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Abstract:The antenna face of a phased array radar typically consists of several hundred of antenna elements, and they
degrade independently. This poses a challenging problem to radar target detection, discrimination, and classification,
which rely on adaptive beamforming and assume that the channels are matched to each other. In this research, a
channel equalization algorithm is developed compensating for the mismatch between the reference and testing channels
using the least-squares error (LSE) criterion. The equalized output is precisely the projection of the reference channel
data onto the columns of the equalization matrix, which is solely a function of the testing channel output. Through the
analysis of the equalization matrix, the performance metrics including the squares error, instantaneous correlation
coefficient, and cancellation ratio (CR) of the proposed equalizer are expressed in closed forms. The analysis also
allows us to postulate on the effect of system parameters including: window size, equalizer length, and input
signal-to-noise ratio (SNR) on the performance metrics. Extensive Monte Carlo simulations show that higher values of
the equalizer length, input SNR, or window size improves the CR; however, once a system parameter approaches a
certain threshold, further incrementing the size of these parameters has a diminishing return on system
performance. Simulations also reveal that an equalizer with good CR or correlation coefficient results into the
equalized testing channel output being almost a replica of the reference channel’s output. Correspondingly, degradation
in the CR or correlation coefficient affects the equalized testing channel output. The simulation results agree closely
with known theoretical analyses. The research in this paper demonstrates the importance of channel equalization and
system parameter selection in obtaining a satisfactory antenna elements/subarrays output.
Keywords:channel equalization; least-squares error criterion; singular value decomposition; matrix eigen-analysis;
subspace projection; correlation coefficient; jamming cancellation ratio; complex Gaussian noise;
adaptive beam-forming.

1. Introduction
The antenna array in a pulse-Doppler radar is comprised of a multitude of sensor elements. Incoming data

sensed by these elements determine whether a target is present or not[1–2], and if it is present, its dynamic behavior and
physical attributes. For self-protection, the target dynamics sometimes includes electronic counter-measures to jam the
radar. Electronic counter-measures have required that modern radar deploy adaptive digital beamforming (ABF)
techniques to electronically steer the sensor elements away from the direction of jamming[3–7]. The effectiveness of ABF
hinges on sensor elements with identical temporal/spectral characteristics. illustrates two antenna elements/subarrays
that receive a broadband intermediate frequency (IF) signal from the far sight. Note that for the purpose of simplicity,
the hardware devices used for frequency down conversion of the incoming radio frequency (RF) signal and phase
compensation for the path difference between the source and the antenna elements/subarrays preceding are not shown.
The IF signal is corrupted by IF noise and jamming on the way to the rest of the antenna elements, which are lumped
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together as a channel. Typically, a channel is made of a cascade of cables and an analog Band-Pass Filter
(BPF); thelatter entails a lattice of inductors and capacitors actively/passively accepting signals within a certain
frequency spectrum and suppressing out-of-band signals. The resulting signal emerging from the channel is
sampled by a high speed Analog-to-Digital Converter (ADC) whose output yields a set of complex data. Due to
cable mismatch and components of the BPFs, which are vulnerable to natural and operational wear, the spectral
characteristics of the individual channels are hardly the same. Without loss of generality, we assume that the
channel at the bottom of Figure 1, called the reference channel, encounters miniscule degradation. On the other
hand, the channel at the top, called the testing channel, contains all the discrepancies of the channel characteristics
as compared to the reference channel. Correspondingly, the outputs from the digital demodulators (BPF plus
ADC) of the testing and reference channels, known as the testing  1,2,ix i  

, and reference data ref ; 1,2,ix i  
respectively, do not have identical characteristics and as such, the ABF technique cannot be

executed efficiently. To overcome this difficulty, the testing channel is equalized, which is the main thrust of the
research in this paper. The paper is organized as follows. Section 2 provides a mathematical formulation of
antenna elements/subarrays channel equalization, and the derivation of a channel equalization algorithm.
Section 3 is dedicated to the analysis of the equalizer components, and an introduction to performance metrics.
Section 4 describes simulation results and the effects of system parameters on the performance metrics. Further
remarks and conclusions are provided in Section 5.

Figure 1; Schematic of a channel equalizer.

2. Channel Equalization Algorithm
2.1 Preliminaries

A sequence of sn complex information waveforms,   1
sn

i i
s




, together with noise plus jamming is injected into a

time invariant, and mismatched testing channel with Finite Impulse Response (FIR) function   1
hn

i i
h

 . hn is the

length of support of the channel, and ih is a discrete-time sample of the “composite” analog channel impulse response

function ( )h t lumped with the pulse shaping filter, the channel, the receiving filters, mismatches in cables, and

imperfection in frequency conversion data sampled at the sampling interval sT :  ( 1)i sh h i T 
.

The complex output signal ix at the testing channel is the convolution of the noise-corrupted information symbols and
the system FIR

1i i k k
k

x r h


 


 
(2.1)
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, 1,2, ,i i i sr s v i n     (2.2)

where iv is an additive, wide-sense stationary channel plus jamming noise that is complex, normally distributed with

mean zero and variance
2
v  :  2~ CN 0,i vv  

,  * 20.5 i i v ikE v v    
. The Kronecker delta ik equals one for

i k , and zero otherwise; and the asterisk denotes complex conjugation.

The same information sequence is injected into the reference channel to yield the output ref ;ix

ref ; ref ; 1 ref ;i i k k
k

x r h


 


 
(2.3)

ref ; ref ; , 1,2, ,i i i sr s v i n    
(2.4)

and ref ;iv
has the same statistical distribution as iv .

The idea of channel equalization is to process the measurements   1
sn

i i
x

 of the testing channel incorporating the

reference channel data
 ref ; 1

sn
i i

x
 with the objective that the processed data will resemble the referenced data in some

way. One way to achieve this is to filter the mismatched channel with an equalizer with FIR
  eq

eq; 1

n

i i
h

 to produce the
equalized output

eq

eq; 1 eq; 1 eq;
1

, 1,2, , .
n

i i l l i l l s
l l

x x h x h i n


   
 

    
(2.5)

The formulation in (2.5) while seemingly simple is not practical, because equalization has to be applied to the
entire data set acquired in a time snapshot interval. In order to accomplish this, we first note that (2.1) is equivalent to

'

1 1 1 2 .
h hi i i i n nx r r r h r r          

As a result, the entire observation set over one-time snapshot can be represented by
( )

( ) ( ) ( )
,



   
 

x Ψ r h

Ψ s v h Ψ s h Ψ v h
s v


    

(2.6)

where prime denotes matrix/vector transpose. The measurements
 1, ,i sx i n 

are stacked into a column vector

x ; the same for the discretized FIR filter
 1, ,i hh i n 

. The measurements  ir are then mapped into an

s hn n matrix ( )Ψ r , which is a superposition of the noise samples  iv and the excitation signals  is :
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
(2.7)

Similarly, the equalized output is

eq eq

'

eq; 1 1 eq;1 2 eq;i i i i n nx x x x h r r  
        

and by the linearity property, it is related to the excitation signal
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 
   

eq eq

eq

eq eq

eq eq
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  

(2.8)

eqx
is a eqn vector of

 eq;ix
; the mismatched noise-free data  is is mapped into a eqsn n

matrix ( )Ψ s ;

eqh
is a eqn vector of

 eq;ih
; and eqv

is a eqn vector  iv mapped into ( )Ψ  followed by the linear
operation of the equalizer:
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(2.9)
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.(2.10)
The exact form of the equalizer will be derived pending on a suitable maximization criterion, as described in the

next Section.
Least Squares Error Criterion

According to Figure 1, output snapshots from the equalizer and reference channels are given by eqx
, refx

respectively, where eq eq( )x Ψ x h
. One approach is to minimize the square of the Euclidean distance between

these two data sets[9] (superscript H denotes complex conjugation)

   

2

ref eq

ref eq ref eq

( )

( ) ( ) .
H

  

  

x Ψ x h

x Ψ x h x Ψ x h
(2.11)

Invoking the identities

'd
d

αβ α
β ,

'd
d

βα α
β , where α, β are vectors, the derivative of  with respect to eqh

is

   

 

*

ref eq ref eq
eq

ref eq

( ) ( ) ( ) ( )

2Re ( ) ( ) .

H H

H

d
d
       

    

Ψ x x Ψ x h Ψ x x Ψ x h
h

Ψ x x Ψ x h
(2.12)

Setting it to zero, a necessary condition for minimizing  is

  1

eq ref( ) ( ) ( ) .H H
h Ψ x Ψ x Ψ x x

(2.13)
The second derivative is obtained from the first line of (2.12)
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2 '

2
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( ) ( ) ( ) ( )

2 Re ( ) ( ) .

HH H

H

d
d

        
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Ψ x Ψ x Ψ x Ψ x
h

Ψ x Ψ x
(2.14)

For any nonzero vector α, ( )Ψ x α equals

'

1 sn
    β 

, and

2

1
( ) ( )

sn
H H

i
i




α Ψ x Ψ x α
is a positive

quantity. Therefore, ( ) ( )HΨ x Ψ x is a positive-definite matrix. As ( ) ( )HΨ x Ψ x is Hermitian, it contains only

real eigenvalues. Consequently, all eigenvalues in ( ) ( )HΨ x Ψ x are positive. This means that
2 2

eq/d d h
is

positive-definite and eqh
(2.13) is a necessary and sufficient condition for Least-Squares Error (LSE) optimization[10].

On the other hand, expand (2.11) as

   
   

ref eq ref eq

eq ref eq ref ref eq

( ) ( )

( ) ( ) ( )

H

H H H

   

      

x Ψ x h x Ψ x h

h Ψ x x Ψ x h x x Ψ x h

then, by selecting eqh
such that it is orthogonal to the expression in brackets, the same solution (2.13) is obtained.

The knowledge of the “error being always orthogonal to the estimate” is in fact, the basic principle of optimization.
Bearing in mind that the first term vanishes and, when coupled with (2.13), the resulting minimum error is

 
  

  

ref ref eq

1

ref ref ref

1

ref ref

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) .

H

H H H

H H H






 

 

 

x x Ψ x h

x x Ψ x Ψ x Ψ x Ψ x x

x I Ψ x Ψ x Ψ x Ψ x x
(2.15)

By definition  (2.11) is strictly positive, so   1
( ) ( ) ( ) ( )H H

I Ψ x Ψ x Ψ x Ψ x
is a positive-definite matrix.

3. Properties of the Equlaizer
3.1 Equalizer Output Decomposition

From the results in Section 2.2, the equalizer output is the convolution of a sequence of measurements with the

equalizer. With the data x stacked as a 2-D matrix ( )Ψ x , convolution is the product of ( )Ψ x and the equalizer
in (2.13). The equalizer output in (2.8) is

eq eq ref( ) ( )H x Ψ x h A x x
(3.1)

Where: ( )A x is a s sn n matrix

  1
( ) ( ) ( ) ( ) ( ) .H H

A x Ψ x Ψ x Ψ x Ψ x
(3.2)

In (3.1), the equalization matrix A is composed of sn columns, with each column being a vector of length sn .
The equalizer output is the projection of the reference channel output onto the columns of the equalization matrix[11].

In particular, the projection of refx onto the kth column of A produces the kth element output, eq;kx
. This

indicates that the matrix A plays a prominent role in channel equalization. The following theorem asserts that A
can be expressed in a simpler form.

Proposition 3.1. The matrix s sn nA defined in (3.2) can be decomposed into
( ) HA x ξΣξ

with
s sn nξ a unitary matrix such that

snH H ξ ξ ξξ I , and
s sn nΣ is a diagonal matrix.
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Proof: Since s sn nA is Hermitian it has the eigenvectors  1, 1, ,sn
k sk n ξ 

and the positive eigenvalues

 , 1, ,k sk n  
satisfying[11]

, 1, , .k k k sk n Aξ ξ 

Without loss of generality, the eigenvectors are assumed orthonomal, i.e.,
H
k l klξ ξ , and kl is the Kronecker delta.

Incorporating all eigenvectors, then

1 1s sn n      A ξ ξ ξ ξ Σ 

or
Aξ ξ Σ

where 1 sn
   ξ ξ ξ

, 1diag( , , )
sn

 Σ 
.

Post-multiplying the equation by
Hξ and, by viture of the orthogonality of ξ , the result follows.Q.E.D

From the proof of Proposition 3.1, the equalization matrix ( )A x is comprised of matrices ξ , Σ . Columns of ξ

are eigenvectors of ( )A x , and Σ is a diagonal matrix with part of its diagonal elements populated by the

eigenvalues of ( )A x . The following theorem states that s sn nA is not of full rank.

Proposition 3.2. The eigenvalues of s sn nA (3.2) are either ones or zeros. More specifically, Σ contains r

eq( )r n
ones and the remaining sn r diagonal elements are zero.

Proof: Refer to the Appendix in Section 6.

We introduce the 1sn  vectors  , 1, ,k k rφ 
, where kφ is the kth column vector of

0.5ξ Σ , i.e.,
0.5

k k kφ ξ , and k is the kth diagonal element of Σ . Following the proof of Proposition 3.2 then the vectors

 , 1, ,k k rφ 
span an 1sn  vector space rV . In particular, the testing channel output x lies in rV . The

goal of channel equalization is to project refx onto the rV space to yield eqx such that the error vector ref eqx x
incurs the least squares error, as in Figure 2.

Similarly, we define the 1sn  dimensional basis vectors  , 1, ,k sk nφ 
that spans the vector space sn

V


.
These basis vectors can be generated using for example, the Gram-Schmidt orthogonalization procedure on the data

refx . In particular, the referenced channel output refx lies in sn
V


. Normally, rV , sn
V


have no relationship with
each other, because they are derived from two sets of data contaminated by two independent sets of noise. On the

other hand, in high input signal-to-noise ratio environments, it is not difficult to see that rV is a subspace sn
V


.

Further, if eqn is selected sufficiently high, then the spaces rV , sn
V


almost overlap, with the impact that, under

such conditions, eqx is almost equal to refx , and accounts for almost zero error (2.15) [12].

Figure 2; Geometrical interpretation of channel equalization
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in the ns-dimensional hyperspace.

3.2 Some Performance Measures

Proposition (3.1) simplifies the resulting error (2.15) as

ref ref

ref ref

( )

( ) ( ) .

H H

H H H

  

 

x I ξΣξ x
ξ x I Σ ξ x (3.3)

Introduce an 1sn  vector y

ref
Hy ξ x (3.4)

which is the projection of refx onto the columns of ξ , where

'

1 sn
y y   y 

.

Correspondingly, ky is the projection of refx onto the kth column of ξ

ref .
H

k ky  ξ x (3.5)
Therefore, (3.3) becomes

2

1

( )

(1 ) .
s

H

n

k k
k

y






 

 

y I Σ y

(3.6)
(3.6) is a succinct expression which can be used to emphasize the merits of channel equalization. For example, let us
suppose that the equalizer output is a zero vector, i.e., a completely dysfunctional device, then the resulting error

is: ref ref
H H  y y x x . Channel equalization reduces the error by the quantity

Hy Σy to yield an error as seen in

(3.6). Due to the distribution of the eigenvalues (see Proposition 3.2) the error is simplified as

2

1
.

sn

k
k r

y
 

 
The error, originally defined in (2.11) and rewritten in (3.3), measures the distance square between the reference
channel output and the equalized output in the Euclidean space. In fact,  is the energy of the error vector

ref eqx x
over a snapshot time interval. Another suitable metric, for assessing the goodness of the proposed

equalization scheme, is the instantaneous Correlation Coefficient (CC) between the equalized output and the reference
channel output, given by

ref eq

ref ref eq eq

H

H H
 

x x

x x x x
(3.7)

Using the Cauchy-Schwarz inequality

ref eq ref ref eq eq ,H H Hx x x x x x

where the equality is true when refx , eqx differ by a scaling factor. Thus for
0 1 

, the instantaneous
correlation coefficient measures how close the equalized output is with respect to the referenced channel output, leading

to 1  as a perfect equalization. The following theorem provides a precise computation of  .

Proposition 3.3. Given the equalizer output eq eq ref( ) ( )H x Ψ x h A x x
, then the instantaneous CC is a real

positive scalar equal to

2

1

2

1

.

s

s

n

k k
k
n

k
k

y

y


 







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where ky is the projection of refx onto kξ (see (3.5)), and k is one or zero.

Proof: Because ( )A x is Hermitian and idempotent (consult proof of Proposition 3.2), then

eq eq ref ref ref ref( ( ) ) ( ) ( )H H H H H x x A x x A x x x A x x
. Also,

2
ref eq ref ref

1
( )

sn
H H H

k k
k

y


 x x x A x x
, and

2
ref ref

1

sn
H

k
k

y


x x
(see (3.6)). Upon replacing (3.7) by these three components, the result is obtained.

Lastly, we introduce the (jamming) Cancellation Ratio (CR):
21 .J  

(3.8)

When the reference and the equalized channel outputs are in close proximity,  is nearly 1 or in logarithmic scale,

i.e., close to 0 dB. Clearly, while  is useful in measuring channel equalization performance, it is not quite as

sensitive in differentiating the differences in the data sets refx , eqx being close to each other. In contrast, 

approaching one translates to J approaching zero with its logarithm a very negative number. Based on this argument,
J can be readily used to access the degree of channel equalization achieved at any point in the process and is therefore
a more useful tool in channel equalization evaluation.

Proposition 3.3 facilitates the computation of the cancellation ratio

2 2

1 1

2 2

1 1

(1 )
1 .

s s

s s

n n

k k k k
k k
n n

k k
k k

y y
J

y y

 
 

 


  

 

 
(3.9)

The error in (3.6) is next expressed as

2 2
ref

1

sn

k
k

J y J


  x
(3.10)

and shows explicitly that the CR is the error normalized by the energy of the reference channel output. In the above,

refx
denotes the norm of refx , i.e.,

2
ref ref ref

Hx x x
.

3.3 Effects of System Parameters

In Section 2.2, we show that the equalizer output is

eq eq ref( ) ( )H x Ψ x h A x x
(3.11)

where  x s v , ( )Ψ x is eqsn n
, ( )A x is given by (3.2), and x is the output from the testing channel h in

response to the input r :  r s v   : ( )x Ψ r h  .
In this setting, the equalizer output is a function of system parameters, including window size sn , equalizer length

eqn , and input signal-to-noise ratio (ISNR). Their impact on channel equalization is of prime concern and will be
studied in details in later sections. As discussed in Section 2, the LSE  , the instantaneous correlation coefficient  ,
and the cancellation ratio J can be used to provide reasonable performance metrics for the proposed channel
equalization algorithm. Nevertheless, due to its goodness in differentiating between two data sets, the cancellation ratio
will be the metric we primarily use.
3.3.1 Effects of equalizer length

Proposition 3.2 indicates that the first r eq( )r n
eigenvalues are one and the last sn r eigenvalues are zero.

As a result, the cancellation ratio (3.9) reduces to
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2

1

2

1

.

s

s

n

k
k r
n

k
k

y
J

y

 







(3.12)

Suppose eqn increases, then the numerator becomes smaller because it encapsulates fewer number of terms. With

sn fixed, the set of eigenvectors  , 1, ,k sk nξ 
remains the same; this property extends to ky also (see (3.5)).

As the numerator holds fewer terms while the denominator (3.12) remains constant, J decreases (a highly desirable

property) and, in fact, is a strictly decreasing function of the parameter r eq( )r n
.

In particular, when eqn reaches sn then the number of terms in the numerator in (3.12) is near zero. As a result,
J drops to zero at which point, we reach a perfect channel equalization.

Alternatively, suppose eqn equals sn , then ( )Ψ x is a square matrix and ( ) ( )HΨ x Ψ x is invertible, leading to

 
eq ref

1

ref ref

( )

( ) ( ) ( ) ( )

H

H H



 

x A x x

Ψ x Ψ x Ψ x Ψ x x x

which implies that 0J  and once more, we reach perfect equalization.
3.3.2 Effects of window size

Suppose the window size sn is raised to sn , where s sn n  
, and  a positive integer, with all other

system parameters unchanged.

Following the two paragraphs preceding Section 0, the equalization matrix ( )A x , that is the source of the

eigenvectors  , 1, ,k sk nξ 
, becomes ( )A x  with the eigenvectors

 , 1, ,k sk nξ 
; correspondingly, refx

switches to refx . Note also that, for example, 1ξ is an 1sn  vector while 1ξ is an 1sn  vector.

Applying (3.4) and, bearing in mind that ξ is a unitary matrix, then
2

ref ref ref ref ref ;
1

s

s

n
H H H

k
k n

x
 

   y y x x x x


   
.

Therefore, the cancellation ratio (3.12) at window size sn is
2 22

1 11

22
ref ref ref ;

1 1

( ) .

s ss

s

s s

s

n nn

k kk
k r k nk r

s n n
H

k k
k k n

y yy
J n

y x

    

  


 



 

 x x



 

 



(3.14)

For convenience, the cancellation ratio (3.12) based on window size sn is rewritten here
2 2

1 1

2 ref ref

1

( ) .

s s

s

n n

k k
k r k r

s n H

k
k

y y
J n

y

   



 
 

 x x

(3.15)

Clearly, the denominator of ( )sJ n is greater than ( )sJ n . The disparity between the two formulations of the

cancellation ratio widens when the number of extra terms  increases. Since ref
H

k ky  ξ x ,
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ref ref;n 1 ref;ns s

H
k ky x x   ξ x 
 

, where
1sn

k
ξ ,

1sn
k
ξ  are unitary vectors, it is unclear whether ky exceeds

ky or vice versa, eq sn r k n  
, unless the actual data refx , x , refx , x are available. Thus, there is no

concrete evidence to support the fact that larger window size improves the cancellation ratio.

On the other hand, larger sn has some effects in both the numerator and denominator of the cancellation ratio

( )sJ n which become dependent on an ever increasing summation series

2

1

s

s

n

k
k n

y
 




(due to window size increment).

Therefore, provided the components

2

1

sn

k
k r

y
 
 

,

2

1

sn

k
k r

y
 


are close to each other, it would seem that ( )sJ n

will be greater than ( )sJ n . The above ad hoc explanation suggests that higher window size will degrade system’s
performance.
3.3.3 Effects of input signal-to-noise ratio

Define the input SNR  the ratio of the power of excitation signals  is to the power of noise  iv at the
channel front end:

   

20.5
0.5

1
2 2

,
0.5 0.5

s

s
s

n

Hin
ni

i i

s

E v E v
  

 s s 

 
(3.16)

where

'

1 sn
s s   s  

,
   22

ref ;i iE v E v 
.

Combine (2.15), (3.10) for the cancellation ratio

  

  

1

ref ref

ref ref

1

ref ref ref ref

ref ref ref ref

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
,

( ) ( )

H H H

H

H H H

H

J








      


 

x I Ψ x Ψ x Ψ x Ψ x x

x x

s v I Ψ s v Ψ s v Ψ s v Ψ s v s v

s v s v (3.17)

where ( )s Ψ s h  , ( )v Ψ v h  , ref ref( )s Ψ s h 
, and ref ref ref( )v Ψ v h 

. Due to its computational
complexity, evaluation of the CR is left to be implemented with Monte Carlo simulations.

4. Simulation Results
Figure 3 shows the magnitude of the frequency response of the testing (solid line) and reference (dashed line)

channels, with its zoomed-in version shown in Figure 4. They clearly show that these two channels are not matched. A
sequence of excitation signals utilizing eight-level pseudo-random phase-shift keying (PSK) corrupted by complex Gaussian noise

and an input SNR  (see (2.2), (2.4), (3.16)), is injected in parallel onto the channels.
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Figure 3; Magnitude plot of the frequency response of the

testing and reference channels.
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Figure 4; Zoomed-in portions of Figure 1.
This drives the difference in magnitude of the direct outputs at the testing (solid) and reference (dashed) channels, as
shown in Figure 5, top panel. The corresponding phase plots are depicted in Figure 6, top panel. The testing

channel output x is equalized using (3.1), to yield the output eqx .
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Figure 5; Magnitude plot (at input SNR=5 dB) of

Top: reference and direct testing channel outputs
Bottom: reference and equalized testing channel outputs.

Figure 6; Phase plot (at input SNR=5 dB) of

Top: reference and direct testing channel outputs
Bottom: reference and equalized testing channel outputs.

Depending on the setting of the system parameters, including equalizer length, window size, and input SNR (ISNR), it
is found that the equalized testing channel output and the reference channel output resemble each other to a certain
extent, with the correlation coefficient and cancellation ratio used as evaluators. For comparison purpose, one would
like to assess the differences in the metrics between the direct testing channel, i.e., un-equalized output and the
reference channel output. Unless stated otherwise, the equalizer length and window size are set to 51, 400 respectively.
In the Monte Carlo simulations being used here, an experiment that evaluates correlation coefficient (3.7) is repeated for

a specified number of runs. In each trial, the same signal sequence s is employed, and is subsequently

contaminated by independent noise sequences v , refv and finally injected into the testing, and reference channel
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respectively. This produces a set of correlation coefficients, for identical system-parameters and independent, identically
distributed noise environments. The set up allows for a straight computation of the average correlation coefficient.
The same procedure is applied to evaluate the average cancellation ratio on the basis of a constellation of cancellation
ratios (3.8). However, in this section the average correlation coefficient, and average cancellation ratio are used.
Also, the number of runs for each experiment is set equal to 3.

4.1 Variation of System Parameters
4.1.1 Equalizer length variation

Figure 7 shows that at 10 dB ISNR, the equalizer CR fares at least 10 dB better than the direct testing channel
output over the course of equalizer length varying from 25 to 270, which corresponds to 6.3% to 67.5% of the window
size (which is fixed).

With the ISNR raised to 60 dB, the landscape changes dramatically. It is found that the CR of the equalizer
continues to improve over the course of increasing the equalizer length. According to Figure 7, the CR curve of the
equalizer can be subdivided into two regions: over

Figure 7; Cancellation ratio for the equalized and direct testing

channel outputs at various equalizer lengths with input SNR as the parameter.
The portion of the equalizer length extending from 25 to 75 (6.3% to 17.5% of the window size), the equalizer CR
hypothetically improves from -33 dB down to -67 dB. Further increase of the equalizer length from 17.5% to 67.5% of
the window size improves the CR consistently and, in fact the CR in dB scale decreases linearly at the rate 0.025 dB per
unit of increase in equalizer length. In contrast, the CR of the direct testing channel output is invariant with respect to
equalizer length and stays at -12 dB. This behavior was expected, because the correlation coefficient in (3.7) with eqx

replaced by x is independent to variations in the equalizer. Also, the CRs of the direct testing channel output at 60
dB and 10 dB ISNR coincide almost perfectly.

The CC has also been studied as a function of equalizer length for the same ISNR parameters. When comparing
Figure 7 and Figure 8, it is apparent that the CR provides superior information on the correlation coefficient with
varying equalizer length. This supports our earlier observation about the fidelity of the CR parameter, as described in
previous sections.
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Figure 8; Correlation coefficient for the equalized and direct testing

channel outputs at various equalizer lengths with ISNR as the parameter.
4.1.2 Window size variation

Suppose the ISNR is set equal to 60 dB and the window size is varied from 20 to 1000, i.e., 40% to 2000% of the
nominal equalizer length (which is kept fixed). Figure 9 illustrates that the LSE equalizer begins with a CR of 0 dB
and falls asymptotically when the window size climbs uphill starting at 40% of the equalizer length. The CR values
stop falling at the point where the window size reaches 100% of the nominal equalizer length, which coincides to the
point where the CR reaches 125dB (or perfect equalization). With the window size increasing from 51 to 100
(100% to 200% of the equalizer length), the CR increases asymptotically until it attains a value of -58 dB. Increasing
window size beyond 200 (400% of the nominal equalizer length) has minimal effect on the CR, which seems to stabilize
at -58 dB . On the other hand, the direct testing channel output has a CR equal to a value of -12 dB, which is almost
insensitive to window size variations.

When the input SNR is lowered to 10 dB exactly the same behavior, as described in the previous paragraph, is
observed for the equalized output, except at the point where the window size reaches 100% of the equalizer length.
Then, the equalizer achieves -115 dB CR, and subsequent window size increments stabilize the CR at -22 dB, as shown
in Figure 9. Once again, the direct testing channel at 10 dB ISNR is almost the same as that when the ISNR is set at 60 dB. The

same study is done for the CC as shown in Figure 10.

Figure 9; Cancellation ratio for the equalized and direct testing

channel outputs at various window size with input SNR as the parameter.
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Figure 10; Correlation coefficient for the equalized and direct testing

channel outputs at various window size with input SNR as the parameter.
Figure 9 and Figure 10 again confirm that the CR is a more efficient metric than the correlation coefficient

specifically when trying to assess the equalizer performance as a function of window size variation.
4.1.3 Input signal-to-noise ratio variation

Figure 11 illustrates the variations of CR as a function of the equalizer as the ISNR is increased from 5 dB to 90
dB, while all other system parameters remain unchanged. We observe that over the course of increasing the ISNR from
5 dB to 40 dB, the CR in dB scale improves linearly and is 10 dB lower than the input SNR. Increasing the ISNR
from 40 dB to 60 dB causes the CR (in dB scale) to behave as a convex function of ISNR, such that the CR drops from
-50 to -57 dB. Raising the ISNR beyond 60 dB has practically no effect on the system, and provides no insignificant
improvement in the CR, which converges to -57 dB. Once again, except for the limited range from 5 dB to 10 dB of the
ISNR, the CR curve of the direct testing channel output is -12 dB and is almost invariant to changes in ISNR.

Figure 11; Cancellation ratio for the equalized and direct testing

channel outputs at various input SNR.

4.2 Equalized Output and Performance Metrics Relationship

Figure 12, bottom panel, shows the magnitude of the equalizer output (solid line) at 5 dB ISNR, and Figure 13 is
the zoomed-in version. For comparison purpose, the reference channel output (dash line) is overlaid on the same
diagram. The presence of glitches between these two sets of outputs is a good indication that, in low ISNR
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environments, the equalized output does not match the reference channel output. This is expected because, according to
Figure 7, the corresponding CR (approximately -17 dB) is quite far from its stabilized value (approximately -57dB).

Figure 12; Zoomed-in magnitude plot (at input SNR=5 dB) of

Top: reference and testing channel outputs
Bottom: reference and equalized testing channel outputs.
Nevertheless, by comparing the bottom and top panels of Figure 11 or Figure 12, it seems that the magnitude of

the equalizer output is a better match to the magnitude of the reference channel output than to the testing channel.

Figure 13; Zoomed-in magnitude plot (at input SNR=5 dB) of

Top: reference and testing channel outputs
Bottom: reference and equalized testing channel outputs.
With the ISNR raised to 20 dB, Figure 14 and Figure 15 show the magnitude, and phase plots respectively, of the

direct testing, equalized testing, and reference channel outputs, while Figure 16 and Figure 17 are their zoomed-in
versions. The bottom panels of Figure 14 and Figure 15 (or Figure 16 and Figure 17) show that at 20 dB ISNR, the
magnitude (or phase) of the equalized channel, reference channel outputs are undistinguishable from each other over
one-time snapshot interval.
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Figure 14; Magnitude plot (at input SNR=20 dB) of

Top: reference and testing channel outputs
Bottom: reference and equalized testing channel outputs.

Figure 15; Phase plot (at input SNR=20 dB) of

Top: reference and testing channel outputs
Bottom: reference and equalized testing channel outputs.
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Figure 16; Zoomed-in magnitude plot (at input SNR=20 dB) of

Top: reference and testing channel outputs
Bottom: reference and equalized testing channel outputs.

Figure 17; Zoomed-in phase plot (at input SNR=20 dB) of

Top: reference and testing channel outputs
Bottom: reference and equalized testing channel outputs.
The concept of exact matching between the equalized testing and reference channel outputs can finally be

illustrated in the bottom panels of Figure 18 and its zoomed-in Figure 20 (or Figure 19 and its zoomed-in Figure 21)
with regards to the way in which the magnitude (or phase) of the equalized testing and reference channel outputs
matched at 40 dB ISNR.
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Figure 18; Magnitude plot (at input SNR=40 dB) of

Top: reference and testing channel outputs
Bottom: reference and equalized testing channel outputs.

Figure 19; Phase plot (at input SNR=40 dB) of

Top: reference and testing channel outputs
Bottom: reference and equalized testing channel outputs.
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Figure 20; Zoomed-in magnitude plot (at input SNR=40 dB) of

Top: reference and testing channel outputs
Bottom: reference and equalized testing channel outputs.

Figure 21; Zoomed-in phase plot (at input SNR=40 dB) of

Top: reference and testing channel outputs
Bottom: reference and equalized testing channel outputs.

5. Discussion and Conclusions
In this paper, a channel equalization algorithm was developed compensating for the mismatches between the

reference and testing channels of a phased array radar. By stacking the testing channel output as a Toeplitz matrix, the
equalizer output is the product of the Toeplitz matrix and the impulse response function of the equalizer, with no need
for the convolution operation. The equalizer is determined using the least-squares error (LSE) criterion. Geometrically,
the equalizer output is the projection of the reference channel data onto the columns of the equalization matrix, with the
latter being a nonlinear function of the testing channel data. Using singular value decomposition, the equalization
matrix is the product of a unitary matrix, a diagonal matrix, and the Hermitian transpose of the unitary matrix. The
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columns of the unitary matrix are eigenvectors of the equalization matrix patched by some linearly independent
orthonormal vectors, due to the rank deficiency and diagonal matrix elements are either ones or zeros. The nature of
the channel equalization formulation results in the squares error, instantaneous correlation coefficient, and cancellation
ratio (CR) metrics expressed in closed form. Extensive Monte Carlo simulations were used to evaluate the performance
of the proposed equalizer, using CR as the main assessment metric. In particular, it was found that at higher input

signal-to-noise ratio (ISNR) ( 50dB) the CR improves consistently with increasing equalizer length while the
window size is fixed. The equalizer attains almost perfect equalization when it reaches 17.5 % of the window size. At
10 dB ISNR even though the CR improves consistently with respect to increasing equalizer length, the equalizer cannot
reach perfect equalization. Analogously, at higher ISNR increasing the window size to 80% of the equalizer length
(which is fixed) asymptotically improves the CR. In addition, the CR attains perfect equalization when the window
size is exactly equal to the equalizer length. Once the window size goes beyond the equalizer length, the CR degrades
noticeably. A similar behavior is exhibited at low ISNR. However, the CR never reaches perfect equalization. It
was also shown that over the course of increasing ISNR from 5 dB to 40 dB, while all other system parameters remain
fixed, the CR (in dB scale) improves linearly and is always -10 dB lower (or better) than the ISNR. No significant
improvement (in CR) occurs beyond ISNR levels of 40 dB. When both the amplitude and phase of the simulated data

are used, it is evident that good values of the CR ( 40dB  ) produce equalized output responses, which are almost a
perfect replica of the reference channel output, despite the evident disparities between the direct and reference channel
outputs. The simulation results demonstrate that an equalizer with good values of CR or Correlation Coefficient CC
produces an equalized testing channel output that matches the reference channel output. Conversely, progressive
degradation in CR or CC affects the resulting equalized testing channel output when compared to the reference channel
output. The simulation results agree closely with the theoretical work as described in Section 3. The work in this paper
show the importance of channel equalization, as well as the effect of system parameters, in our ability to produce
matched equalized testing channel outputs. The paper also points us to potential new directions for investigation.
Firstly, since larger window size (with respect to fixed equalizer length) degrades the CR, it seems that data in a
snapshot may provide more information if partitioned into sub-snapshots. Then, the equalization process can be
implemented on shorter sub-snapshots rather than a single long snapshot. In this case, the tradeoff between CR
improvement and computational complexity will need to be carefully studied. Secondly, the proposed algorithm, in its
current form, uses batch processing only, i.e., it processes one frame of data at a time and then discards the processed
data prior to moving to the next frame. A recursive technique, which can make use of data in previous snapshots may
potentially provide better solutions. The computational complexity of such approach as well as its potential benefit in
improving the CR will need to be carefully studied.

6. Appendix
A Proof of Proposition 3.2

According to (3.2),
2( ) ( )A x A x and so ( )A x is idempotent, with its eigenvalues either 1 or 0.

The next interest is the precise number of ones amid the eigenvalues. The singular value decomposition is deployed to

factor the eq sn n
matrix ( )HΨ x

( )H HΨ x UΛV (a1)

where
eqn rU and sn rV are unitary matrices:

H H r U U V V I ;
rI denotes an r r identity matrix.

This changes the equalization matrix (3.2) as

 
 

1

12

( )

.

H H H H

H H H









A x VΛU UΛV VΛU UΛV

VΛU UΛ U UΛV
(a2)

In view of U not being a square matrix, its inverse cannot be readily found. This hurdle is circumvented by inserting

eq( )n r
additional arbitrary, orthonormal, vectors

 eq 1
eq, 1, ,n

k k n r  ς 
. The augmented matrix is

 U U ς
, where eq1 n r

   ς ς ς
. Clearly,

eqnH H U U UU I    . The same procedure enlarges V

to become V :  V V ψ
, where

1 1
1
s s

s

n n
n r

 
   ψ ψ ψ

.
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Also, Λ is reconstructed as
eq eq

( )

( ) ( ) ( )

s

s

r n r
a

n r r n r n r
b c

 

    

 
  
  

Λ 0
Λ

0 0


.
With the aid of the identity

   

   ,

HaH

b c

H H

 
  

 

 

Λ 0
UΛV U ς V ψ

0 0

UΛ 0 V ψ UΛV

 

(a3)

an alternative representation of ( )HΨ x is

( )H H H Ψ x UΛV UΛV 
(a4)

This is applied to the first line of (a2)
1

2

2

( ) ( )

( )

( )

H H H H

H H H

H













A x VΛU UΛV VΛU UΛV

VΛU UΛ U UΛV

V ΛΛ Λ V

          
       
   

(a5)

In the equation above,
2 HUΛ U  is invertible because, unlike before U is a square matrix. Also, in

1Λ the

diagonal elements are equal to the reciprocals of the corresponding non-zero elements in Λ , and zero otherwise. The

same interpretation leads to
2ΛΛ Λ   a diagonal matrix whose leading r diagonal elements are one and the

remaining sn r diagonal elements are zero.

Equating (a5) and Proposition 3.1, yields ξ V ,
2Σ ΛΛ Λ   . The distribution of the diagonal elements of Σ

(hence the eigenvalues of ( )A x ) is as stated in the previous paragraph.
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