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Abstract
Alloxan (A) is a highly toxic especially the liver and pancreas. The present study was designed to evaluate the
antioxidant effect of flavonoids on alloxan-induced hepatic dysfunction, elevation of gamma glutamyl
transpeptidase (GGT) and oxidative stress in rats. Adult male Wister rats were administered by alloxan
monohydrate (120 mg/kg bw i.p route) This study revealed significant liver enzyme Gamma glutamyl
transpeptidase(GGT) elevation, lipid peroxidation and a decline in antioxidant enzyme activities in the liver of
alloxan-treated rats compared to control animals. flavonoids significantly increased (p < 0.05) antioxidant
enzymatic activities (Glutathione, MDA), and reduced elevated blood glucose and GGT levels compared to
those given alloxan alone. Thus, the oral administration of flavonoids, significantly (p < 0.05) improves alloxan-
induced liver dysfunction and stress oxidant in rats. The present results shown that Flavonoids (quercetin,
chrysin and hesperidin) has an antihyperglycaemic effect and consequently may alleviate elevation of GGT and
oxidative stree in associated with alloxan-induced diabetes mellitus in rats.
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Introduction
Serum gamma-glutamyl transferase (GGT), an
enzyme responsible for extra cellular catabolism of
glutathione and a marker of oxidative stress (Lee
DH et al., 2004) has been shown to be associated
with cardiovascular disease (Lee DH et al., 2006),
peripheral arterial disease (Shankar A et al., 2008)
and hypertension (Shankar A & Li J. 2007) Several
prospective (Nakanishi N et al.,2003, Lee DH et
al., 2003, Meisinger C  et al., 2005, Lee DH et
al.,2004, Perry IJ  et al.,1998 and Nilssen O &

Forde OH 1994) and cross-sectional studies (Kim
DJ et al.,2005, Lee DH  et al.,2003, Lim JS et
al.,2007) have reported a positive association
between serum GGT and diabetes mellitus. In this
context, we studied the association between serum
GGT and diabetes mellitus. Diabetes is usually
accompanied by increased production of free
radicals (Baynes JW&Thorpe SR 1999, Baynes
JW.1991, Chang KC et al., 1993, Young IS1995)
or impaired antioxidant defenses (Halliwell B
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&Gutteridge JM 1990, Saxena AK  et al., 1993,
McLennan SV  et al., 1991). The superoxide anion
radicals undergo dismutation to hydrogen peroxide,
which if not degraded by catalase or glutathione
peroxidase, and in the presence of transition metals,
can lead to production of extremely reactive
hydroxyl radicals (Jiang ZY et al., 1990, Wolff SP,
Dean RT. 1987).Hyperglycemia is also found to
promote lipid peroxidation of low density
lipoprotein (LDL) by a superoxide-dependent
pathway resulting in the generation of free radicals
(Tsai EC  et al., 1994, Kawamura M  et al., 1994).
While on the one hand hyperglycemia engenders
free radicals, on the other hand it also impairs the
endogenous antioxidant defense system in many
ways during diabetes (Saxena AK et al., 1993)
Antioxidant defense mechanisms involve both
enzymatic and nonenzymatic strategies, common
antioxidants and the cofactors they work in synergy
with each other and against different types of free
radicals. Vitamins A and E scavenge free radicals
(Young IS et al., 1995, Laight DW et al., 2000,
Abdel-Wahab MH& Abd-Allah AR 2000, Chow
CK .1991, Asayama K et al., 1989). Diabetes
mellitus (DM) is grossly reflected by profound
changes in protein metabolism and by a negative
nitrogen balance and loss of nitrogen from most
organs. (Almdal TP&Vilstrup H. 1987) Increased
urea nitrogen production in DM may be accounted
for by enhanced catabolism of both liver and
plasma proteins. (Jorda A et al., 1982)
Management of DM without any side effects is still
a challenge to the medical system. There is an
increasing demand by patients to use natural
products with antidiabetic activity, because insulin
and oral hypoglycaemic drugs have undesirable
side effects( Kameswara Rao B & Appa Rao CH.
2001) Medicinal plants are a good source of natural
antioxidants by scavenging the reactive molecular
species to prevent their reaching a target site.(
Shanmugasundaram ERB  et al ., 1990, Kaleem M
et al., 2006, Kaleem M  et al., 2005) It has been
documented that show their hypoglycaemic effects
associated with a significant alteration in the
activity of liver and serum enzymes, like alkaline
phosphatase (ALT), acid phosphatase and
transaminases, aspartate aminotransferase (AST)
and alanine amino transferase (ALT).
Phytochemicals isolated from plant sources have
been are used for the prevention and treatment of
cancer, heart disease, DM, and high blood pressure
(Waltner-Law ME et al., 2002). Polyphenolics,

commonly found in fruits, vegetables and grains,
provide chemoprotective effects to combat
oxidative stress in the body and to maintain balance
between oxidants and antioxidants in order to
improve human health (Hsu, 2006). An imbalance
caused by oxidant excess leads to oxidative stress,
resulting in DNA and protein damages and
increases the risk of degenerative diseases such as
cancer (Hsu, 2006). The best described property of
almost every group of flavonoids is their capacity
to act as antioxidants (Nijveldt RJ et al., 2001). The
flavones and flavonols (apigenin, luteolin,
quercetin, rutin and others) seem to be the most
powerful flavonoids for protecting a body against
reactive oxygen species.

Materials and methods
Experimental animals
Male wister rats weighing about 150-180 g were
used. They were purchased from the mahaveer
enterprises hyderabad. They were kept under
observation for about 15 days before the onset of
the experiment to exclude any intercurrent
infection. The chosen animals were housed in
plastic well aerated cages at normal atmospheric
temperature (25±5 °C) and normal 12- hour
light/dark cycle. Moreover, they had free access to
water and were supplied daily with standard diet of
known composition ad libitum. All animal
procedures were in accordance with the
recommendations of the ethical Committee
guidelines for Care and Use of Animals.

Chemical agents
Alloxan monohydrates (A) as well as quercetin
(Q),chrysin(Ch). Hesperidin(Hesp) were purchased
from Sigma Chemical Company (St.Louis, MO).
Pioglitazone gift sample from Natco.pharma.
Hyderabad, India.

Induction and treatment of diabetes
Diabetes was induced by a single injection of
alloxan (120 mg/kg i.p) fasting for at least 16
hours, in freshly prepwered 1% sodium carboxy
methyl cellulose, Blood glucose levels were
measured  48 hours after alloxan administration,
development of diabetes mellitus was proven by
sustained hyperglycaemia (diabetic rats had
glycaemia > 16 mmol/l).The diabetes developed
rats were selected for study and  treated with the
flavonoids (quercetin(Q) 200mg/kg per
oral(p.o).,chrysin(Ch) 100 mg/kg p.o.. Hesperidin
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(Hesp) 300 mg/kg p.o.)and pioglitazone 15 mg/kg
p.o for 21 consecutive days (after alloxan
administration).

Experimental design
The rats were randomly divided into 9 groups
(n =6) as follows:
Group I: control animals (sod. carboxymethyl

cellulose-1%, orally).

Group II: diabetic animals

Group III: diabetic animals + Quercetin (Q).

Group IV: diabetic animals + Chrysin (Ch)

Group V: diabetic animals + Hesperidin (Hesp)

Group VI: diabetic animals + Pioglitazone(P)

A flavonoids plus pioglitazone was administered in
diabetic animals (groups IIIa-Va) which was
received Q or Ch or Hesp at the same doses and
schedule as groups III – V. The flavonoids were
administered orally (by gavage) in sod

carboxymethyl cellulose as a vehicle. Doses of
flavonoids were assigned on the basis of experience
from literature (Mahesh and Menon 2004; De Boer
et al.2005).

Biochemical evaluation
Blood samples were collected from the tail vein of
rats on 0 day, 7th day, 14th day and 21 days of
control, diabetic and flavonoids treated diabetic rats
and centrifuged at 1000 g for 15 min. In order to
determine blood glucose levels (Trinder, P. 1969),
Serum Gamma GT (Szasz G 1969) and Glutathione
(Ohkawa. H. et al., 1979), & MDA (Beulter.
D.V.1963) were estimated after 21 days treatment.

Statistical analysis
The data are presented as mean ± SD Statistical
comparisons were made by one-way analysis of
variance (ANOVA) and followed by Student-
Neuman-Keuls as the post hoc test. Data were
considered significant when p values were lower
than 0.05.

Fig. No. 01: Blood glucose levels of the control, alloxan-induced diabetic, and Alloxan+ Quercetin and treated
combination with pioglitazone diabetic rats. Values presented represent Mean±SD of n=6 rats. (Data indicates

significant values ***p<0.001vs control ,alloxan diabetic rats and treated with flavonoids)
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Fig. No. 02: Blood glucose levels of the control, alloxan-induced diabetic, Alloxan+ Chrysin and treated
combination with pioglitazone diabetic rats. Values presented represent Mean±SD of n=8 rats. (Data indicates

significant values **p<0.05, ***p<0.001vs control ,alloxan diabetic rats and treated with flavonoids)

Fig. No. 03: Blood glucose levels of the control, alloxan-induced diabetic, Alloxan+ Hesperidin and treated
combination with pioglitazone diabetic rats. Values presented represent Mean±SD of n=6 rats(Data indicates

significant values ***p<0.001vs control ,alloxan diabetic rats and treated with flavonoids)

Fig. No. 04: serum GGT activity of the control, alloxan-induced diabetic and Alloxan+ Quercetin and treated
combination with pioglitazone diabetic rats. Values presented represent Mean±SD of n=6 rats. (Data indicates

significant values ***p<0.001vs control ,alloxan diabetic rats and treated with flavonoids)
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Fig. No. 05: serum GGT activity of the control, alloxan-induced diabetic and Alloxan+ Chrysin and treated
combination with pioglitazone diabetic rats. Values presented represent Mean±SD of n=6 rats. (Data indicates

significant values **p<0.05, ***p<0.001vs control ,alloxan diabetic rats and treated with flavonoids)

Fig. No. 06: serum GGT activity of the control, alloxan-induced diabetic and Alloxan+ Hesperidin and treated
combination with pioglitazone diabetic rats. Values presented represent Mean ±SD of n=6 rats. (Data indicates

significant values ***p<0.001vs control ,alloxan diabetic rats and treated with flavonoids)

Table No. 01: Effect of treatment with Quercetin(Q) (200mg/kg) Chrysin(Ch) (100mg/kg) and Hesperidin
(Hesp) (300 mg/kg) and pioglitazone combination for 21 days on plama Glutathione and serum MDA levels of

control and diabetic rats. (Values are Mean ± SD, n = 6)
Groups/Parametes MDA(nM) Glutathione(uM)

Control 6.1±0.92 384.67 ± 15.45
Alloxan(A) 13.8±0.82 103.2±12.71
A+Quercetin (Q) 7.3±2.1** 283.51±31.3**
A+Pioglitazone (P) 7.7±0.25* 296.43±25.2*
A+Q+P 6.7±0.36** 331.23±28.2**
A+Chrysin (Ch) 7.3±1.1** 285.31±22.51*
A+Ch+P 7.0±1.5** 321.46±21.42**
A+Hesperidin(Hesp) 6.7±1.6** 332.31±18.1**

A+Hesp+P 6.4±0.93**
361.26±18.2**

(Data indicates significant values *p<0.05, **p<0.001vs control and alloxan diabetic rats)
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Results
The effects of flavonoids (quercetin, chrysin and
hesperidin) on blood glucose levels (0 day, 7days,
14 days and 21days) of control, diabetic and
flavonoids treated diabetic rats were summarized in
Figs. 1, 2 and 3, and the data of MDA, Glutathione,
levels were presented in Table 1. Gamma Glutamyl
tranferase activity is represented in figs 4, 5 and
6.The quercetin, chrysin , hesperidin  and
pioglitazone combination  had no effect on
normoglycaemic animals. On the other hand, the
alloxan-induced animals consistently exhibited
hyperglycaemia. The simultaneous treatment with
quercetin and combination with pioglitazone,
significantly reduced the blood glucose levels in
diabetics (p < 0.001). Completely controlled,
elevation of serum glucose by Chrysin, hsperidin
alone and combination with pioglitazone (p <
0.01). All the flavonoids significantly increased
Glutathione levels, reduced MDA levels and the
activity of Gamma glutamyl transpeptidase levels
as per dose and schedules.

Discussion
The oxidative stress in the pathogenesis of diabetes
and diabetic complications has been extensively
studied for years both in animal models and in
clinical setting. Certain studies have found
increased lipid peroxides and/or ROS in different
animal models of diabetes (Anjaneyulu et al., 2004;
Mehta et al., 2006). However the results in clinical
practice are not unambiguous and the usefulness of
antioxidant therapy in diabetic patients is far from
convincing (Newsholme et al., 2007). Alloxan, a
chemical diabetogen, in the presence of glutathione
is reduced via the alloxan radical into dialuric acid.
During this redox cycling process, reactive oxygen
species are formed that destroy β-cells in islets of
langerhans. Moreover, it is suggested that
transitional metals such as iron, zinc and copper
may be involved in alloxan toxicity (Szkudelski,
2001). Previous studies that examined the
association between serum Gamma glutamyl
transpeptidase (GGT) and diabetes mellitus.
Plausible mechanisms that support the association
of serum GGT with diabetes mellitus include the
role of GGT in oxidative stress (Lee DH et al.,
2004), insulin resistance (Nilssen.O.& Forde .OH.
1994) and hepatic inflammation which impairs
insulin signaling in liver and other organs
(Vozarova B et al., 2002). The main study
limitation is the cross-sectional nature of NHANES

which limits making causal inferences in the
association between serum GGT and diabetes. In
addition, Gamma-GT catalyses the transfer of the
γ-glutamyl group from γ-glutamyl peptides to
another peptide or L-amino acids or to water, the
estimation of γ-GT is a helpful adjunct in detecting
hepatic damage(Lazo M et al., 2008). Previous
reports highly significant elevation in the activity
of γ-GT was observed in plasma of alloxan-induced
diabetic rats, this is in accord with earlier
investigations (McLennan SV et al., 1991), wherein
a dramatic increase in γ-GT expression was found
in the liver of diabetic rats. Elevated activity of γ-
GT in plasma takes place as a result of hepatic
induction of the enzyme. In addition, hepatocellular
damage or cholestasis may also contribute to the
elevation in the activity. In our study results
specifies increased activity of γ-GT, Melone
dialdehyde (MDA) in alloxan-induced diabetic rats
was lowered to near normal by Flavonoids
(quercetin chrysin and hesperidin) and pioglitazone
combination treatment that indicates the possible
prevention of necrosis by Flavonoids treatment.
The pharmacodynamic profile of quercetin has
been well studied (Okamoto, 2005). Its ability to
protect against oxidative stress-induced cellular
damage as well as its chelatory properties (Mira et
al., 2002; Anjaneyulu and Chopra, 2004). As to the
chrysin, the data are sparse. (Furusawa et al. (2005)
showed that chrysin had only moderate antioxidant.
Anti-diabetic potency of flavonoids, particularly
hesperidin and quercetin, has been highlighted in
many reports increasesd Gltathione levels and
attributed in part to their antioxidant and
hypoglycaemic effects (Frode and Medeiros, 2008;
Lean et al., 1999; Jung et al., 2006). Bioavailability
of pioglitazone is higher in diabetic condition but
remains unaffected by quercetin treatment. Part of
this observation is contrary to a clinical report
wherein type II diabetic patients exhibited normal
clearance of pioglitazone (Eckland, D.A. &
Danhof. M.2000). Phytochemical favonoids like
quercetin chrysin and hesperidin longer duration
studies of compounds on chronic models are
necessary to develop a potent antidiabetic drug.

Conclusions
Our results show that oral administration of
quercetin, hesperidin and chrysin has a beneficial
effect on the alloxan-induces diabetes by reducing
hyperglycaemia, gamma glutamyl transpeptidase
and improving the antioxidant status. This study
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suggests that the induction of diabetes mellitus by
alloxan in rats may be protected by quercetin,
hesperidin and chrysin administration. We
hypothetized that this effect may be result of
antiradical/chelatory properties of flavonoids used.
However, inhibition of gamma glutamyl
transpeptidase which elevated along with diabetes
mellitus effect of these flavonoids.
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