

International Journal of Electrical Electronics & Computer Science Engineering

Volume 6, Issue 2 (April, 2019) | E-ISSN : 2348-2273 | P-ISSN : 2454-1222

Available Online at www.ijeecse.com

9

A Carry Select Adder Design with Improved Performance

S Subha
Department of IT, SITE, VIT, Vellore, India

ssubha@rocketmail.com

Abstract: Carry select adder is proposed in literature. This

adder called traditional adder in this paper consists of

ripple carry adders with partial sums calculated for input as

the XOR of the inputs. Based on the carryin (Cin) at bit-i the

sum and carryout are determined. The carryout is either

AND or OR of the inputs based on carryin value of zero or

one respectively. The proposed model initializes sum follows

for any two bits. If the NOR of the inputs is one, the sum is

zero. If the NAND of the inputs is zero the sum is zero. Else

the sum is one. The carryout is determined based on

carryin and input values. If the carryin is one, the sum is

negated and the carryout is the OR of the inputs. Else if the

carryin is zero, the carryout is the AND of the inputs. The

proposed algorithm is simulated using Quartus2 toolkit for

16-bit input. A performance improvement of 6.97% with no

change in area and power is observed for chosen

parameters compared with traditional model described in

the paper

Keywords: Boolean Logic, Carry Select Adder, Full Adder,

Performance, Universal Gates.

I. INTRODUCTION

The computer has three parts memory, central

processing unit (CPU) and input/output systems. The

CPU has arithmetic and logic unit (ALU) and control

unit. The ALU performs arithmetic and logic functions.

The arithmetic functions are addition, subtraction,

multiplication and division. The addition operation

involves finding the sum of two n-bit numbers in n-bit

processor system. The full adder performs the addition

of three bits a, b, cin and provides the sum and carryout

(Cout). The truth table of full adder is given in Table1.

From Table 1 it we derive the following equations.

𝑆𝑢𝑚 = 𝐴⨁𝐵⨁𝐶𝑖𝑛 (1)

𝐶𝑜𝑢𝑡 = 𝐴.𝐵 + 𝐵.𝐶𝑖𝑛 + 𝐶𝑖𝑛 .𝐴 (2)

A ripple carry adder adds two n-bit numbers

sequentially bit by bit to give n-bit sum and carryout.

Many adder designs with improved performance and

energy savings are proposed in literature. Some of

these designs are carry save adder, carry select adder,

prefix adder etc.

The final sum is adjusted based on input carryin at each

bit. The final sum of any bit position is calculated

based on the input carry at run time. Carry select

adder designs with improved area and energy savings

are proposed in literature. The author in [1] proposes a

carry select adder using parallel prefix blocks for

reduced area. The authors in [2] propose a new carry

select adder with sharing. The authors in [3] propose

carry select adder that uses XOR to find the sum of the

inputs, AND, OR gates to calculate the carryout based

on the inputs, and multiplexers.

Table 1. Full Adder Truth Table

Input

A
Input B Input Cin Sum Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

The authors in [4] propose carry select adder based on

following principle. A carry select adder (CSA) can be

implemented by using a single adder block and an add-

one circuit instead of using dual adder blocks. The add-

one circuit is based on "first" zero detection logic and a

few multiplexers. In the modified CSA, one of the n-bit

adder blocks is replaced by an add-one circuit

consisting of fewer transistors. The authors in [5]

propose carry select adder. The authors in [6] propose

carry select adder with modification at transistor level

to obtain improved area and power consumption The

authors in [7] propose carry select adder that use

incrementer circuit with modified Boolean expression

to achieve performance. The performance analysis

shows that the proposed architecture achieves three

fold advantages in terms of delay-area-power. The

autnors in [8] propose a new circuit to reduce area

using add one logic. The authors in [9] propose carry

select adder for power and area reduction. The authors

in [10] propose carry select adder with single ripple

carry adder with new MUX. The authors in [11]

propose carry select adder design using the Kogge

Stone parallel approach for improved area. A a new

MUX design is proposed by authors in [12]. A new

carry select adder with energy saving is proposed in

[13].

This paper proposes carry select adder with the

following logic. The proposed model initializes sum

follows for any two bits. If the NOR of the inputs is

one, the sum is zero. If the NAND of the inputs is zero

the sum is zero. Else the sum is one. The carryout is

determined based on carryin and input values. If the

carryin is one, the sum is negated and the carryout is

International Journal of Electrical Electronics & Computer Science Engineering

Volume 6, Issue 2 (April, 2019) | E-ISSN : 2348-2273 | P-ISSN : 2454-1222

Available Online at www.ijeecse.com

10

the OR of the inputs. Else if the carryin is zero, the

carryout is the AND of the inputs. The proposed

algorithm is simulated using Quartus2 toolkit for 16-bit

input. An area improvement of 26% with comparable

power comsumption with performance degradation of

2.36% is observed for the proposed model compared

with traditional model.

The rest of paper is organized as follows. Section 2

gives motivation, section 3 gives proposed model,

section 4 gives simulation, section 5 conclusion and

references.

II. MOTIVATION

The sum of two bits is given by their XOR. The carry

of two bits is the AND of the two bits. Consider two

four bit numbers A and B. Let A = 1011 B = 0101. Let

A =a[4..1] and B = b[4..1]. Consider the carry select

adder to add these two numbers as described in [3].

The steps in this adder are as below.

1. Find the individual sums alone for the input. This

gives the sum array as 1110.

2. Calculate the carryout of least significant bit as a[1]

AND b[1]. This is equal to one. This is the carryin

for bit position 2.

3. For i = 2 we have sum[2] = 1 carryin = 1 a[2] = 1

b[2] = 0. As carryin = 1 , sum[2] = !sum[2] = 0

and carryout = a[2] OR b[2] = 1.

4. For i=3 a[3] = 0 b[3] = 1 carryin = 1 sum[3] = 1.

As carryin = 1, sum is negated to give sum[3] = 0

and carryout = OR of inputs = 1

5. For i=4 a[4] = 1 b[4] = 0 carryin = 1 and sum[4] =

1. As carryin is one, sum is negated to have sum[4]

= 0 carryout = 1

6. The final answer is 10000

7. Stop

In the above logic, carryout is determined from carryin

as follows. If carryin is one the carrout is the OR the

inputs and if carryin is zero the carryout is the AND of

the inputs.

The logic elements required for the above logic is

given next. The initialization of sum in step 1 takes

four XOR gates. The worst case takes four OR gates

and four NOT gates. The AND gates usually occur in

place of OR gates for calculation of carryout based on

inputs.

Next consider the following algorithm. . Let A be

a[4..1] and B be b[4..1]. The input is A = 1011 B =

0101

1. Start

2. The NAND of LSB is one. The sum is initialized

to zero. For the LSB+1 bit, the NAND is one,

NOR is zero. Hence the sum is one. For LSB+2

the same logic applies and the sum is initialized to

one. For MSB again, the sum is initialized to one.

3. The caryin for LSB is zero. Hence ths sum is

retained. The carryot is the AND of inputs which

is one. For LSB+1 the carryin is the carryout of

previous bit which is one. The sum is negated

which becomes zero and the carryout is OR of the

inputs which is one. For LSB+2 the carryin is one.

The sum is negated which becomes zero and the

carryout is OR of the inputs which is one. For the

MSB the carryin is one. The sum becomes zero

and the carryout is OR of the inputs which is one.

4. Hence the answer is 10000

5. Stop

It is assumed that carryout at step-i is the carryiin for

step i+1. Decision is based on carryin and input values

at each step.

The logic elements in the above algorithm is calculated

next. For the input of four bits it takes four NOR and

four NAND gates for initialization of sum in the worst

case. For each bit in worst case one NOT gate is

required and either of one OR gate is required. The

AND gate replaces the OR logic if the tempcin is zero.

There is increase in number of logic elements. This is

shown in Table 2. But as universal gates are used, the

timing would be reduced. This is verified by simulating

the proposed algorithm for sixteen bits as shown in

Table 3.

Table 2. Comparison of Number of Logic Elements

Logic Gate Traditional Proposed

OR 4 4

AND 0 0

NOT 4 4

XOR 4 0

NOR 0 4

NAND 0 4

Table3. Simulation Results of 16bit Input

Parameter Traditonal Proposed
%

Improvement

Area 31 32 0

Power (Mw) 6.3 6.3 0

Timing (Ns) 9.22 8.577 6.97397

III. PROPOSED MODEL

This section gives the proposed algorithm.

Algorithm Modified Carry Select Adder: Consider

two n-bit numbers. The following algorithm calculates

the sum of these numbers. Let the numbers be A and B.

International Journal of Electrical Electronics & Computer Science Engineering

Volume 6, Issue 2 (April, 2019) | E-ISSN : 2348-2273 | P-ISSN : 2454-1222

Available Online at www.ijeecse.com

11

Let A be a[1], a[2],…,a[n] and B be b[1], b[2],…,b[n].

The sum is the array sum[1..n] and carryout.

1. Start

2. For each of the n bits do steps 3-5

3. If the NOR of the inputs is one the sum is zero

4. If the NAND of the inputs is zero, the sum is zero

5. Else the sum is one

6. Put tempcin = 0 for LSB

7. For i= LSB to MSB do steps 8-10

8. If the tempcin = 0 put tempcout = AND of the

inputs

9. If the tempcin = 1 put sum[i] = !sum[i] and

tempcout = OR of the inputs

10. Set tempcin = tempcout

11. The final result is (tempcin, sum array)

12. Stop

The logic elements in the above algorithm is calculated

next. For the input of n bits it takes n NOR and n

NAND gates for initialization of sum in the worst case.

For each bit in worst case one NOT gate is required

and either of one OR gate or one AND gate is required.

The AND gate replaces the OR logic if the carryin

(tempcin) is zero.

IV. SIMULATIONS

The proposed model was simulated using Quartus2

Toolkit. The simulation parameters are listed in Table

4.

Table 4. Simulation Parameters

Parameter Value

Processor Family MaxV

Package FBGA

Pins 324

Speed Grade Fastest

Device Selected Auto by Fitter

The proposed model described in algorithm Modified

Carry Select Adder is compared with the traditional

carry select model. The results are shown in Table 3.

As seen from the Table3 performance improvement of

6.97% with no change in area and power is observed.

V. CONCLUSION

A carry select adder design is proposed in this paper.

The proposed model initializes sum for any two bits. If

the NOR of the inputs is one, the sum is zero. If the

NAND of the inputs is zero the sum is zero. Else the

sum is one. The carryout is determined based on

carryin and input values. If the carryin is one, the sum

is negated and the carryout is the OR of the inputs. Else

if the carryin is zero, the carryout is the AND of the

inputs. The proposed algorithm is simulated using

Quartus2 toolkit for 16-bit input. A performance

improvement of 6.97% with no change in area and

power is observed for chosen parameters compared

with traditional model described in the paper.

VI. REFERENCES

[1] A Tyagi , A Reduced Area Scheme for Carry

Select Adder, IEEE Transactions on Computers,

Vol. 42, pp. 1163-1170, October 1993.

[2] B. Amelifard, F. Fallah and M. Pedram (2005),

Closing the gap between carry select adder and

ripple carry adder: a new class of low-power high-

performance adders, Sixth International

Symposium on Quality of Electronic Design, pp.

148 – 152.

[3] I-Chyn Wey, Cheng-Chen Ho, Yi-Sheng Lin,

Chien-Chang Peng (2012), An Area-efficient carry

select adder design by sharing the common

boolena terms, Proc. of the International

Multiconference of Engineers and Computer

Scientists, 2012, pp. 1091-1094.

[4] K. Rawat, T. Darwish, and M. Bayoumi , A low

power and reduced area carry select adder, The

45th Midwest Symposium on Circuits and

Systems., vol. 1, 2002, pp. 467-470.

[5] M. Vinod Kumar Naik , Mohammed Aneesh Y ,

Design of carryselectadder for low-power and high

speed VLSI applications, IEEE International

Conference on Electrical, Computer and

Communication Technologies (ICECCT), 2015,

pp. 1 – 4.

[6] R Hemima. ; Gnana Suji.C Chrisjin , Design of 4

bit low power carry select adder, International

Conference on Signal Processing, Communication,

Computing and Networking Technologies , 2011,

pp.685 – 688.

[7] Samiappa Sakthikumaran1, S. Salivahanan, V. S.

Kanchana Bhaaskaran, V. Kavinilavu, B. Brindha

and C. Vinoth , A Very Fast and Low Power Carry

Select Adder Circuit, 3rd International

Conference on Electronics Computer Technology,

Volume: 1, 2011, pp. 273 – 276.

[8] Sun yan, zhang xin, Jin xi, Low-power Carry

Select Adder Using Fast All-one Finding Logic,

Institute of Microelectronics Department of

Physics, USTC, Hefei, Anhui, 230026.

[9] T. Abhiram ; T. Ashwin ; B. Sivaprasad ; S.

Aakash ; J. P. Anita , Modified carryselectadder

for power and area reduction International

Conference on Circuit ,Power and Computing

Technologies (ICCPCT) , 2017, pp. 1-8.

https://ieeexplore.ieee.org/document/7226145/
https://ieeexplore.ieee.org/document/7226145/
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7190493
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7190493
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7190493
https://ieeexplore.ieee.org/document/6024638/
https://ieeexplore.ieee.org/document/6024638/
https://ieeexplore.ieee.org/document/6024638/
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6016617
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6016617
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6016617
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6016617
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5934630
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5934630
https://ieeexplore.ieee.org/author/37086223195
https://ieeexplore.ieee.org/author/37086222946
https://ieeexplore.ieee.org/author/37086219588
https://ieeexplore.ieee.org/author/37086213610
https://ieeexplore.ieee.org/author/37086213610
https://ieeexplore.ieee.org/author/37086213610
https://ieeexplore.ieee.org/author/37945817900
https://ieeexplore.ieee.org/document/8074371/
https://ieeexplore.ieee.org/document/8074371/
https://ieeexplore.ieee.org/document/8074371/

International Journal of Electrical Electronics & Computer Science Engineering

Volume 6, Issue 2 (April, 2019) | E-ISSN : 2348-2273 | P-ISSN : 2454-1222

Available Online at www.ijeecse.com

12

[10] T.Y. Chang, M.J. Hsiao(1998), Carry-select adder

using single ripple-carry adder, Electronic Letters,

Vol. 34, pp. 2101-2103, October 1998.

[11] U. Sajesh Kumar ; K. K. Mohamed Salih ; K.

Sajith , Design and implementation of

CarrySelectAdder without using multiplexers, pp.

1-5.

[12] Youngioon Kim and Lee-Sup Kim (2001), 64-bit

carry-select adder with reduced area, Electronics

Letters, vol. 37 No. 10, pp. 614-615, May 2001.

[13] Y. Chen, H. Li. Roy and K. C. Kok , Cascaded

carry-select adder: a new structure CSA for low-

power design, Proceedings of the 2005

International Symposium on Low Power

Electronics and Design, 2005, pp. 115 - 118.

https://ieeexplore.ieee.org/author/37085939605
https://ieeexplore.ieee.org/author/37085942327
https://ieeexplore.ieee.org/document/6470067/
https://ieeexplore.ieee.org/document/6470067/
https://ieeexplore.ieee.org/document/6470067/

