Research Article

ISSN Online 2231 – 3656

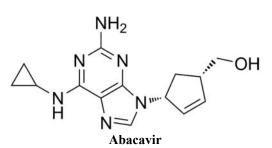
Available Online at: www.ijpir.com

International Journal of Pharmacy and Industrial Research

DEVELOPMENT AND VALIDATION OF AN ASSAY METHOD FOR LAMIVUDINE AND ABACAVIR COMBINED TABLET FORMULATION BY RP-HPLC

*Narasimha Rao V Bathula, Gayathri Devi Ketineni Victoria College of Pharmacy, Challavaripalem (village), Nallapadu (via), Guntur (District), Andhra Pradesh, India - 522 005.

Abstract


The aim of the present analytical research is to develop a simple, precise, accurate, rapid and economic RP-HPLC method for the assay of Lamivudine and Abacavir in combined tablet formulation. Till to date no accurate and precise RP-HPLC method is developed for the combined estimation of Lamivudine and Abacavir in combined tablet formulation. The main objective of this study is to validate the developed method by using parameters Specificity, Linearity, Precision, and Accuracy.

Keywords: Abacavir, Lamivudine, RP-HPLC.

Introduction

Chemically lamivudine is 4-amino-1-((2R, 5S)-2-(hydroxyl methyl)-1,3-oxathiolan-5-yl) pyrimidin-2(1H)-one. Lamivudine is a synthetic nucleoside analogue with potent activity against HIV virus (Type-I) and hepatitis-B.

Chemically abacavir sulphate is [(1S,4R)-4-[2amino-6-(cyclopropylamino)-9H-purin-9yl] cyclo pent-2-en-1-yl] methanol sulphate. Abacavir is a carboxylic synthetic nucleoside analogue with activity against HIV virus (type-I). These both drugs act by inhibiting reverse transcriptase enzyme¹⁻⁴. In the recent past Lamivudine and Abacavir combined formulations are designed as they exhibit synergistic effect in activity against

Author for Correspondence: Narasimha Rao V Bathula, C/o K. Anjaneyulu, Door No: 16-295, Opp: Jaya nursing home, Kalamandhir center, Chilakaluri pet, Guntur (dist), Andhra pradesh, India. E-mail: gayathridevi.ketineni4@gmail.com HIV-virus. For the analysis of Lamivudine and Abacavir individually UV, RP-HPLC and HPTLC methods are reported. Analytical methods such as UV and HPTLC are available for the combined estimation of Lamivudine and Abacavir⁵⁻⁶.

Materials and method

Potassium dihydrogen ortho phosphate, triethylamine, methanol, acetonitrile, water, lamivudine WRS (99.8%), abacavir sulphate WRS (99.7%), ABEC-L (labell claim 300 mg of lamivudine and 600mg of abacavir). HPLC empower software, aliance 2695, detector 2487 model. UV spectrophotometer UV win 5 software, UV-3000+ model.

Chromatographic Conditions

Column	: Hypersil BDS C18
	(100 X 4.6 mm) 5µ
Pump mode	: Isocratic
Flow rate	: 0.6 mL/min
Detection	: UV, 278 nm
Injection volume	: 20 µL
Column oven temperature	: Ambient
Run time	: 9 minutes

Standard Stock Solution

Accurately 50.04 mg of Lamivudine and 117.21 mg of Abacavir sulphate (equivalent to 100.0 mg of Abacavir) working standards were weighed and transferred into a 50 mL clean dry volumetric flask and about 10 mL of diluent was added, sonicated for 10min to dissolve completely and volume was made up to the mark with the diluent and filtered through 0.45 μ Millipore Nylon filter.

Standard Solution

4 mL of standard stock solution was pipetted into a 100 mL volumetric flask and diluted up to the mark with diluent.

Calculation for Lamivudine

Amount present =
$$\begin{array}{ccc} A_{T1} & D_{S1} & P_1 \\ ----- & X & ----- & X & ----- & X & AW \\ A_{S1} & D_{T1} & 100 \end{array}$$

Sample Stock Solution

20 tablets were weighed and average weight of tablet was determined. The tablets were crushed into a fine powder. Accurately weighed and transferred 232.12 gm of powder equivalent to 50 mg of Lamivudine into a 50 mL clean dry volumetric flask added about 10 mL of diluent and sonicated for 20 minutes. Volume was made up to the mark with the diluent and centrifuged at 5000 RPM for 10 minutes.

Sample Solution

4 mL of supernatant sample stock solution solution was pipetted into a 100 mL volumetric flask and diluted up to the mark with diluent and filtered through 0.45 μ Millipore Nylon filter.

Chromatographic Procedure of Assay System Suitability

 $20 \ \mu L$ of the standard solution was injected into the chromatographic system and chromatogram was recorded.

Assay

 $20 \ \mu L$ of the standard solution was injected five times into the chromatographic system, chromatograms were recorded and peak areas were measured.

20 µL of the sample solution was injected in duplicate into the chromatographic system, chromatograms were recorded and peak areas were measured.

Acceptance Criteria

- 1. RSD for the peak areas of responses of five replicate injections of the standard solution is not more than 2.0%.
- 2. The number of theoretical plates (N) for the Lamivudine and Abacavir peaks is NLT 2000.
- 3. The Tailing factor (T) for the Lamivudine and Abacavir peaks is NMT 2.0

Where,

 A_{T1} = Average area counts of Lamivudine peak in chromatogram of sample solution

A_{S1} = Average area counts of Lamivudine peak in chromatogram of standard solution

 D_{S1} = Dilution factor for the standard solution

 D_{T1} = Dilution factor for the sample solution

 P_1 = Percentage potency of Lamivudine working standard used (as is basis)

AW = Average weight of tablet

	Amount of Lamivudine	
% Labeled Amount =		X 100
	Label claim of Lamivudine	

Calculation for Abacavir

		A_{T2}	D _{S2}	P_2	
Amount present	=	X	X		X M. F X AW
		A_{S2}	D _{T2}	100	

Where,

 A_{T2} = Average area counts of Abacavir peak in chromatogram of sample solution.

 A_{S2} = Average area counts of Abacavir peak in chromatogram of standard solution

 D_{S2} = Dilution factor for the standard solution

 D_{T2} = Dilution factor for the sample solution

P₂ = Percentage potency of Abacavir working standard used (as is basis)

M.F = Molecular factor

AW = Average weight of tablet

% Labeled Amount = Label claim of Abacavir X 100

Method of Validation

Specificity

The retention times obtained from working standard and test samples were compared for identification.

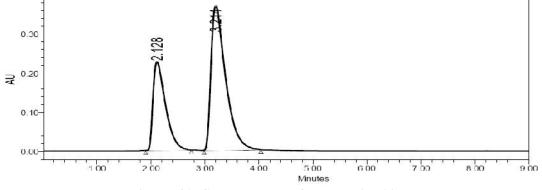
Linearity

A series of solutions of drug substance standard were prepared in the concentration range from 50% to 300% of test concentration to demonstrate linearity for assay by using single plot and injected in to the chromatographic system. A calibration graph is plotted between amount of drug (μ g/mL) and chromatographic peak area (mV).

Precision

System Precision

The system precision was established by injecting six replicate injections of standard solution in to the chromatographic system by maintaining the optimized chromatographic conditions.


Method Precision

Six assay samples of drug product at 100% of the working sample concentration were prepared and injected into the chromatographic system (Set-I).

Accuracy

Sample solutions prepared separately by addition of standard stock at 50%, 100% and 150% of working sample concentration were injected three times into the chromatographic system.

Resu	lts							
			Table No. ()1: Data of	system suitab	ility		
S.no	Name	Retention time(min)	Area (μV*sec)	Height (µV)	USP Resolution	USP plate count	USP Tailing	accuracy (recovery values)
1	lamivudine	2.128	3628811	242040.4		3439	1.5	99.4%-100.2%
2	Abacavir sulphate	3.214	6910890	389805.7	3.01	3787	1.6	99.8%-100.4%

Fig. No. 01: Chromatogram of system suitability	Fig. No. 01:	Chromatogram (of system	suitability
---	--------------	----------------	-----------	-------------

Injection	Retention Time		Pe	eak Area
mjection	Lamivudine	Abacavir sulphate	Lamivudine	Abacavir sulphate
1	2.130	3.216	3612114	6906784
2	2.124	3.208	3613316	6910847
3	2.132	3.216	3612124	6907887
4	2.128	3.214	3620116	6876906
5	2.126	3.215	3621411	6912548
Mean			3615816	6902994
SD			4565.6	14763.4
% RSD			0.12	0.21

Chromtograms of standard

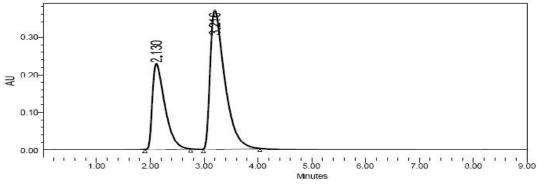
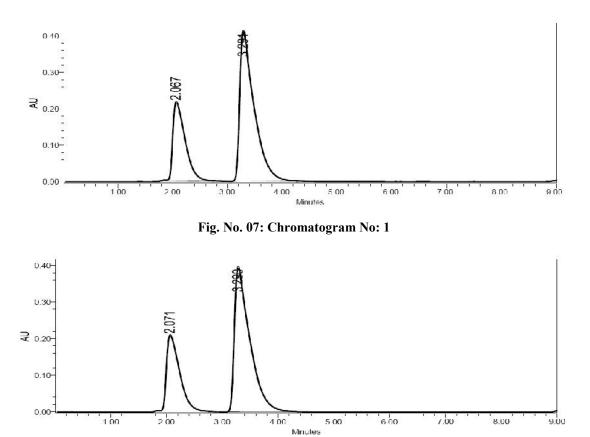
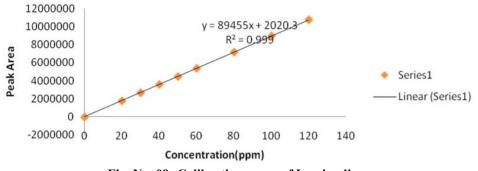
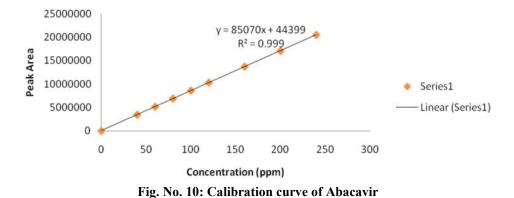



Fig. No. 02: Chromatogram No: 1


Sample chromatograms



Injustion	Retention Time		P	eak Area
Injection	Lamivudine	Abacavir sulphate	Lamivudine	Abacavir sulphate
1	2.067	3.291	3581677	6883814
2	2.071	3.290	3576624	6878314
Mean			3579150	6881064
SD			3573	3889
% RSD			0.09	0.05

142

Table N	[o. 04: Val	lidation pa	arameters

	Parameter	Re	sult
S.No	rarameter	Lamivudine	Abacavir
1	Linearity	20-120 µg/mL	40-240 μg/mL
1	Linearity	Correlation coefficient $= 0.999$	Correlation coefficient $= 0.999$
2	System precision	%RSD = 0.30	%RSD = 0.17
3	Method precision	%RSD = 0.21	%RSD = 0.21
4	Accuracy	Recovery values = 99.4%-100.2%	Recovery values = 99.8%-100.4%

Discussion

A simple, sensitive, rapid and economic RP-HPLC method was developed and validated for the assay of Lamivudine and Abacavir in combined tablet formulation. This method yielded high recoveries with good linearity and precision. It can be concluded that the proposed method is a good approach for obtaining reliable results and found to be suitable for the routine analysis of Lamivudine and Abacavir in combined tablet formulation.

References

- 1. www.rxlist.com/lamivudine/html referred date : 23-11-2010
- 2. www.rxlist.com/abacavir/html referred date:23-11-2010

- 3. www.drugbank.com/lamivudine referred date:12-11-2010
- 4. www.drugbank.com/abacavir referred date :12-11-2010
- V.P. Devmurari, "Simultaneous Spectro photometric determination of Lamivudine and Abacavir in the mixture" by International Journal of Pharmaceutical Sciences and Research, 2010, 1(7):82-86.
- T. Sudha, V. R. Ravikumar and P. V. Hemalatha, "Validated HPTLC method for simultaneous determination of Lamivudine and Abacavir Sulphate in tablet dosage form" International Journal of Pharmaceutical Sciences and Research, 2010, 1 (11): 107-111.