág. 12-26

https://revistas.ulasalle.edu.pe/innosoft

Facultad de Ingeniería

Universidad La Salle, Arequipa, Perú

facin.innosoft@ulasalle.edu.pe

26

[16] ——, “HPC related metrics,” in Parallel Programming for Modern High Performance Computing Systems.

Chapman & Hall/CRC, 2018, pp. 34–35.

[17] R. Trobec, B. Slivnik, P. Bulić, and B. Robič, “History of Parallel Computing, Systems and Programming,” in

Introduction to Parallel Computing: From Algorithms to Programming on State-of-the-Art Platforms, ser.

Undergraduate Topics in Computer Science, R. Trobec, B. Slivnik, P. Bulić, and B. Robič, Eds. Cham: Springer

International Publishing, 2018, pp. 9–11.

[18] M. J. Quinn, “Speedup and efficiency,” in Parallel Programming in C with MPI and OpenMP. McGraw-Hill

Education, 2003, pp. 159–161.

https://revistas.ulasalle.edu.pe/innosoft
mailto:facin.innosoft@ulasalle.edu.pe

