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Abstract: Reliable estimation of rock fragmentation is an important issue in the blasting operations in order to predict
quality of the production. Since rock fragmentation is affected by various parameters such as blast pattern and rock
mass characteristics, it is very difficult to have an appreciate prediction of it. This paper describes a new hybrid
imperialism competitive algorithm (ICA)-artificial neural network (ANN) in order to solve shortcomings of ANN itself
for prediction of rock fragmentation. In fact, the influence of ICA on ANN results was studied in this research. By
investigating the related studies, the most important parameters of ICA were identified and a series of parametric studies
for their determination were conducted. All models were built using 8 inputs and one output which is rock
fragmentation. To have a fair comparison and show the capability of the new hybrid model, a pre-developed ANN
model was also considered and constructed. Evaluation of the obtained results demonstrated that a higher ability of rock
fragmentation prediction is received developing a hybrid ICA-ANN model. Coefficient of determination (R2) values of
(0.949 and 0.813) and (0.941 and 0.819) were obtained for training and testing of ICA-ANN and ANN models,
respectively which indicated that the proposed ICA-ANN model can be implemented better in improving performance

capacity of ANN model in estimating rock fragmentation.
Keywords: Blasting; rock fragmentation; ICA; ANN; hybrid model.

1. Introduction

Blasting is a well-known economical way of breaking rock. A desired fragmentation is essential as it impacts
downstream mining operation of loading, hauling and crushing. As per study by Osanloo and Hekmat (2005)!'], loading
efficiency of shovel depends upon bucket fill factor, percentage of oversize fraction and operator’s skill. Distribution of
fragment size affects bucket fill factor. Decrease in oversize fraction improves shovel productivity. Mean fragment size
also determines blasted muck pile characteristics (Singh and Cheung, 2017). Digging requirement of loading
equipment depends upon tightness of muck pile. Dump truck capacity is fully utilized when there is well fragmented
rock. Energy consumption is reduced in crushing and grinding operation due to micro-fracturing caused during blasting
(Workman and Eloranta, 2003)P]. Prediction of rock fragmentation due to blasting is important for planning and
controlling every mining operation.

In situ rock mass block (XB) is broken into smaller fragment size of rock due to sudden expansion of explosives
energy into gaseous form during blasting operation (Hasanipanah et al. 2016a)*. Desired Run of Mine (ROM) blast
fragmentation is that rock fragment size which is easy for loading and transportation of blasted rock. Mean fragment
size (X50) is average blast fragment size of total blasted rock muck pile. If XMax is maximum fragment size, X80

which is 80% of maximum size should be equivalent to maximum permissible feed size of crusher.
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Oversize blasted rock may vary from mine to mine based on loading capacity of excavator and primary crusher.
Mid sized mines have oversize fragmentation or boulder of 800 to 1000 mm. Fine fragments are below 10 mm. Blasted
stock pile photograph is taken with known size object and rock fragment is analyzed through image analysis software.

Table 1 shows various empirical equations which have been used for prediction of blast fragmentation.

Reference Empirical Equation Femarks
Kuznetsov Ty Rock mass characteristics
(197341 Xm=4 r] Qr (1 and explosive strength

Xmis mean fragment size in cm, accounted. The mean size
A the rock factor, correlated o the characteristic
Wy is the blast volume = S X B X H, size of the Rosin—Rammler
S=Spacing, B=Burden, H= Bench height in ‘m’ distribution. The uniformity
(Ot is the mass of explosive —energy equivalent of coefTicient unknown.

TNT Exp]osj\fe charge equivalent of each blast hole

Cunningham 08y 16 (115 e Suitable to calculate mean

(1983) =AM (2 ) @ fragmentation size for a given
Kis pnwder factor in kg of explosives per cum of powder factor.
blasted rock. K = (;,-'} Cunningham (1983)€]
a
Qe is total explosives charge in Kg sugges.t_ﬂd rock factor to be on
S ko relative strength of explosive with respect to the bams of rock mass
ANFD description (massive, jointed or
friable), joint spacing, density
of rock, UCS and Young’s
modulus.

Rosin and Rocks are nof uniform in
Eammler Rmp 03] 3 geomechanical properties.
(193317 Various geological properties

where R 15 the mass fraction larger than size X, also vary within rock mass.
X = diameter of fragment (cm), This has impact on ffagment
Xc = the characteristic size (cm), size distribution which may not
n the Rosin—Rammler exponent or uniformity index, | be uniform for different fraction
and e the base of natural I!ugan'thms, 2.7T183. of fragment distribution.e.g Xsp
may not be correlated with Xag
Xem —-—1— or X with heterogeneous rock
(0.693) “® & mass,

Equation (3) 18 rewritten to get value N

Cunningham nm{22 M_)[Hma ]n_r. H’} {., IIIIII (5) Through various

(198T) e Tt Raahar i ol experimentation and
T a " L .
e A e o ey mvestigations, Cunningham
W standard deviation in drilling in “m “93,?][31 reported that
uniformity index to be 0.75 to
1.5 Value of 1 is preferable.

Morin and Monte Carlo simulation based on Kuz—Ram model : Adeqguate field data required
Ficarazzo Input parameters for Marlo Carlo simulation are for testing simulation.

(2006/° UCS, elastic modulus, JPS, 1D, DD, dip direction of
bench face, drilling accuracy.
Gheibie et al.. Modiified Kuz Ram Model Rock mass is not uniform
(2009) L1 and homogeneous across rock
B W e mass in different direction in
n=22147) (1-3) [(G+2) x (0.1+ ok O il
BCL—ECCL L i i
abs (22=EE yy04 (f-f) (6) mechanical properties.
i Blastability factor is
L is the total charge length (m). considered as rock factor which
Modification to Eq (6) where two different types of also depends on subjective rock
explosive used in single hole- bottom and column
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charge is as under: properties.
n={2 2-14BDN1-WB N 12+52B)=(0. | +abs(BCL-
CCLL)O.LLH)(T)
BCL= Bottom Charge Length in ‘m’
CCL= Column Charge Length in *m’
For staggered pattern equation to be multiplied by 1.1
The Rosin-Rammler curve is determined by the

value of n
Va B _
M= 0,073 BI [Q—‘}“E Qr,ﬂ,]{%} 19730 (®)
n'= | _88*n* BI012 (%)
Cunningham, Xeom AATK—080 "6 {,},E}”ﬂ e "
{2005)11] AAE AL s (10)

e -2 25 (1-9) () o
(11}

Where, “A¢” - tuming factor, which is applied to
Equation 10 as a multiphier, and incorporates the effect
of interhole delay on fragmentation, *C{A)" a correction
factor for the rock factor, ‘ng’ is the umformity factor
governed by the scatter ratio. *Cin)’ i5 a correction
factor for the uniformity index.

Table 1: Empirical equations for prediction of blast fragmentation

The empirical equations are derived with certain assumptions that rock mass properties are uniform throughout.
However, there is difference in aeromechanical properties which vary across rock mass. Blast ability index which is
considered in modified Kuz Ram Model, where geological properties are subjective in nature. Quantitative values are
given for each type of rock properties which may not be behave in the same manner actual in the field. Controllable
factors are blast design and explosives. In blast design, ratio of various parameters does have impact on rock mass
classification. There are also other factors which are delay demining, maximum charge per delay, loading density of
explosives. The prediction of mean rock fragmentation due to blasting is always necessary in mining for planning
downstream operation. Alternative method of predicting rock fragmentation is described in subsequent sections.

Recently, artificial intelligent (AI) techniques such as artificial neural networks (ANNs) have been
widely-developed to solve problems in civil and mining engineering especially rock fragmentation problem (e.g.,
Mohamad et al. 20120'?]; Shams et al. 2015!3]; Saghatforoush et al. 2016['4); Khandelwal and Jahed Armaghani 2016['%;
Hasanipanah et al. 2016b['®); Armaghani et al. 2017('"); Faraji Asl et al. 2017!8]). However, such tools have several
limitations such as low learning speed and falling into local minima (Lee et al. 1991)["°). As mentioned in literatures,
using efficient optimization algorithms (OAs), these limitations can be overcome. Various OAs like particle swarm
optimization (PSO), imperialism competitive algorithm (ICA) and genetic algorithm (GA) can be applied to solve
continuous and discontinuous problems. Based on powerful ability of global search of these OAs, weights and biases of
an ANN network can be determined in order to improve its performance prediction. In this study, a new hybrid model of
ICA-ANN is developed to predict rock fragmentation and then in order to show its capability, a pre-developed ANN

model is also introduced and compared.

2. Methods
2.1. Artificial neural network (ANN)

The ANN is a tool to model the complex systems in approximation problems such as medicine, finance and
engineering. ANN is a data processing analysis system making a simulation of the structure and functions of
human brain. It is an extremely interconnected multilayer structure including a large number of neurons. This network

is enable to recognize similarities especially when they are presented with new input terms after properly predicting the
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proposed output pattern. The ANN is generally applicable as an alternative for some complex statistical analysis
techniques such as auto correlation, trigonometric, multivariable regression, linear regression, and so on. It is well
established a network can be defined using three basic components known as; (i) transfer function, (ii) network
architecture, and (iii) learning law (Kosko 1992)P%, These components are considered in order to select the most
appropriate model for a given problem(s). Up to now numerous algorithms have been suggested to train the neural
networks, among which the feedforward neural networks (FFNN) and back-propagation (BP) algorithm is known as the
most reliable and accurate technique (Moayedi and Jahed Armaghani 2017)?!. For instance, BP can solve predictive
complex geotechnical problems; it makes back-propagation so popular among all existing algorithms for training ANN.
The FFNN are the most common neural networks consisted of multiple hidden layers containing weight matrices, bias
vectors and nonlinear transfer functions. Using such a network it is possible to find nonlinear complicated
relations between inputs and output data sets via a training procedure. The neural networks extracted relations are not
exact and there is always an error between the networks estimated data and real data. The components of weight
and bias are tunable constants which should be tuned to minimize the network error. The process of tuning of these
constants is called training of network. The act of training is similar to an optimization process. Various mathematical
approaches are used to train the neural networks. Most of these approaches are basically analytical such as Levenberg
Marquardt (LM), Bayesian regularization (BR), BFGS quasi-Newton (BFG) etc. LM approach is used for batch training
of the networks in this paper.

2.2 Imperialist competitive algorithm (ICA)

Imperialist competitive algorithm (ICA) is firstly proposed by Atashpaz-Gargari and Lucas (2007)?! in order to be
used in optimization problems. It is a global search population-based system that its process is similar to many other
evolutionary algorithms. ICA gets started with an initial population (or candidate solutions), that with the ICA consists
of countries. These countries are then divided into two categories: imperialists (i.c. some of the best countries) and
colonies (i.e. the remaining countries) (see Figure 1). To generate empires the colonies are distributed among the
imperialists, as determined by a pre-defined criterion, according to their relative strength. The empires then compete
with each other in order to expand their power and control more colonies. Therefore, as a result of looping this
competition, stronger empires expand their power by taking possession of weak colonies located in weaker empires.
This process is continuously repeated until the process stopped after being satisfied by a pre-defined stopping criterion.
A detailed description of the designed steps in ICA algorithm alone is widely available in literature. The readers are
recommended to see Ghorbani and Jokar (2016) 3! and Al Dossary and Nasrabadi (2016)* for more detail of ICA.
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Figure 1. Imperialistic competition to take possession of weakest colony
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2.3. Combination of ICA-ANN

Many attempts have been conducted to improve the performance of ANNs through the use of OAs like ICA, PSO
and GA in engineering problems. Since BP is a local search learning algorithm, the optimum search process of ANN
may fail and return unsatisfied solution. OAs can be utilized to adjust the bias and weight of the ANN to improve its
performance level. Regarding the local minimum in ANN system, there is normally more probability of convergence,
while OAs are able to discover a global minimum. So, hybrid systems like ICA-ANN enjoy search properties of all
ANN and ICA techniques. In search space, ICA searches for global minimum, and then ANN employs it for finding
the best results of the system.

3. Case Study and Data Collection

The selected aggregate quarry consists of limestone deposit. Limestone can be divided into 3 unite, first is a
thin bedded argillaceous limestone, second is an argillaceous limestone, and the last one cannot bounded is a massive
dark color limestone. Structure geology main fault is in NE-SW direction at block D and main anticline recumbent
folding type was across middle of project area. Limestone in these resources was re-crystallized due to metamorphism
rocks.

The 1st layer (D) is the overburden having thickness of 2 to 5 m. The 2nd layer (C). is highly weathered having
thickness of 2 to 10 m. The 3rd layer (B) is slightly weathered having thickness of 2 to 30 m. The 4th layer (A) as
massive limestone having thickness of 1 to 100 m. 10 bore holes were drilled in 2 sq KM Area. 100 m each 10 numbers
of bore holes were drilled. Various rock types maximum (Max) and average (Av.) thickness are given below: Top Soil
(Max: 0.60 M, Av.: 0.32 m) ; Weathered (Max: 17.50 M, Av. : 3.67 m); Shear zone (Max: 26.10 M, Av. : 8.51 m);
Thick bedded Argilaceous (Max: 15.60 M, Av. : 2.44 m);Thick bedded Limestone (Max: 97.00 M, Av. : 65.60 m);
Thick bedded Argillaceous (Max: 65.60 M, Av. : 15.87 m). Cavity varies from nil to maximum 12.10 m with average of
1.62 m per borehole. RQD% varies from minimum of 50.8% to maximum of 90.02% with average of 76.09%.

Limestone quarry production is increased from 2.5 MTPA to 5 MTPA. Mining equipment consist of 2.2 Cu m
excavators, 30 T capacity dump trucks, 76 mm / 102 mm diameter drills. Figure 2 shows a view of working quarry with
various equipment. Primary crusher maximum permissible rock is 800 mm. With increased production, well fragmented
limestone has become essential for achieving optimum production capacity of each equipment such as excavator, dump
truck and crusher. Achieving mean fragment size X50 as 0.3 m or less is essential to achieve optimum production form

each group of equipment.

S

Figure 2. Working limestone quarry at Thailand

Hence, literature review was done of various parameters which are considered by various researchers to predict
mean blast fragment size. Fragmentation is controlled by properties of rock mass and geological discontinuities,
explosives used and delay interval between hole to hole, blast-hole diameter, burden, spacing, bench height, length of
stemming, drill hole deviation and alignment, blast-hole pattern staggered or rectangular or square, drill hole sub
drilling(Ash, 1968[2%); Hustrulid, 19991%)). Fragmentation due to blasting depends upon certain controllable parameters

such as blast design and explosives being used. Uncontrollable parameters are related to rock mass properties —
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geomechanical strength, in situ block size.

Total volume of rock to be blasted which is a product of bench height, spacing, burden and number of holes.
Explosives is distributed across rock mass through blast holes which breaks rock mass into smaller fragmentation.
Minimum and maximum permissible limit of bench height and burden depends upon blast-hole diameter. On the other
hand, blast-hole diameter is selected based on environmental limitation such as tolerable ground vibration, air over
pressure and flyrock, fragmentation desired. With increase in hole-diameter, cost of drilling and blasting is lowered.
Maximum hole-diameter is restricted by environmental factors and mean blast fragmentation which can be maximized
without lowering capacity of down stream operation. Minimum size hole makes limit of total blasted volume in a
single blast. Previous studies reported that based on studies by CMRI and NIRM, India that maximum hole diameter in
mm can be 16.66 times bench height +50 and minimum hole can be 10 times bench height (bench height is in m). For
effective blasting, burden to be 15 to 40 times hole diameter (Bhandari, 1997)1?"). As per research findings by Konya
and Walter (1990)12%, stiffness ratio to be 2 to 4 where ratio of bench height to burden is known as stiffness ratio. Based
on fragmentation desired from in situ rock mass and explosives used, ratio of spacing to burden to be in the range of 1
to 2. Length is stemming is kept in the range of 0.7 to 1 times burden. With decrease in stemming length, boulder
generation is reduced from stemming portion. However, the risk of flyrock is increased with reduction of stemming
length. It is observed that from research studies that blast fragmentation can be correlated with various ratios (B/D, H/D,
S/B, T/B) instead of single parameter (Chakraborty et al., 20041>); Faramarzi et al., 2013; Kulatilake et al., 2010[30],
201281y,

In blasting process where explosives energy transforms in situ rock mass distribution to blasted rock fragmentation
(Lu and Lathan and, 1999)B321, Overall ratio of explosives consumed in kg to total in situ blasted rock mass in cu m is
known as powder factor. Maximum charge per delay (MC) is parameter which indicates maximum energy released
instantaneously. Powder factor and maximum charge per delay represent how explosives energy is transforming in situ
rock mass to blasted rock fragmentation. Powder factor is important parameter in predicting mean fragment size
according to many scholars (e.g., Chakraborty et al., 2004; Saliu and Akande 2007033)). Research study by Monjezi et al.
(2009)[34] and Faramarzi et al. (2013)3*1 showed that MC is crucial to predict blast fragmentation.

Total eight parameters consisting of block size (XB), RQD%, maximum charge per delay (MC), powder factor,
(B/D) burden to hole diameter ratio, (S/B) spacing to burden ratio, (H/B) ratio of bench height to burden, (T/B)
stemming height to burden ratio were considered as inputs to predict rock fragmentation. The system output was
anlaysed by taking photograph of each blast muck pile comparing with known size of object (see Figure 3). Mean
fragment size and rock fragmentation distribution is determined through image analysis software (see Figure 4). Table 2
presents range of input and output parameters used for Al modeling of this study. It should be noted that a total number

of 111 datasets were prepared in order to develop Al techniques.
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Figure 4. Image analysis of blast muck pile using blast muck pile (a) In situ block size = 0.8
m (b) In situ block size = 0.1 m

Parameter Unit Symbaol Category Range
Block Size m Xa Input l‘fl,'__,l .
Rock quality designation Ya RQD Input 42-87
Maximum charge per 74.8-
delay ke g gt 500
3 0.1-
Powder factor Kg/m PF Input 0.47
Burden to hole diameter 0.032-
ratio 3 B fput | g 042
Spacing to burden ratio - S/B Input 1-1.3
Ratio of bench height to 1.33-
burden : ik fgut 4.07
_S{cmmmg height to burden . /B Input 0.6-1
ratio
; 0.13-
Rock fragmentation m Fr Output 028

Table 2 Range of input and output parameters used for Al modeling of this study

4. The Developed AI Models

4.1 ANN

At the beginning of ANN modelling, as mentioned by Liou et al. (2009)13¢], the developed datasets should be
normalized to simplify the design procedure using the following equation:

Xnorm = (X — Xmin) / (Xmax-Xmin)(1)

where X and Xnorm are the measured and normalized values, respectively. Xmax and Xmin are the maximum and
minimum values of the X.

Then, for developing and evaluating the model, all datasets should be divided into training and testing parts,
respectively. A range of (20%-30%) of whole datasets was recommended for testing datasets in the investigation
conducted by Nelson and Illingworth (1991)B7), So, in this study, 20% of whole datasets (111 datasets) were considered
as testing datasets. Many investigations reported the successful utilization of LM training algorithm (Ornek et al.
2012)P8]. Because of that, in this study, the mentioned algorithm was utilize to design ANN. Additionally, it is
well-established that an ANN with one hidden layer can approximate any continuous function. For determining the No.
of hidden node, Hornik et al. (1989)3% stated that the maximum number of hidden node is <2x Ni + 1, where Ni is
number of input layers. Based on this equation and Ni = §, it seems that a range of 1 to 17 can be solved rock
fragmentation problem. A series of ANN models were analyzed and their results were evaluated according to root mean
square error (RMSE) and coefficient of determination (R2) values. RMSE and R2 were selected as one of the most
popular performance indices in order to evaluate predictive models. The results showed that the architecture of
8% 10 X 1 receives lowest RMSE and highest R2 values. Therefore, a model with hidden node of 10 was used and
introduced for the selected ANN model and this architecture will be used for all hybrid models too. RMSE values of
(0.090 and 0.101) and R2 of (0.813 and 0.819) were obtained for training and testing datasets of the best ANN model in
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estimating rock fragmentation. Evaluation of the best ANN model will be discussed later.
4.2 ICA-ANN

In modelling of ICA-ANN, the most important factors on ICA should be investigated and subsequently designed.
The most important factors on ICA are Ncountry (number of country), Nimp (number of imperialism) and Ndecade
(number of decade). Various values of Ncountry have been utilized to approximate problems of geotechnical
engineering. Therefore, it seems that a parametric study is needed to obtain the proper Ncountry. Therefore, a series of
ICA-ANN analyses were conducted using various Ncountr ranging from 25 to 400. In these models, Ndecade equal to
500 and Nimp equal to 5 were utilized. Figure 5 shows the results of analysis based on RMSE. As a result, Ncountry =
250 receives the lower error compared to other utilized Ncountry values. In addition, as shown in Figure 5, RMSE
values are constant for all Ncountry after number of decade equal to 300. Therefore, a hybrid ICA-ANN model with
Ncountry = 250, Ndecade = 300, Nimp = 5 and network architecture of 8X 10 X 1 is introduced for rock fragmentation
prediction. ICA-ANN network results were as RMSE of (0.047 and 0.047) and R2 of (0.949 and 0.941) for training and
testing datasets, respectively. More discussions concerning the best ICA-ANN model for prediction of rock
fragmentation are given in the next section. It is important to note that all Al models in the present research were
constructed using MatLab version 7.14.0.739 (Demuth and Beale, 2000).[%)

——Number of country=25 ——Number of country=50 ——Number of country=75 Number of country=100 —— Number of country=15(

—— Number of country=200 —— Number of country=250 ——Number of country=300 —— Number of country=350 —— Number of country=400

RMSE

0.05

Number of Decade

Figure 5. RMSE values for various Neouniry in predicting rock fragmentation
5. Model Evaluation

Evaluation of the obtained results in predicting rock fragmentation resulting from blasting is discussed in this
section. In this regard, the selected performance indices are R2, RMSE and variance account for (VAF) which their
equations can be seen as follows:

VAF = [1- 22929 15 100(3)

RMSE= 13V, (v - y)2(4)

where y and y’ are the predicted and measured values, respectively, ¥ is the mean of the y values and N is the total
number of data. The model will be excellent if R2 = 1, VAF = 100 and RMSE = 0.

After a precise evaluation, higher performance capacity was provided by hybrid model in terms of all VAF, RMSE
and R2 values of both training and testing phases (see Table 3). RMSE values of (0.090 and 0.047) and (0.101 and
0.047) were obtained for training and testing of ANN and ICA-ANN models, respectively. In addition, VAF values near
to 100 (94.573, and 94.082 for train and test of ICA-ANN, respectively) were achieved for a new developed hybrid
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model. These results demonstrated that minimum system error can be achieved advancing hybrid model. Figures 6 to 9
shows predicted rock fragmentation values together with their actual values for ANN and ICA-ANN models. Both of
training and testing datasets are showed in these figures. As shown, the developed hybrid model gives higher level of

capability in prediction of rock fragmentation. The developed predictive models could be used for similar condition in
the future.

Performance Index
2 -
Model R RMSE VAF
Tr Tes Tra Tes Trai Test
ain t in t n
ANN 0.8 0.8 0.0 0.1 80.79 81.2
13 19 90 01 7 90
ICA-ANN 0.9 0.9 0.0 0.0 94,57 94.0
49 41 47 47 3 82
Table 3. The obtained results of intelligent methods
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1
* @9 4
T ® . .
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Figure 6. Training dataset results obtained by ANN model
Test
1
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1
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Figure 7. Testing dataset results obtained by ANN model
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Figure 8. Training dataset results obtained by ICA-ANN model
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Figure 9. Testing dataset results obtained by ICA-ANN model

6. Conclusions

Many blasting operations were monitored and the most effective parameters on rock fragmentation were measured
and used to develop Al techniques. Two intelligent models i.e., ANN and ICA-ANN were considered and developed for
prediction of rock fragmentation. With respect to the related previous studies, the most important parameters of ICA
were identified and determined in the present study. To estimate rock fragmentation, many ICA-ANN and ANN models
were applied and the best ones among them were selected to be introduced in this study. Considering the most famous
performance indices, all proposed models were carefully evaluated. After evaluation, it was found that in terms of both
train and test, the ICA-ANN model receives better results in solving problem of rock fragmentation. R2 values of (0.949,
and 0.813) and (0.941 and 0.819) were obtained for training and testing of ICA-ANN and ANN models, respectively. In
addition, VAF values near to 100 (94.573, and 94.082 for train and test, respectively) were achieved for a developed
ICA-ANN hybrid model. Note that, the Al models of this study cab be used in similar condition with caution.
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