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Abstract: With the rapid increase in the use of databases,
missing data make up an important and unavoidable
problem in data management and analysis. A most
important task when pre-processing the data is, to fill in
missing values, smooth out noise and correct
inconsistencies.  This paper presents the missing value
problem in data mining and evaluates some of the methods
generally used for missing value imputation. The new
method that uses mathematical model for impute missing
data. The novel A novel Index Measured segmentation based
Imputation Algorithm (with cross folds) for missing data
imputation was proposed in this paper. The databases were
used to demonstrate the performance of the proposed
method. The proposed algorithm is evaluated by extensive
experiments and comparison with KNNI, SVMI. The results
showed that the proposed algorithm has better performance
than the existing imputation algorithms in terms of
classification accuracy.

I. INTRODUCTION

Missing values has long been an unavoidable problem
that occurs to almost data-driven solutions. There are
various causes such as incomplete data collection, data
entry errors, incompetent data acquisition from
experiments, and unfinished responses to a
questionnaire [1]. This raises a significant problem
towards data analysis, especially to those learning

Models that are compatible only with a complete data
set. Over the past decades, Provision of innovative
research aiming to fill in missing vales is continuously
developed [2]. A rich collection of data pre-processing
techniques has been made available, including zero
imputation, average imputation, minimum imputation,
maximum imputation, expectation maximization, linear
regression imputation and k-nearest neighbours. Unlike
the conventional approach that excludes any record with
missing values, the aforementioned statistical and
machine learning methods attempt to predict those with
the values close to the original data. In this research the
following supervised and unsupervised learning
algorithms are compared with the proposed algorithm.

Il. LITERATURE REVIEW

Missing data imputation techniques [4] to compute the
missing value for the missing record or attribute and fill
the estimated value from other reported values. Missing
data imputation techniques are classified into two
categories that is a) ignorable missing data imputation
[6] b) non-ignorable missing data imputation [6]. In the
literature many researchers have proposed missing data
imputation techniques such as Regression imputation

[7], Hot-Deck Imputation is a statistical method [8],
Imputation with K-Nearest Neighbor (KNNI) [9], K-
means Clustering Imputation (KMI) [10], Imputation
with Fuzzy K-Means Clustering (FKMI)[11], Weighted
imputation with K-Nearest Neighbor (WKNNI) [5],
Support Vector Machines Imputation (SVMI) [12],
Singular Value Decomposition Imputation (SVDI) [5],
Bayesian Principal Component Analysis (BPCA) [13],
Radial Basis Function Network, Event Covering
technique[14] and RNI Algorithm [15]. In this research
work, we proposed a non- parametric imputation
strategy that can be applied to any data set be it nominal
and/or categorical by employing an indexing measure
for computing the similarity between the data records (n
tuples) and also develop illustrative examples
showcasing the application of this algorithm. A new
indexing measure to the imputation algorithm for
missing data values of the attributes to compute the
similarity measure between any two typical elements in
the dataset [3].

I11. METHODOLOGY

In this section we present the novel A novel Index
Measured segmentation based Imputation Algorithm
(with cross folds) for missing data imputation, in which
the information within the incomplete instance of the
dataset, it can be applied to any type of data, be it
categorical (nominal segmented data) and / or numeric
(real or integer segmented data).

We describe a non-parametric imputation strategy
demystified approach to compute the proximity
measure in the feature space between the data record to
identify the nearest neighbors from where the values are
to be imported. The algorithm follows,
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IV.EVALUATION AND RESULTS algorithms on categorical and real values of benchmark
datasets. We conclude that the use of our A novel Index
Measured segmentation based Imputation Algorithm
(with cross folds) strategy improved the accuracies of
the predictions on real world missing data value
problems.

In this section we present our study and the
classification accuracies are presented in Table 1
describes a dataset and Table 2 describes a
performance. A novel Index Measured segmentation
based Imputation Algorithm (with cross folds) is also
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