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Abstract: Within the complexity of the industrial production strategies, computer aided technologies have been becom-

ing a survival key for company administrators for reducing expenses. Furthermore, new production methods and adap-

tation of dynamic market requirements force owners to apply computer aided solutions to reduce to production time of 

goods to the market. Nowadays, prefabricated concrete producers are facing the same problem and trying to apply new 

solutions to overcome these high costs. In this research, artificial neural networks and traditional glass fiber testing 

methods were compared to reduce the quality control and assurance processes of prefabricated glass fiber reinforced 

concrete (GRC) production. 143 different four-point flexural test results of glass fiber reinforced concrete mixes with 

the varied parameters as temperature, fiber content and slump values were introduced the artificial neural networks 

models. The proportional limit properties (LOP) of glass fiber reinforced concrete and trained neural network analysis 

are taken into consideration for comparison. The outcomes of the analysis reflected that there is a strong correla-

tion between the proportional limit of glass fiber reinforced concrete on-site test and the artificial swarm-based optimi-

zation algorithm results. Depending on this secure data, on-site test quantities are reduced and checked for cost deduc-

tion of traditional test results. 

Keywords:Cost Reduction; Computer Aided Prediction Methods; Glass Fiber Reinforced Concrete; Traditional Test 

Methods 

1. Introduction 

Glass fiber reinforced concrete (GFC) includes the high-strength glass fibers, silica-based aggregates, Portland 

cement CEM I 42,5R (density: 3.15 g/cm³) and other chemical additives which are added for improving the mechanical 

properties. Lately, GRC products are extensively preferred by the architects for facade panels by reason of due to 

providing highly aesthetical and durable solutions. 
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GRC mechanical properties differ depending on may factors as fiber content, density, production line temperatures. 

Their content in concrete mixtures significantly effects the flexural characteristics of the specimens. One of the im-

portant indicator of flexural characteristics of a material is the proportional limit (LOP) value. LOP value is defined as 

the maximum stress level before any plastic deformations of the concrete products. Detailed visualization of the LOP 

value can be seen in Figure 1. As seen in Figure 1 first and second diagrams have the same LOP values depending on 

having low fiber contents comparing with its critical values. 

 

Figure 1. LOP values 

LOP value of a fiber reinforced concrete, depends on many factors such as the specimen size, porosity and the fi-

ber content of the concrete and production environment conditions. LOP is also an important parameter to produce the 

road slab and facade panels designs, because the flexure tension is one of the main criteria for determining concrete's 

mechanical performances
[1]

. For determining the LOP values, four-point flexural test method is used as per the standard 

EN 1170 requirements (Figure 2). 

 

Figure 2. Schematic diagram of three-point flexural test[2] 

Many studies have been conducted considering the application of the GRC for improving the strength and durabil-

ity properties of concrete products. Literature research can be summarized as follows: The flexural strength of a speci-

men increases in parallel with the increase of the glass fiber (GF) amount while compressive strength decreases due to 

the low shearing strength of the GF
[3]

. The fatigue life of the GRC can be obtained with the two-parameter Weibull dis-

tribution 
[4]

. Adding condensed silica-fume in to the GRC mixes improves its quality
[5]

. Use of glass in concrete mixes 

can cause some problems due to the alkali nature of GRC
[6]

. Studies have shown that the usage of glass fibers in con-

crete can control shrinkage cracking and its harm effects
[7,8]

. Small temperature changes play an important role on the 

mechanical behavior of GRC products
[9]

. Slump value of the concrete signifies the ease, with which concrete in fresh 

state can be compacted without any segregation
[10]

. Artificial Neural Network (ANN) can include prediction of Slump 

and strength values of ready mix concrete with retarders
[11]

. Fibers are one of the widely used materials to improve con-

crete tensile behavior
[12]

. High fiber content in concrete mixes resulted high energy absorption of the flexural load
[13]

. 

There are numerous application of ANN focusing on the strength value estimation of concrete products. Some of 

them emphasizes the importance of them as a rapid test method for predicting long-term compressive strength of con-

crete
[14,15]

. And one of them includes the strength prediction of high performance concrete
[16]

. Despite the numerous 

applications of ANN for predicting the mechanical properties of common concrete mixes, there exist no application of 

neural networks for predicting the LOP values of concrete specimens reinforced with glass fibers. 
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Research significance 

Early determination of flexural strength property of glass fiber reinforced concrete is an essential factor for the de-

sign purposes. The flexural strength value also provides basic and close information for the evaluation of other me-

chanical properties. Nondestructive test methods and neural estimation of the strength properties have not been widely 

preferred by the prefabricated glass fiber concrete sector depending on many reasons such as limited information on 

neural network-based prediction systems, their applicability and cost. A cost comparison analysis has been conducted in 

order to show the power of ANN based systems and its low cost compared to the other test systems. It is aimed to re-

duce worker dependent test numbers and their cost on the production site. 

2. Material and Methods 

2.1. Experimental Study 

CEM I 52,5 R (White Portland) cement which complies the EN 197-1 was preferred for production line experi-

mental tests. Silica sand and superplasticizer are also added to the mixes for the experiments. Technical specifications of 

cement and silica sand are given in Table 1 and Table 2. 

Chemical Properties (%) Physical and Mechanical Properties 

SiO2 21.6 Specific Weight (t/m3) 3.06 

Al2O3 4.05 Specific Surface (cm2/gr) 4600 

Fe2O3 0.26 Whiteness (%) 85.5 

CaO 65.7 Initial Setting (min.) 100 

MgO 1.30 Final Setting (min.) 130 

Na2O 0.30 Water Used for Consistency (%) 30 

K2O 0.35 Volume Constancy (mm) 1.0 

SO3 3.30 Remnants Obtained Using 0.045 Sieve (%) 1.0 

Free CaO 1.60 Remnants Obtained Using 0.090 Sieve (%) 0.1 

Chloride (Cl) 0.01 Compressive Strength for 2 days (MPa) 37.0 

Insolubles 0.18 Compressive Strength for 7 days (MPa) 50.0 

Loss on Ignition 3.20 Compressive Strength for 28 days (MPa) 60.0 

Table 1. Technical Specifications of CEM I 52.5 R cement. 

 

Sieve Aper-

ture Size 
1 mm 710 μm 500 μm 355 μm 250 μm 180 μm 125 μm 90 μm 63 μm 

Production 

Range (%) 
0 0 0 0.2 0.3 20.1 60.4 16.1 1.8 

Mean Grain Size (μm) 140-170 Specific Weight 2.68 

Clay Content (%) 0.6-0.8 AFS Value (%) 84.6 

Table 2. Silica Aggregate Properties 

European standards for GRC as TS EN 1170-1, TS EN 1170-2, TS EN 1170-3, TS EN 1170-4, and TS EN 1170-5 

are followed and applied during the on-site experiments. Slump value of the mix was kept constant during the pouring 

of GRC. Ingredients of the mix is given in Table 3. 

Five test team are assigned for the implementation of TS EN 1170’s standards and their performances are recorded 

for the cost calculation of workmanship and machinery (Cost-A). Work order of test phases can be found in detail in 

Figure 3. Obtained results from the experiments are stored as Result-A and used for the training of ANN system. 
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Figure 3. Schematic diagram of test phases work order 

Additional water per 1 g of 

pigment (g) 
4.5 13 4.13 4.75 - 

Additional water (kg) 5.625 16.25 5.163 5.938 - 

Aggregate (kg) 625 625 625 625 625 

Cement (kg) 625 625 625 625 625 

Superplasticizer (kg) 3.69 3.69 3.69 3.69 3.30 

Water (kg) 190 190 190 190 190 

Slump value (cm) 4 4 4 4 4 

Table 3. Material content of the experimental mixes 

 

2.2. ANN Model Development 

Artificial Bee Colony (ABC) algorithm was implemented as the training method for the ANN by modifying the 

nodal interconnection weights and biases (ANN-ABC). During the training phase of the ANN, the ABC algorithm im-

plements several parameters controlling the performance and characteristics of the algorithm execution such as: search 

range for the model parameters, colony size, number of the food sources. The maximum number of cycles are used as a 

stopping criterion for algorithm. These parameters considered in the ABC algorithm are shown in Table 4. 

Table 4. ABC Algorithm Parameters 

Parameter Search Range 

[-5,5] 

Colony Size 50 

Number of Food Sources or Bees 25 

Stopping Criterion 

Max. Number of Cycles 500 

 

The experimental results were proposed to the network as four candidate of input variables and a single output 

variable. The candidate input parameters were temperature, fiber ratio, density, and slump value of the specimen. The 

proposed ANN structure was given in Figure 4. 

 

Figure 4. Scatter plot of the ANN-ABC model with 12 hidden layer neurons. 

All these values are taken from the Cost-A and Result-B data. The scatter plots of the ANN-ABC models are 
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shown in Figure 5. 

 

Figure 5. Scatter plot of the ANN-ABC model with 5 hidden layer neurons. 

Model results indicates that there is a strong potential of ANN for the estimation of LOP values. As seen in Figure 

5, proposed ANN model shows a good performance and it can be applied to any glass fiber reinforced concrete estima-

tion research. The performance of the ANN model was given in Table 5. The best performed model was obtained with 5 

hidden layers and R
2
 values were obtained as 0.971 and 0.984 for training and testing respectively. 

 

Hidden layer neurons Training Testing 

R2 R2 

5 0.971 0.984 

Table 5. ANN performance table 

 

Following the modelling researches, ANN-ABC results are stored as Result-B and the cost of engineering and 

management works of the training studies are calculated as Cost-B. More detailed and ANN focused research can be 

found in the earlier published research as given in
[17]

. 

3. Cost Calculation 

Five test teams are organized for the fulfillment of production quality control test as per the requirements of GRCA 

(International Glass Fiber Reinforced Concrete Association). Teams and assigned test methods are given in Table 6. 

Test Identification Responsible Design Team 

TS EN 1170-1 Team-A 

TS EN 1170-2 Team-B 

TS EN 1170-3 Team-C 

TS EN 1170-4 Team-D 

TS EN 1170-5 Team-E 

Table 6. Production Line Test Teams 

Cost calculation of TS EN 1170-1 standard’s requirements is clarified in Table 7. 
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Table 7. Cost Calculation-1:TS EN 1170-1(Team A) 

 

Cost Calculation of TS EN 1170-2 standard’s requirements is given in Table 8. 

 

Table 8. Cost Calculation-2:TS EN 1170-2 (Team B) 

 

Cost Calculation of TS EN 1170-3 standard’s requirements is given in Table 9. 

 

Table 9. Cost Calculation-3:TS EN 1170-3 (Team C) 

 

Cost Calculation of TS EN 1170-4 standard’s requirements is given in Table 10. 

 

Table 10. Cost Calculation-4:TS EN 1170-4 (Team D) 

 

Cost Calculation of TS EN 1170-4 standard’s requirements is given in Table 11. 
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Table 11. Cost Calculation-5:TS EN 1170-5 (Team F) 

 

Comparing to the production line test costs, ANN ABC model method’s cost is very limited, and it can be estimat-

ed as follows (Table 12): 

 

 
Table 12. Cost Calculation-B: ANN ABC Model and Its Supervision 

4. Results and Discussions 

This study indicates the potential of ANN-ABC model for estimating the LOP values of the fabricated GRC panel 

without or lessened quantities of the destructive strength tests. By this way, a carefully designed and trained ANN mod-

el can simulate the traditional experimental phases and this model can be used as preliminary decision criteria for qual-

ity check procedures for prefabricated products. However, considering the uncertainty of the models, it is advised to use 

the prediction models for reducing the number of the experiments for test batches instead of substituting as the only 

quality control method. The cost impact of reduced production line tests is presented in Table 13. 

 

Cost A Daily Cost (Usd) Cost B (ANN ABC) Daily Cost (Usd) 

Cost Calculation-1 612.60  

349.20 

 

 Cost Calculation-2 727.20 

Cost Calculation-3 892.20 

Cost Calculation-4 710.10 

Cost Calculation-5 968.75 

Total 3910.85 

Variation per day $3561.65* 

*Depending on the decreased number of on-site tests, variation values can be changed. 

Table 13. Cost Comparison Table 

This analysis provides useful information for prefabricated GRC producers to decide its financial outcomes for re-

ducing on site test numbers for quality control procedures. Implementation of these kind of prediction models also ex-

hibits great potential to be used as a computer aided real-time quality control system in the fabrication process of the 

end-products. 
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