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Abstract: Finding a set of diverse paths among dynamic 

obstacles is an appealing navigation strategy for mobile 

robots to qualitatively reason about multiple path hypotheses 

to the goal. We introduce an efficient randomized approach, 

based on weighted random walks, that finds K diverse paths 

on the Voronoi diagram of the environment, where each 

path represents a distinct homotopy class. We show 

experimentally that our approach is significantly faster at 

finding paths of higher diversity in distinct homotopy classes 

than two state-of-the-art methods. Moreover, we prove that 

our method is probabilistically complete.  

Keywords: Nonholonomic motion planning, motion and 

path planning, reactive and sensor-based planning. 

I. INTRODUCTION 

SINGLE-QUERY robot motion planning generates a 

single solution from start to goal position under a cost 

function such as shortest path or maximal 

transversability. In the presence of unmodeled dynamic 

obstacles a solution may quickly become obsolete, and 

the path has to be replanned for each change in the 

environment. Alternatively, one can consider an 

algorithm that reactively computes and maintains 

multiple diverse solutions. This approach has benefits in 

a variety of scenarios: a set of diverse paths that is 

continuously checked for validity in the presence of 

unexpected obstacles reduces the number of replanning 

queries in highly dynamic environments [1], allows for 

novel human-robot-interfaces in shared autonomy 

applications [2], [3] and highly efficient, qualitative 

planning paradigms for social navigation. To ensure 

robustness of the path set against changes in the 

environment, paths in the set should be spatially well 

separated, since similar or nearby paths are more likely 

to be invalidated together. Also in shared autonomy 

applications having a set of more diverse paths is 

obviously a beneficial strategy, since switching between 

very similar paths yields limited if not questionable 

usability. Furthermore, when generating a set of paths, a 

reasonable approach would be to have K paths lying in 

different homotopy classes. A homotopy class is 

defined by the set of paths with the same start and goal 

points, in which any two paths can be continuously 

deformed into one another without intersecting 

obstacles. Trajectory optimization methods, which are 

limited to finding local minima, may benefit from a set 

of homotopically distinct paths ([2], also discussed in 

[4]). 

With the goal of efficiently finding a set of diverse, high 

quality paths from different homotopy classes for robot 

navigation, we make the following contributions: 

a) We present a fast and easy to implement random 

walk approach to generate a set of K diverse paths 

belonging to different homotopy classes. Our method 

was first introduced in [5] as an alternative to solve the 

K shortest paths problem with deterministic graph 

search algorithms [2], [6], [7].We build the navigation 

graph from the Voronoi diagram of the environment 

(see Fig. 1), where each path represents a distinct 

homotopy class, and perform a randomized graph 

search based on random walks. To improve planning 

performance of the approach introduced in [5], we bias 

the random walk towards not frequently visited subsets 

of the state space, therefore increasing the probability to 

generate paths not yet found. In practice this 

modification of the algorithm leads to considerable 

performance improvement. Additionally, we prove that 

our approach is probabilistically complete, i.e., it finds 

all the paths, and therefore all the homotopy classes, in 

the navigation graph. 

 

Fig. 1. We test our approach in real-world experiments by 

applying it to social robot navigation in dynamic 

environments. The red Voronoi diagram,  which implicitly 

encodes homotopy classes, describes the possible ways to go 

through a crowd in a room. Our approach rapidly selected two 

possible paths (in yellow and green). 

b) We conduct an extensive evaluation in terms of 

planning performance and path quality of our approach, 

comparing it to two baseline methods that generate 
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diverse and homotopically-distinct paths [1], [2], and 

show that our approach is faster and finds more diverse 

paths (the robot has a more diversified set from where 

to choose the path to follow), whilst obtaining a 

negligible loss in path quality. We use the notion of 

robust diversity of a path set to measure mutual special 

separation of paths. To evaluate the quality of paths in 

the set, we adopt the normalized cumulative gain 

measure which is used to evaluate web search engine’s 

returned results and ranking quality.The paper is 

structured as follows: a brief discussion of related 

works in Section II is followed by the description of our 

approach and its analysis in Section III. Section IV 

describes the experiments’ settings. We discuss the 

results in Section V. Section VI concludes the paper. 

II. RELATED WORK 

Prior research has introduced different methods to 

generate a set of paths from different homotopy classes. 

Demeyen and Buro in [8] introduce a method that 

searches on a graph built using constrained Delaunay 

triangulations. The obstacles are described via 

polygonal representation. The paths found in the graph 

belong to different homotopy classes. In contrast to 

polygonal representation of the environment, our 

method works on arbitrary occupancy grid input, which 

is simpler to handle and nowadays a standard de facto 

to incorporate data from sensors for real-world 

operation [1] introduce an algorithm that seeks to find a 

set of diverse, short paths through a roadmap graph. The 

algorithm searches the graph for shortest paths avoiding 

a collection of balls - simulated obstacles in the 

environment. The obtained paths often belong to 

different homotopy classes.  

The authors compare their approach to a K shortest 

paths algorithm and show that, with tolerable loss in 

shortness, they produce equally diverse path sets more 

quickly. Compared to Voss, our approach is much 

faster, it always returns the requested K paths if they 

exist in the navigation graph, the returned paths always 

belong to different homotopy classes and generally are 

more diverse. Furthermore, our approach has only one 

parameter and its runtime does not depend on the 

density of the roadmap graph. propose a method to find 

different homotopy classes based on A* search over an 

augmented graph. The graph encodes topological 

information via the H-signature, a complex analysis 

value that characterizes a homotopy class. Kuderer et 

al. in [2] select K best homotopy classes by generating 

K shortest paths in a Voronoi-based navigation graph.  

During the navigation, the paths feed an optimization 

algorithm used to generate homotopically distinct 

trajectories. Among those the best one is selected for 

the navigation. They show that the method is one order 

of magnitude faster than Bhattacharya’s approach [6]. 

Moreover, the authors show that the paths in the 

Voronoi diagram are safer and better suited for social 

navigation, as they lie as far as possible from the 

obstacles among all paths in the same homotopy class. 

Kuderer’s approach employs Katoh’s algorithm [9] to 

find the K best paths in the Voronoi diagram. However, 

it was shown by Brander and Sinclair [10] that for small 

size graphs and paths of small number of vertices, like 

in the case of Voronoi-based navigation graph we 

consider, Yen’s algorithm [11] is faster than Katoh’s. 

Therefore, we compare our approach to Yen’s 

algorithm and show that our method is faster and 

returns more diverse paths. Furthermore, in very 

complex environments with many homotopy classes, 

deterministicK best paths are very similar to each other, 

therefore losing the advantage of having a set of distinct 

paths. On the contrary, our approach helps to deliver 

much higher diversity in such scenarios, providing high 

quality paths that explore different regions of the map 

(see Fig. 2). 

 

Fig. 2. Comparison of the paths found by our approach and by 

Kuderer’s approach in the “Cubicles” scenario. The red cross 

represents the robot position, the goal is displayed by the 

green circle. Left: Kuderer’s 4 best paths in the Voronoi 

diagram. They all traverse the same region of the space. 

Right: 4 diverse paths found by our approach. 

III. A RANDOM WALK APPROACH TO FIND 

DIVERSE PATHS 

In this section we detail our approach to find a set of 

diverse paths lying in distinct homotopy classes.A brief 

definition of the navigation graph is followed by the 

description of the random walk procedure. Next, we 

prove that our technique is probabilistically complete. 

A. Navigation Graph: 

To frame the path planning task as a graph search 

problem, we build the navigation graph of the 

workspace environment from a Voronoi diagram VD 

generated from the sensor data (see Section IV-B for 

details on the VD generation). The graph G(V,E) 

consists of a set of nodes (or vertices) V and a set of 

edges E. Let N be the number of nodes and M the 

number of edges. E(vj ) denotes the set of incoming and 

outgoing edges of the vertex vj .We associate to each 

edge eij = (vj, vi) a weight or cost cij (e.g., length of the 

edge). The adjacency matrix A expresses the topology 

of the graph G and is defined as 
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We compute the set of diverse paths by running our 

random walk based algorithm on G. A walk w of length 

k − 1 in G is a sequence of nodes v1, v2, . . . , vk , where 

each pair of nodes is connected by an edge, (vi−1, vi) ∈ 

E for 2 < i ≤ k. Henceforward, walks are referred to as 

paths. 

B. Randomized Homotopy Classes Finder (RHCF): 

To find paths belonging to different homotopy classes 

we introduce the Randomized Homotopy Classes 

Finder (RHCF), detailed in Algorithm 1. Hereinafter all 

the steps of the while loop in Algorithm 1 are referred 

to as iteration of RHCF. We iteratively run the Random 

Walk procedure (see Algorithm 2) on the weighted 

undirected graph G until K distinct paths are found and 

stored in the result set P. The walk starts at the initial 

node vs ∈ G, where the robot position is mapped to, and 

aims to find a random path to the goal node vg . At each 

step of the random walk we choose a random neighbor 

of the current node vj (see RandomNeighbor(vj ) in 

Algorithm 2) with probability pij inversely proportional 

to the cost cij associated to the edge eij 

    
   

     
                                                                  (1) 

with     
 

   
  Aij and where Aij is an element of the 

adjacency matrix A. The weights wij are nonnegative 

over the entire workspace. The N × N transition matrix 

P of the graph G is composed of the elements defined in 

Eq. 1. The node vj is marked as visited by removing its 

adjacent edges from the local copy of Gp and the 

algorithm is not allowed to walk through it again in the 

current random walk. To bias the search towards a not 

frequently visited subset of the state space, therefore 

increasing the probability to generate new paths in the 

next random walks, we adopt a Discounting Strategy(G, 

α, vj, vi) procedure. Each time we leave a node vj , the 

probability pij associated to the edge eij is multiplied by 

a discounting factor α ∈ (0, 1) (for parameter α), 

therefore, the probability to follow the edge eij in the 

next run of the walk decreases 

pij := αpij . (2) 

The transition matrix P is then properly normalized. It 

is worth mentioning that the case of discounting factor 

α = 1 corresponds to our previous implementation of 

RHCF [5] with no biasing towards unexplored regions. 

Smaller values of α correspond to heavier bias. The 

walk stops when the goal node is found (which means, 

we have generated a valid path) or when we reach a 

node with all neighbours marked as visited. Each time a 

valid path P is generated, we compare it to the ones 

already found and save it in the result set P if P is new, 

i.e., not generated before. All the visited nodes are then 

marked unvisited. 

C. Probabilistic Completeness of RHCF 

In Lemma 1 we describe a homotopy-encoding property 

of the Voronoi diagram. Theorem 1 proves that RHCF 

finds any arbitrary path in an undirected weighted 

graph. Finally we prove that RHCF is probabilistically 

complete in Theorem 2. Here we denote |P|i as the size 

(or cardinality) of the result set P at iteration i, Lemma 

1. In the navigation graph G(V,E), built from a Voronoi 

diagram generated from a 2D environment, two 

different paths with the same vs and vg belong to 

different homotopy classes. 

Proof: The Voronoi diagram is defined as the set of 

points in the free space which have equal distance to 

two or more closest obstacles. The Lemma 1 is derived 

from the defining property of the Voronoi diagram for 

2D environments: only one path between any two 

obstacles exists. If two paths between two obstacles 

existed, then they would have different distance to each 

of those obstacles, which contradicts the definition of 

the Voronoi diagram. Hence two different paths have at 

least one obstacle between them, therefore cannot be 

continuously deformed into one another and belong to 

different homotopy classes.  

Theorem 1: Given any arbitrary path in an undirected 

weighted graph, the Randomized Homotopy Classes 

Finder will find it with probability greater than zero. 

 

Proof: A random walk is a sequence of transitions (or 

edges) from a vertex vj to another vi where at each step 
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an edge eij is chosen with a probability higher than 

zero, pij > 0.We assume that the weights wij are 

nonnegative over the entire workspace. Every possible 

path Pk in the graph is a concatenation of Z number of 

edges’ transitions, 

 

Given that all the transitions in the graph have a 

probability greater than zero (pij > 0), every possible 

concatenation of transitions has a probability greater 

than zero. Therefore, any arbitrary path Pk in the graph 

has non-zero probability to be found during the random 

walk.

 

Theorem 2: Consider an undirected graph G(V,E), built 

from a 2D Voronoi diagram, with nonnegative weights 

and with encoded K possible paths connecting the start 

vertex vs and the goal vertex vg . Then the probability 

that RHCF finds all the K  paths lying in different 

homotopy classes, in the graph G(V,E) connecting vs to 

vg , that is the size of the result set P is equal to K, 

converges to 1 as the number of iterations n approaches 

infinity:  

 

path Pk (or walk) from vs to vg with a non-zero 

probability. Each time a valid and new path Pk is 

generated, it is added to P and thus increasing of one 

the size of P. Given that the graph G(V,E) is built from 

a 2D Voronoi diagram, by means of Lemma 1 every 

new valid path added to P belongs to a new homotopy 

class. Given enough time, from Theorem 1, any 

arbitrary new valid path Pk can be generated by the 

random walk and added to P therefore satisfying 

limn→∞               

IV. EXPERIMENTAL SETUP 

We present a set of experiments to evaluate the 

performance of our method and show that it 

outperforms current state-of-the art algorithms to 

compute a set of diverse paths presented by Voss et al. 

[1] and Kuderer et al. [2], detailed respectively in 

Section IV-E and Section IV-F. For our experiments we 

choose proper environments of varying complexity and 

describe appropriate metrics to demonstrate the 

efficiency of RHCF in terms of planning performance 

and solutions’ quality. All the simulated experiments 

are carried out on a PC with 2.3 GHz Intel Core i5 and 

4 GB of RAM. Each reported value is an average of 200 

runs. In all the experiments we use path length as the 

edge costs.  

A. Simulated Environments: 

We design four simulated environments (shown in Fig. 

3) to stress different properties of the planner and to 

study how the algorithm behaves in scenarios of 

varying complexity. In the wall of people scenario, the 

robot needs to find different ways to the goal through a 

queue of standing people. This scenario has 36 possible 

homotopy classes. In the crowd scenario,which has 380 

possible homotopy classes, the people are placed in a 

sparser way forming different groups. In the surrounded 

scenario (710 homotopy classes), the robot is placed in 

the crowd, surrounded by several people. The corridor 

scenario (over 60000 homotopy classes) represents a 

challenging situation with a crowded corridor and 

dozens of people, walking alone and in groups. 

B. Voronoi Diagram: 

To generate a Voronoi diagram of the environment, we 

utilize the open-source C++ package developed by Lau 

et al. [12]: a computationally efficient approach that is 

based on incremental updates, applicable in dynamic 

environments, which was shown to dramatically reduce 

the computation time needed to build (and update) the 

Voronoi diagram. Lau’s algorithm is in the same 

complexity class as a simple image passing algorithm, 

i.e., O(n2 ) for an n × n input map. The authors in [12] 

also show that in very narrow and cluttered 

environments Voronoi-based planning (first build a 

Voronoi diagram and then plan over it) outperforms 

single-query sampling-based motion planners (like RRT 

and KPIECE) in terms of planning efficiency. 

C. Performance Metrics:  

To quantify the planning performance and quality of 

our approach, we compute the averages and the 

standard deviations of the following metrics: Tk time to 

get K paths, nCGk normalized cumulative gain, RDk 

robust diversity of the result set PK of K paths returned 

by the algorithms. For runtime evaluation we are only 

interested in measuring the time to generate K paths in 

the navigation graph, excluding the time to compute the 

Voronoi diagram of the environment or generate the 

probabilistic roadmap graph (PRM) that is used by 

Voss’ algorithm. We report the time to build the 

navigation graph separately. The robust diversity 

measures how large are the intra-set distances between 

pairs of paths in PK . Let us consider the distance 

between two paths pa and pb to be the discrete Fr´echet 

distance df (pa, pb ), as in [1]. We define RDk as 

 

Higher diversity value indicates better spatial separation 

of paths in the set. The normalized cumulative gain 

nCGk is used to evaluate ranking performance of web 

search engine algorithms. It computes how far is the 

candidate ranking set (e.g., a set of K random paths) 

from the ideal ranking set (a set ofK best paths). nCGk 
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is based on the definition of relevance (rel) of a single 

path. We define the relevance as the inverse of the path 

cost: 

 

To paths with smaller costs correspond higher rel 

values. The cumulative gain CGk of a set of paths PK is 

the sum of rel values of all paths in the set: 

 

The cumulative gain is normalized by the maximum 

cumulative gain of K best paths in the graph between 

the start and goal points: 

 

Therefore the nCGk of the K best paths, e.g., found by 

Kuderer’s algorithm, equals 1 for anyK. In general, 

nCGk ∈ [0, 1], with higher values corresponding to sets 

of paths with lower costs. It is important to note the 

trade-off between the quality of paths in the set (e.g., 

their lengths) and diversity: the best K paths are often 

very similar to each other, contributing to higher 

cumulative quality of the path set at the cost of very 

lowdiversity (high nCGk, low RDk ). Adding diverse 

paths to the set may decrease the nCGk value. To 

provide a baseline, in our evaluation we compare the 

nCGk value of RHCF to the nCGk value of a Uniform 

Random Path: a na¨ıve, uninformed algorithm, that 

samples random K paths uniformly from the set of all 

possible paths between two nodes.  

 

Fig. 3. Top left: crowd environment, top middle: wall of people scenario, top right: surrounded environment. At the bottom we have 

the corridor environment. In all the environments, the occupancy grids’ cells are marked as obstacles according to the humans poses 

and their personal space. We assume that humans poses are provided by a people tracker. Personal space of human agents is displayed 

in grey scale, with darker regions corresponding to higher social cost: its peaks represent the agent positions. The red cross represents 

the robot position, the goal is displayed by the green circle. The edges of the Voronoi diagram are in dark grey and example paths 

generated by our approach are displayed with black edges. 

D. RHCF Parameters: 

Prior to the main experiments, we analyze the impact of 

the single parameter α on the performance of RHCF. 

After an informal validation, we see that the number of 

random walks N RWk needed to generate K distinct 

paths, and consequently RHCF runtime, decreases 

monotonically as α goes from 1 to 0.5 (see Fig. 4, where 

we show the results for the crowd scenario, but 

qualitatively similar trends are visible in the other 

scenarios too).  

 

Fig. 4. Value of the normalized cumulative gain nCG15 (in 

red) and number of random walk iterations N_RW15 (in blue) 

needed to generate 15 homotopy classes (same trends visible 

with other values of K) for different values of α in the crowd 

scenario. N_RWk (consequently also Tk ) monotonically 

decreases with a smaller value of α. The nCGk has only a 

slight decrease over the same α range. 

For our experiments we choose α = 0.8, where we 

achieve a good trade-off between planning time and 

path quality: a smaller α value yields no considerable 

improvement to the planning time but causes further 

decrease of the normalized cumulative gain, therefore 

compromising the path quality. 

E. Voss’s Algorithm: 

Voss’ algorithm seeks to generate a set of diverse paths 

in the roadmap navigation graph (PRM) of the 

environment. We evaluate Voss’ algorithm on the 

following metrics: Tk time to generate K paths, and RDk 

robust diversity of the result path set. We use a C++ 

implementation, provided by the authors of the paper. 

Parameters of Voss’ algorithm are set empirically, 

following the suggestions from their paper: we choose 

the recommended branching factor b = 2, we set the ball 

radius ρ in each scenario individually to the highest 

value that still returned an  average of 80% of K paths 

requested, typically ρ ≈ 0.1 − 0.2. The number of PRM 

samples is set to 100–500, depending on the complexity 

of the scenario. We use the C-space distance for 
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simulated obstacles placement and the filtration step of 

the algorithm accepts all paths. 

F. Kuderer’s Algorithm: 

Both Kuderer’s algorithm and RHCF seek to find paths 

on a navigation graph based on the Voronoi diagram of 

the  environment. Kuderer’s approach employs Katoh’s 

algorithm to find theK best paths in the graph. For a fair 

runtime comparison, we consider three popular 

algorithms for finding the K best paths (Yen’s, Katoh’s 

and Eppstein’s) and choose the Yen’s algorithm [11] for 

comparison. Yen’s algorithm finds K shortest loopless 

paths for a given pair of start and goal poses. The 

algorithm’s computational upper bound increases 

linearly with the value of K: with modern data 

structures it can be implemented in O(KN(M + 

Nlog(N))) worst-case time.We use the C++ 

implementation by Martins and Pascoal [13], which is 

reported to have better performance than the 

straightforward implementation. Yen’s loopless K best 

paths have higher diversity than the paths with loops 

found by Eppstein’s algorithm. Additionally, as shown 

by Brander and Sinclair [10], for small size graphs and 

paths with a small number of vertices (like the graphs 

generated from a Voronoi diagram), Yen’s algorithm is 

faster than Katoh’s. We evaluate Kuderer’s algorithm 

on the following metrics: Tk , RDk . We also measure 

the nCGk value of our K random paths with respect to 

the K best paths found in the Voronoi diagram by 

Kuderer’s algorithm. 

 

V. RESULTS AND DISCUSSION 

Tables I–V collect the empirical results generated for all 

the scenarios. The best values are highlighted in 

boldface. RHCF significantly outperforms the baselines 

with respect to all the performance metrics. Moreover, 

we test the approach in realworld experiments by 

applying it to socially-aware navigation in dynamic 

environments. 

A. Empirical Results: 

Table I shows the planning time results for K = {10, 

50}: our approach is at least two times faster than 

Kuderer’s to find a subset of homotopy classes among 

those present in the navigation graph. In very complex 

scenarios the difference in runtime becomes significant, 

e.g., 18.8 ms vs. 143.9 ms in the corridor scenario for K 

= 200. Moreover, RHCF is faster than Voss’s algorithm 

by several orders of magnitude, also if the graph 

building times were considered. Table II reports the 

building times for the Voronoi-based navigation graphs 

and PRM graphs (the latter built using the OMPL 

library [14]) for each scenario. 

Table III details the planning time obtained by state-of-

the art sampling-based motion planners (these 

experiments were carried out using the OMPL library 

[14]) to find a pure geometric solution for the 

surrounded scenario. As pointed out in Section IV-B in 

very complex environments, like the case of the 

surrounded scenario where start and goal poses are 

surrounded by obstacles, a Voronoi-based path planner 

outperforms sampling-based motion planners, whose 

trees (or graphs) fatigue to escape from narrow 

corridors and complex 
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areas of the environments. In our evaluation for the case 

of the surrounded scenario, sampling-based motion 

planners are several orders of magnitude slower to find 

a single solution to the path planning problem while our 

approach needs a few milliseconds (in average 8.3 ms) 

to build the navigation graph and to find 50 different 

paths. In the other scenarios RHCF and the evaluated 

sampling-based motion planners are equally fast. 

Table IV details the results related to the normalized 

cumulative gain for K = 10. RHCF, whilst being faster, 

also finds solutions with a gain close to the maximum 

value of 1, which means the solution quality is very 

high. As a reference, we provide nCGk results of the 

Uniform Random Paths (Uniform RP) algorithm that 

draws samples from the set of all paths between two 

nodes with uniform distribution. RHCF revealsmuch 

higher nCGk results, indicating its bias towards high 

quality solutions. Only in one scenario, corridor, we 

have a lower nCGk : this is due to the higher number of 

total homotopy classes of the scenario. In this case the 

above mentioned quality-diversity trade-off is 

prominent: the best K paths of over 60000 present in the 

corridor scenario are very similar, so introducing a 

certain degree of diversity into the path set inevitably 

leads to lower normalized cumulative gain. 

 

Fig. 5. Planning time Tk for different values of K in the crowd 

scenario. In blue our approach considering two values of the 

discounting factor α, in black Kuderer’s algorithm and in red 

Voss’s method. Our approach is faster than all the baselines. 

The introduction of the discounting strategy (α = 0.8) further 

improved the planning performance of our previous RHCF 

implementation (α = 1). 

Table V details the diversity of the paths generated by 

the approaches for K = 10: RHCF outperforms 

Kuderer’s and Voss’s algorithms in all the 

environments, delivering more diverse path sets. Figs. 

5–7 show the metrics trends for different values of K in 

the crowd scenario (same trends are visible in other 

scenarios). In all figures the standard deviation is 

depicted with vertical lines. RHCF is significantly faster 

than the baselines, as Fig. 5 indicates. The introduction 

of the discounting strategy further improved the 

planning performance of our previous RHCF 

implementation [5]. Our approach has noticeably higher 

robust diversity RDk , see Fig. 6: the paths produced are 

more diverse than the ones generated by the baselines 

for small values of K. RHCF quickly converges to the 

optimal value of the normalized cumulative gain as K 

increases, consequently generating high quality paths 

(see Fig. 7, where the nCGk trends are reported for all 

the scenarios). 

B. Application to Social Navigation: 

We conduct further experiments in real-world settings. 

RHCF allows us to address the task of social robot 

navigation as a qualitative planning problem that 

enables a robot to evaluate several diverse paths (see 

Figs. 1 and 8) with respect to social costs, more rapidly 

than the other baselines. More specifically,we integrate 

the approach in a hierarchical motion planning 

framework that re-plans at a given frequency (6 Hz)1: 

firstly a set of diverse paths lying in different homotopy 

 

Fig. 6. Robust diversity RDk obtained by varying K in the 

crowd scenario. The paths produced by our approach are more 

diverse than the ones generated by the baselines for small 

values of K. 

 

Fig. 7. Normalized Cumulative Gain nCGk obtained by 

varying K in the wall of people, crowd, surrounded and 

corridor scenarios. As K increases, our approach converges to 

the optimal value of the normalized cumulative gain nCGk. 
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Fig. 8. Application in social settings. Upper Left: dynamic 

scene with three people walking, the robot has to reach a point 

in front of them, respecting a social cost. Upper Right: The 

robot reaches its goal by following the yellow path selected by 

RHCF from the Voronoi diagram (in red). People, tracked by 

a multimodal tracker [17], are represented by colored 

cylinder-shaped objects. Bottom row: three people that 

interact with each other and robot following the  rapidly 

generated socially acceptable path. 

classes is generated from a Voronoi diagram using 

RHCF, subsequently among those we choose the best 

path according to a social cost based on the social force 

model by Helbing [15]. Finally, a smooth trajectory 

with a velocity profile that respects the dynamic 

constraints of the robot is generated in the chosen 

homotopy class by using an non-holonomic RRT* 

based algorithm [16]. Throughout several experiments 

where the movements of the people were uncertain, our 

method promptly reacts to the environment changes 

while generating high quality solutions and respecting 

the social constraints of the scene. As Section V-A 

points out, for this task (where the robot is trapped by a 

group of people moving around it) using sampling-

based motion planners, to plan a path considering the 

entire environment, would result in higher planning 

times. 

VI. CONCLUSIONS 

In this paper we introduce theRandomized Homotopy 

Classes Finder that finds a set of K diverse paths 

belonging to distinct homotopy classes in an undirected 

weighted graph built from a Voronoi diagram.We prove 

that our approach is probabilistically complete, i.e., it 

finds all the paths, and therefore all the homotopy 

classes. Our extensive experimental evaluation shows 

that RHCF finds diverse paths significantly faster than 

two state-of the-art methods. Moreover, as the 

cumulative gain results show, the paths produced by our 

approach are of similar quality to Kuderer’s true K best 

paths. A key property of our method is that it computes 

a set of more diverse paths with respect to the baselines: 

usually in dynamic environments spatially separated 

paths are more robust to invalidation due to unexpected 

obstacles, than similar or adjacent paths. Furthermore 

we test our approach in real-world experiments by 

applying it to social navigation settings in dynamic 

environments. In future work, we intend to formally 

study the space and time complexity of the algorithm. 

Additionally, we are interested in extending the 

algorithm to generate a more robust paths set by 

considering sensing and motion uncertainty. 
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