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Abstract 
In this paper, the authors obtain the solution of fractional differential equation associated with a 

LCR electrical circuit in a closed form in terms of the k-Mittag-Leffer function using Caputo 

fractional differential operators. The results derived in this paper are the extensions of the results 

given earlier by M.F. Ali et al[10]. 
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1- INTRODUCTION 
The classical calculus was independently 

discovered in seventeenth century by Isaac 

Newton and Gottfried Wilhelm Leibnitz. 

The question raised by Leibnitz for the 

existence of fractional derivative of order, 

half was an ongoing topic amongst 

mathematicians for more than three hundred 

years, consequently several aspects of 

fractional  calculus were developed and 

studied. During last decade applied 

mathematicians and  physicists found the 

fractional calculus operators to be very 

useful in a variety of fields such as 

quantitative biology, electro chemistry, 

scattering theory, transport theory, 

probability, elasticity, control theory, 

potential theory, signal processing, image 

processing, diffusion theory, kinetic theory, 

heat transfer theory and circuit theory etc.. 

The fractional calculus operators also occur 

widely in technical problems associated 

with transmission lines and the theory of 

compressional shock waves. The fractional 

calculus is a generalization of ordinary 

differentiation to non-integer case. In other 

words, the fractional calculus operators deal 

with integrals and derivatives of arbitrary 

(i.e. real or complex) order. The name 

“fractional calculus” is actually a misnomer; 

the designation, “integration and 

differentiation of arbitrary order” is more 

appropriate. The first accurate use of a 

derivative of non-integer order is due to the 

French mathematician S. F. Lacroix [22] in 

1819 who expressed the derivative of non-

integer order 
2

1
in terms of Legendre’s 

factorial symbol . Starting, with a function 

  =  ,  , Lacroix expressed it as follows 

Replacing with 
2

1
  and putting  = 1, he 

obtained the derivative of order 
2

1
 of the 

function  . The credit of first application of 

fractional calculus goes to Abel’s [11] who 

employed it in the solution of an integral 

equation which emerged in the formulation 

of the  tautochrone problem of finding the 

shape of a frictionless wire lying in a 

vertical plane such that the time of slide of a 

bead placed on the wire to the lowest point 

of the wire is the same regardless of position 

of the bead on the wire. The importance of 

special functions as a device of 

mathematical analysis is well known to the 

scientist, mathematician and engineers 

dealing with the practical applications of 

differential equations. The solution of 

various problems from the heat conduction, 

electromagnetic waves, Fluid mechanics, 
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quantum mechanics, kinetic equations and 

diffusion equations etc. lead obligatory to 

using the special function. Special functions 

arise as a solution of some basic ordinary 

differential equations and solving partial 

differential equations by means of 

separation of variable method. The verity of 

the nature of the methods leading to special 

functions stimulated the increasing of the 

number of special functions used in 

applications.  

The Mittag-Leffler function introduced by 

MittagLeffler [7] in 1903 is defined as 
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where .0)Re(,,   C  
It’s generalized form is given by Wiman[3] 
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where .0)Re(,0)Re(,,   C  
 

The generalization of the above functions is given by  Prabhakar [23] in 1971 in  the form  
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where 0)Re(,0)Re(,0)Re(,,,   C  and )( n
  is the Pochhammer’s symbol. 

In 2012, G. A. Dorrego and R. A. Cerutti [6] introduced the generalization of (3)  known as k-Mittag-

Leffler function  denoted by )(,, xE k


   and  defined as 
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where )(
,


kn

  is the k-Pochhammer’s symbol. k-Pochhammer’s symbol and k-Gamma function are 

given below 
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Need more accurate convergence conditions.  Particularly, )()( xxk  as .1k  

Many numbers of definitions of fractional derivative are given by many mathematicians like Riemann-

Liouville operator, Modified Riemann-Liouville fractional derivative, Caputo fractional derivative, 

Weyl Fractional operator, Tuan and Saigo Fractional Operators. The Riemann-Liouville fractional 

derivative of constant is not equal to the Caputo fractional derivative of constant viz the Caputo 

fractional derivative of constant is zero.The Laplace transform of )(tf is denoted by )}({ tfL and 

defined as  

dttf
st

tfL e )()}({
0


 



 

Where s a parameter is may be real or complex. Its inverse is given by 
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).(})({1 tfsfL   

The Caputo fractional derivative of order   > 0 is introduced by Caputo [9] in the form 
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 Where 
dt

tfd
m

m )(
 is the m-th derivative of the function ( ) with respect to  .  

If ( ) is constant then 0)( tfDc
a t


.  

That is, Caputo’s fractional derivative of a constant is zero.  

The Caputo fractional derivative is a short of regularization in the time origin for the Riemann-

Liouville fractional derivative.  

The Laplace transform of Caputo derivative is representation of   
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When the initial conditions are zero then the equation (11) reduces to  

)(})({ sFstfDL c
a t


  

The importance of the Mittag-Leffler function and its generalizations due to their applications in 

several fields of science and engineering. The applications of the Mittag-Leffler functions are observed 

recently in a number of papers, related to fractional calculus and fractional order differential and 

integral equations and systems. Soubhia, Camargo and Rubens [2] have derived some applications of 

the Mittag-Leffler function in electrical engineering. 

Let ( ) be the ramp function. The ramp mathematically expressed as follows:  

0
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and its Laplace transform is .2
s
   

Let ( ) be the parabolic function. The Parabolic mathematically expressed as follows:  
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and its Laplace transform is .3
s
  

2- LCR – ELECTRICAL CIRCUIT  
In this paper, we present RLC electrical circuit with a capacitor and an inductor are connected in 

parallel and this set is connected in series with a resistor and voltage. The capacitance C, the 

inductance L and the resistor R are consider positive constants and ( ) is the ramp function [2]. 

Consider the ( ) is Heaviside function. The constitutive equations associated with a three elements of 

RLC electrical circuit are:  

The voltage drop                              )()( tI
dt

d
LtU L  , across an inductor; 
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The voltage drop  

                                                       )()( tRItU R  , across a resistor; 

The voltage drop  

 dI
t

tU C )()(
0

 , across a capacitor 

where  ( ) is the current.  

Applying the Kirchhoff’s voltage law and constitutive equations associated with the three elements, we 

can write the non-homogeneous second order ordinary differential equation  

                                    )()()()(
2

2

t
dt

d
tU

L

R
tU

dt

d
tU

dt

d
RC CCC                           ....(10)                                                                                                                                                             

where   ( ) is the voltage on the capacitor, this is the same on the inductor as we can see in figure 1, 

because they are connected in parallel.  

 
On the other hand, we obtain other non-homogeneous second order ordinary differential equations 

associated with the current on the inductor,  

                     )())()()(
2

2

ttRt
dt

d
Lt

dt

d
RLC iii LLL

                                             .....(11) 

                                                                                                                                                           

Again, using the constitutive equation for the inductor, these two non-homogeneous second order 

ordinary differential equations can be led to correspondent  integro-differential equations,  

                     )()()(
1

)(
0

t
dt

d
d

t

LC

R
t

c
t

dt

d
R iii

CCC
                                      ....(12) 

                                                                                                                                                              

and 

                     )()(

0

)()( tdU

t

L

R
tUtU

dt

d
RC LLL                                           .....(13)                                                                                                                                                             

respectively. We note that, integro-differential equations have the some form. Here we consider only 

the first one. The classical methodology to discuss this integro-differential equation is the Laplace 

transform. To this end, we consider the initial condition 0)0( iC
 and the solution can be found in 

terms of an exponential function [8].  

3- FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION  
In this section we discuss the fractional form of equation (12), i.e. a Fractional integro-differential 

equation associated with a current on the capacitor,  
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 We also consider 0)0( iC
, i.e., the initial current on the capacitor is zero. We note that this equation 

is a possible generalization of the classical integro-differential equation 44 M. Ali et al.: An application 

of fractional calculus associated with the RLC electrical circuit, because for   = 1 we recover the 

results obtained in (12). This replacement can be useful in discussing the corresponding numerical 

problem, for a particular value of the parameter, because the solution is presented in terms of a closed 

expression.  

To solve this fractional integro-differential equation, we introduce the Laplace integral transform, 

defined by dtte stsFtL ii CC
)()()}({

0




 

With 0)( sR , and we obtain the following algebraic equation 
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Where we have introduced the positive parameters 
RC

a
1

  and .
1

LC
b   

To recover the solution of the fractional integro-differential equation, we proceed with the inverse 

Laplace transform 
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Using the relation [12]  
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We can write,  
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Where )(
21

1,2, btE
r

rk 





 is the generalized Mittag-Leffler functions and ( ) is the Ramp function.  

Again, if we consider ( ) as a parabolic function then the solution will be 
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4- SPECIAL CASES  
In this paper we obtain new results in terms of  k- Mittag- Leffer function.  If we set k = 1 in the main 

result we arrive at the results given by [10].  
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