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Abstract: Classical rough set theory (RST) can’t process incomplete information system (IIS) because it is based on an 

indiscernibility relation which is a kind of equivalent relation. In the literature a non-symmetric similarity relation based 

rough set model (NS-RSM) has been introduced as an extended model under IIS with “?" values directly. Unfortunately, 

in this model objects in the same similarity class are not necessarily similar to each other and may belong to different 

target classes. In this paper, a new inequivalent relation called Maximal Limited Consistent block relation (MLC) is 

proposed. The proposed MLC relation improves the lower approximation accuracy by finding the maximal limited blocks 

of indiscernible objects in IIS with “?" values. Maximal Limited Similarity rough set model (MLS) is introduced as an 

integration between our proposed relation (MLC) and NS-RSM. The resulted MLS model works efficiently under IIS 

with “?" values. Finally, an illustrative example is given to validate MLS model. Furthermore, approximation accuracy 

comparisons have been conducted among NS-RSM and MLS. The results of this work demonstrate that the MLS model 

outperform NS-RSM. 

Keywords: Rough Set Theory; Incomplete information system; non-symmetric similarity relation; Tolerance relation; 

Maximal consistent block relation; limited tolerance relation 

1. Introduction

Classical Rough Set Theory (RST) proposed by Pawlak[13] made a great success in processing and analyzing com-

plete information systems characterized by uncertainty. The indiscernibility relation is reflexive, symmetric and transitive. 

However, the indiscernibility relation is considered rigid relation[7] because it is based on the assumption that all objects 

values on every attribute must be complete. Such an assumption, contrasts with several real-valued information systems 

situations where the information may be incomplete either because the attributes values are missing or because the attrib-

utes values are absent[4]. This limits the applicability of the classical RST in real-world applications where some of the 

attribute values are incomplete. The classical RST can deal with IIS using two strategies. The first is an indirect method 

that transforms an IIS into a complete information system according to some rules such as probability statistical methods; 

this is called data reparation[6,18]. However, this strategy changes the original information of IS. The second is a direct 

method that extends the basic concepts of the classical rough set theory in IIS by relaxing the requirement of indiscerni-

bility relation of reflexivity, symmetry and transitivity[1,2,8-10,12,14,16,17,19-23].  

The unknown values were categorized by Grzymala-Busse[5] as follows 

1. The unknown values are “lost ?", this unknown value means that it is an absent value and can’t be compared with

any other values in the domain of the corresponding attribute. 

2. The unknown values are “don’t care *", this unknown value means that it is a missing value and can be compared

with any other values in the domain of the corresponding attribute. 
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In recent years, many researchers working on the RST model extension by extending the indiscernibility relation to 

inequivalent relations that can process IISs directly. For example, Kryszkiewicz (1998); Kryszkiewicz (1999) proposed 

the tolerance relation that is reflexive and symmetric but not necessarily transitive to deal with “*" values. In this relation, 

objects that have no values in common are considered indistinguishable. This obviously is unreasonable case which limits 

the applicability of the tolerance relation. Stefanowski and Tsoukiàs (1999); Stefanowski and Tsoukiàs (2001) investigated 

the similarity relation of Skowron and Stepaniuk (1996) to be reflexive and transitive but not necessarily symmetric to 

deal with “?" values. This relation separates two objects that are very similar to each other but with little loss in the 

information, also objects in the same similarity class are not necessarily similar to each other and may belong to different 

target classes. This excludes some objects from the lower approximation of the target set. This decreases the cardinality 

of the lower approximation leading to unpromising results with respect to approximation accuracy. Wang (2002); Wang 

et al (2008) proposed the limited tolerance relation that is reflexive and symmetric but not necessarily transitive. However, 

limited tolerance relation has not differentiated the two types of unknown attribute values. Leung and Li (2003); Cheng 

et al (2007) proposed the maximal consistent block relation that is reflexive and symmetric but not necessarily transitive 

to deal with “*" values. Maximal consistent block relation describes the maximal collection of indistinguishable objects 

in the tolerance classes. Such relation achieves better approximation accuracy than that provided by tolerance relation, but 

it inherits the limitation of the tolerance relation where objects that have no values in common are considered indistin-

guishable. 

Among the previous rough set extensions, the non-symmetric similarity relation can effectively locates the lower/up-

per approximations (Slowinski et al (2014)). Unfortunately, objects in the same similarity class are not necessarily similar 

to each other. The maximal consistent block relation provides promising approximation accuracy in IIS with “*" values 

(Liu and Shao (2014)) but unable to deal with IIS with “?" values because it depends on tolerance relation. In this paper, 

we extend the relative concept of maximal consistent block relation based on the limited tolerance relation instead of the 

tolerance relation to present the maximal limited consistent block relation (MLC). MLC relation can find the maximal 

limited blocks of indiscernible objects in IIS with “?" values. Furthermore, we integrate MLC relation with NS-RSM to 

introduce the Maximal Limited Similarity model (MLS). The resulted model improves the lower approximation accuracy 

than NS-RSM. An illustrative example is given to validate our MLS model. Moreover, two approximation accuracy com-

parisons have been conducted among NS-RSM and MLS. The results demonstrate that with regard to the approximation 

accuracy, MLS model outperform NS-RSM model 

The rest of this paper is organized as follows. Some related RST extensions under IIS are reviewed in section 3. 

Section 4 presents the Maximal Limited Consistent block relation (MLC). In section 5, we propose the Maximal Limited 

Similarity (MLS) model as integration of NS-RSM relation with MLC relation. In section 6, two approximation accuracy 

comparisons among NS-RSM and MLS have been conducted. Section 7 concludes the paper. 

2. Preliminaries

3. Some RST Extensions Under IIS

In this section, we review some related RST extensions under IIS with their issues.

3.1 Tolerance relation based rough set model 

Kryszkiewicz (1998) proposed the tolerance relation to deal with “*" values as Definition 1. 

Definition 1 Given IIS in which A⊆AT, the tolerance relation is given by  

SIM(A) = {(x,y) ∈ U ×U : ∀a ∈ A, fa(x) = fa(y) or fa(x) = ∗ ∨ fa(y) = ∗} (1) 

The tolerance classes given the tolerance relation are given by  

S
A

(x)={y∈U:(x,y)∈SIM(A)} (2) 

The tolerance relation lower/upper approximation for the target set X are given respectively as follows 

Apr
A

(X)={x∈U:S
A

(x)⊆X}={x∈X:S
A

(x)⊆X} (3) 

 Apr
A

(X)={x∈U:S
A

(x)⋃X≠φ}=⋂{S
A

(x):x∈X} (4)
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3.2 Maximal consistent block relation 

Leung and Li (2003) proposed the maximal consistent block relation to improve the results of the tolerance relation. 

Maximal consistent block describes the maximal collection of the indistinguishable objects in the tolerance class as Def-

inition 2.  

Definition 2. Given IIS in which A⊆AT and X⊆U, we say that X is consistent with respect to A if (x,y)∈SIM(A) for 

all x,y∈X. We say X is maximal consistent block of A if there doesn’t exist Y⊆U where X⊂Y and Y is consistent with 

respect to A. We denote the maximal consistent blocks with respect to A as ζ(A) and the maximal consistent blocks with 

respect to A that includes some object x∈U as ζ
x
(A). 

The maximal consistent block lower/upper approximations for the target set X are given respectively as follows 

Apr
A

(X)=⋂{Y∈ζ(A):Y⊆X}, (5) 

 Apr
A

(X)=⋂{Y∈ζ(A):Y⋃X≠φ}. (6) 

3.3 Non-symmetric similarity relation based rough set model (NS-RSM) 

Definition 3. Given IIS in which A⊆AT, the non-symmetric similarity relation is given by 

∀
x,y

S(x,y)⟺∀
a∈A

f
a

(x)≠? , f
a
(x) = f

a
(y)} (7) 

For each object, two similarity classes are defined as follows 

R(x)= {y∈U:S(y,x)} (8) 

R
−1

(x)= {y∈U:S(x,y)} (9) 

Where, R(x) represents the set of objects similar to x and R
−1

(x) represents the set of objects to which x is similar.

The lower/upper approximations of set X are given respectively as follows 

Apr
A

(X)={x∈U:R
−1

(x)⊆X} (10) 

 Apr
A

(X)=⋂{R(x):x∈X} (11) 

3.4 Limited tolerance relation 

The tolerance relation requirement is too weak as it regards two objects with no common values as indistinguishable, 

also, the requirement of the non-symmetric similarity relation is too strict as it separates two objects that are very similar 

to each other but with little loss in the information. This makes the process too extreme. Consequently, Wang (2002); 

Wang et al (2008) proposed the limited tolerance relation that tries to relax the requirements of both tolerance relation 

and non-symmetrical similarity relation as Definition 4. 

Definition 4. Given IIS in which A⊆AT, the limited tolerance relation is given by 

∀x,y ∈ UxU (LTA(x,y)  ∀a∈ A( fa(x) = fa(y) = unknown) 

∨ ((PA(x)  PA(y) ≠)                 (12) 

∧∀a∈ A  (fa(x) ≠ unknown 

∧ fa(y) ) ≠ unknown) 

( fa(x) = fa(y)))) 

where P
A

(x) = {a∈A:f
a

(x) is known value} and the unknown values can be interpreted as * or ? values. 

The limited tolerance classes of x is denoted by LT
A

(x) where 

I
A

(x)={y:y∈U∧LT
A

(x,y)}                 (13) 

The lower and upper approximations of set X are given respectively as follows 

Apr
A

(X)={x:x∈U∧I
A

(x)⊆X} (14) 

 Apr
A

(X)={x:x∈U∧I
A

(x)⋃X≠φ} (15) 

4 MAXIMAL LIMITED CONSISTENT BLOCK RELATION (MLC) 

Maximal consistent block relation deals only with IIS with “*" values in which it depends only on tolerance relation 

as shown in section 3.2. In this section we propose the maximal limited consistent block relation (MLC) that extends the 

maximal consistent block relation based on the limited tolerance relation instead of tolerance relation. This is because 

limited tolerance relation can deal with IIS with either “*" or “?" values. MLC describes the maximal collection of 
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indistinguishable objects in the limited tolerance classes. This allows MLC to provide a promising approximation accu-

racy than the one obtained by limited tolerance relation. The form of MLC relation is given in Definition 5. 

Definition 5. Given IIS in which A⊆AT and X⊆U, we say that X is limited consistent with respect to A if 

(x,y)∈LT
A

(x,y)  ∀x,y∈X. We say that X is maximal limited consistent block of A if there doesn’t exist Y⊆U where 

X⊂Y and Y is limited consistent with respect to A. We denote the maximal limited consistent blocks with respect to A as 

ζ
LT

(A) and the maximal limited consistent blocks with respect to A that includes some objects x∈U as ζ
LT

x
(A) 

Such relation is reflexive but not necessarily transitive and symmetric. 

In the following, to obtain the lower/upper approximations of MLC, we will redefine the lower/upper approximation 

obtained by equations (5) and (6) based on Definition 6 as follows  

Apr
A

(X)=⋂{Y∈ζ
LT

(A):Y⊆X} (16) 

 Apr
A

(X)=⋂{Y∈ζ
LT

(A):Y⋃X≠φ} (17) 

The positive, negative and the boundary regions are given respectively as follows 

POS(X)=Apr
A

(X), (18) 

NEG(X)=U−  Apr
A

(X), (19) 

BND(X)=  Apr
A

(X)−Apr
A

(X) (20) 

5 MAXIMAL LIMITED SIMILARITY ROUGH SET MODEL (MLS) 

As we discussed in section 3.3, objects in the same similarity classes are not necessarily similar to each other and 

may belong to different target classes which increases uncertainty in the data. This excludes some objects from the lower 

approximation of the target set in spite the fact they could be classified in the lower approximation leading to unpromising 

results with respect to approximation accuracy. Our proposed solution for the previous problem is to find the maximal 

limited blocks of similar objects in similarity classes to ensure that objects in the same similarity class are similar to each 

other. This reduces the uncertainty from the data allowing accurate computation to be done for the lower approximation 

leading to promising results with respect to approximation accuracy. In this section we introduce the Maximal Limited 

Similarity (MLS) model as an integration between NS-RSM and our proposed MLC relation. The resulted model able to 

provide a promising approximation accuracy than NS-RSM. The form of MLST is given in Definition 7 and Definition 

8.  

Definition 7. Given IIS and R(x) be set of objects similar to x in which A⊆AT and X⊆R(x), we say that X is limited 

consistent block of objects similar to x with respect to A if (x,y) ∈ S(y,x) and ∀y,z ∈ X,(y,z) ∈ LTA(y,z). We say that 

X is maximal limited consistent block of objects similar to x if there doesn’t exist Y⊆R(x) where X⊂Y and Y is limited 

consistent with respect to A. We denote the maximal limited consistent blocks of all R(x) as ζ
LT

R
(A) and the maximal

limited consistent blocks of objects similar to x with respect to A as ζ
LT

R(x)
(A). 

Definition 8. Given IIS and R−1(x) be set of objects to which x is similar in which A ⊆ AT and X ⊆ R−1(x), we say 

that X is limited consistent block of objects to which x is similar with respect to A if (x,y) ∈ S(x,y) and ∀y,z ∈ X,(y,z) 

∈ LTA(y,z). We say that X is maximal limited consistent block of objects to which x is similar if there doesn’t exist Y 

⊆ R−1(x) where X ⊂ Y and Y is limited consistent with respect to A. We denote the maximal limited consistent blocks 

of all R
−1

 as ζ
LT

R−1(A) and the maximal limited consistent blocks of objects to which x is similar with respect to A as

ζ
LT

R−1(x)
(A). 

Such relation is reflexive but not necessarily transitive and symmetric. 

In the following, to obtain the lower/upper approximations of MLS, we will redefine the lower/upper approximation 
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obtained by equations 10 and 11 based on Definitions 7 and 8 as follows 

Apr
A

(X)=⋂{Y∈ζ
LT

R−1(A):Y⊆X} (21) 

 Apr
A

(X)=⋂{Z∈ζ
LT

R(x)
(A):x∈X} (22) 

Similar to the classical RST, the positive, negative and the boundary regions are given respectively as follows 

POS(X)=Apr
A

(X), (23) 

NEG(X)=U−  Apr
A

(X), (24) 

BND(X)=  Apr
A

(X)−Apr
A

(X). (25) 

5.1 Properties of MLS 

The tolerance relation requirement is too weak as it regards Property 1. Any similarity class R
−1

(x) of attributes

subset A can be represented as the union of maximal limited consistent blocks included in it. In other words 

R
−1

(x)=⋂{Y∈ζ
LT

R−1(A):Y⊆R
−1

(x)}=⋂{Y∈ζ
LT

R−1(x)
(A)}. 

Property 2. Any similarity class R(x) of attributes subset A can be represented as the union of maximal limited 

consistent blocks included in it. In other words  

R(x)=⋂{Z∈ζ
LT

R
(A):Z⊆R(x)}=⋂{Z∈ζ

LT

R(x)
(A)}. 

Property 3. Given IIS in which A,B⊆AT and X⊆U, then 

1. Apr
A

(X)⊆X⊆  Apr
A

(X). 

2. A⊆B  Apr
B

(X)⊆  Apr
A

(X). But Apr
A

(X)⊆Apr
B

(X) doesn’t hold.

Theorem 1 Given IIS, the lower approximation of X  U obtained using MLS model is a refinement of the one 

obtained using NS-RSM. 

Proof. We have to clarify that the lower approximation of NS-RSM obtained using equation 21 is subset of lower 

approximation of MLS obtained using equation 10. 

Suppose that x∈ lower approximation of the NS-RSM obtained using equation 10, then R
−1

(x)⊆X  holds. By 

property 1, R
−1

(x)=⋂{Y∈ζ
LT

R−1(A):Y⊆R
−1

(x)}=⋂{Y∈ζ
LT

R−1(x)
(A)}. Then there exist Y∈ζ

LT

R−1(x)
that contain x and 

Y⊆X. Therefore, x∈ lower approximation of MLS obtained using equation 21. This means that ∀x∈ lower approxima-

tion of NS-RSM, x∈ lower approximation of MLS. The inverse isn’t necessarily true. Consequently, the lower approx-

imation of X obtained using MLS is at least equal to the lower approximation of X obtained using NS-RSM. 

The investigation of NS-RSM using MLC allowed accurate computation to be done for the lower approximation 

when the data set contains a lot of uncertainty, this is because MLC reduces the uncertainty from data. When the data set 

contains little uncertainty which is considered the worst case to MLS, the lower approximation obtained using MLS is at 

least equal to the lower approximation obtained using NS-RSM.  

Theorem 2 Given IIS, the upper approximation of X  U obtained using MLS relation is equal to the one obtained 

using NS-RSM. 

Proof.  The upper approximation of NS-RSM is given by 

 Apr
A

(X)=⋂{R(x):x∈X}. From property 2, R(x)=⋂{Z∈ζ
LT

R
(A):Z⊆R(x)}=⋂{Z∈ζ

LT

R(x)
(A)} for any x∈U. So, 
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 Apr
A

(X)=⋂{⋂{Z∈ζ
LT

R(x)
(A)}:x∈X}=⋂{Z∈ζ

LT

R(x)
(A):x∈X}= upper approximation of MLC 

6 EXPERIMENTAL RESULTS 

The tolerance relation requirement is too weak as it regards This section presents an illustrative example to validate 

MLS model. Furthermore, approximation accuracy comparisons have been conducted among NS-RSM and MLS. We 

have implemented our proposed model and the related model using Matlab R12a on a PC with windows 8, Intel(R) 

Core(TM) i7 CPU 2.4 GHZ and 6GB memory. In this experiment we employ the incomplete data set shown in Table 1 

Stefanowski and Tsoukiàs (1999) to illustrate and compare the approximation accuracy of MLS with NS-RSM.  

The metric for evaluating the performance of different rough set models is the approximation accuracy (Dai and Xu 

(2012)) of a set that is a type of uncertainty measurements that measures the quality of the data (Slowinski et al (2014)). 

The approximation accuracy is an agreement measure of completeness of the knowledge of the approximated set and is 

given by  

τ= 
|Apr(A)|

|  Apr  (A)|

where, |⋅| means cardinality and Apr(A),  Apr  (A) means the lower and upper approximations respectively. Obvi-

ously, 0≤τ≤1. This means, smaller the boundary region the higher the approximation accuracy. 

Table 1: small illustrative example 

This experiment uses the incomplete data set shown in Table 1 where, U={x
1

,x
2
,...,x

13
} , A={a

1
,a

2
,a

3
,a

4
} with 

25% lost values and d is the decision attribute that determines a partition on the universe such that 

U/d={d
1
,d

2
}={{x∈U:f

d
(x)=1},{x∈U:f

d
(x)=2}} . Then 

(1) We obtain the similarity classes in terms of NS-RSM as follows

R
−1

(x
1

)={x
1
,x

9
,x

12
} 

R(x
1
)={x

1
,x

11
} 

R
−1

(x
2

)={x
2
,x

3
,x

6
} 

R(x
2
)={x

2
} 

U a1 a2 a3 a4 d 

x1 3 2 1 ? 1 

x2 2 3 2 ? 1 

x3 2 3 2 0 2 

x4 ? 2 ? 1 1 

x5 ? 2 ? 1 2 

x6 2 3 2 1 1 

x7 3 ? ? 3 1 

x8 2 3 2 2 2 

x9 3 2 1 3 2 

x10 1 ? ? ? 1 

x11 3 2 ? ? 2 

x12 3 2 1 1 1 

x13 3 2 2 3 2 
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R
−1

(x
3

)={x
3
} 

R(x
3
)={x

2
,x

3
} 

R
−1

(x
4

)={x
4
,x

5
,x

12
} 

R(x
4
)={x

4
,x

5
} 

R
−1

(x
5

)={x
4
,x

5
,x

12
} 

R(x
5
)={x

4
,x

5
} 

R
−1

(x
6

)={x
6
} 

R(x
6
)={x

2
,x

6
} 

R
−1

(x
7

)={x
7
,x

9
,x

13
} 

R(x
7
)={x

7
} 

R
−1

(x
8

)={x
8
} 

R(x
8
)={x

2
,x

8
} 

R
−1

(x
9

)={x
9
} 

R(x
9
)={x

1
,x

7
,x

9
,x

11
} 

R
−1

(x
10

)={x
10

} 
R(x

10
)={x

10
} 

R
−1

(x
11

)={x
1

,x
9
,x

11
,x

12
,x

13
} 

R(x
11

)={x
11

} 

R
−1

(x
12

)={x
12

} 
R(x

12
)={x

1
,x

4
,x

5
,x

11
,x

12
} 

R
−1

(x
13

)={x
13

} 
R(x

13
)={x

7
,x

11
,x

13
} 

Consequently, 

S
A

(d
1

)={x
6

,x
10

,x
12

} 

 S
A

(d
1

)={x
1

,x
2

,x
4

,x
5

,x
6

,x
7

,x
10

,x
11

,x
12

} 

S
A

(d
2

)={x
3

,x
8

,x
9

,x
13

} 

 S
A

(d
2

)={x
1

,x
2

,x
3

,x
4

,x
5

,x
7

,x
8
,x

9
,x

11
,x

13
} 

Obviously, τ(d
1

)= 
3

9
= 

1

3
and τ(d

2
)= 

4

10
= 

2

5
. Some objects are included in the same relation in spite the fact that 

they are not similar to each other. Such problem is a result of NS-RSM does not find the maximal block of indiscernible 

objects. For example, in R
−1

(x
1

)={x
1
,x

9
,x

12
}  object x

9
  and object x

12
are not similar, this lead to R

−1
(x

1
)⊈d

1

which prevents object x
1

from being included in the lower approximation of d
1
 . In R

−1
(x

2
)={x

2
,x

3
,x

6
}  object x

3

and object x
6

 are not similar, this lead to R
−1

(x
2

)⊈d
1

which prevents object x
2

from being included in the lower 

approximation of d
1
. This shrinks the lower approximation leading to unpromising results with respect to approximation 

accuracy. 

(2) We obtain the similarity classes in terms of MLS as follows
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ζ
LT

R(x1)(A)={Z
1
={x

1
,x

11
}} ζ

LT

R−1(x1)
(A)={Y

1
={x

1
,x

9
},Y

2
={x

1
,x

12
}}

ζ
LT

R(x2)(A)={Z
2

={x
2

}} ζ
LT

R−1(x2)
(A)={Y

3
={x

2
,x

3
},Y

4
={x

2
,x

6
},Y

5
={x

2
,x

8
}}

ζ
LT

R(x3)(A)={Z
3

={x
2

,x
3

}} ζ
LT

R−1(x3)
(A)={Y

6
={x

3
}}

ζ
LT

R(x4)(A)={Z
4

={x
4

,x
5

}} ζ
LT

R−1(x4)
(A)={Y

7
={x

4
,x

5
 x

12
}}

ζ
LT

R(x5)(A)={Z
4

={x
4

,x
5

}} ζ
LT

R−1(x5)
(A)={Y

7
={x

4
,x

5
,x

12
}}

ζ
LT

R(x6)(A)={Z
5

={x
2

,x
6

}} ζ
LT

R−1(x6)
(A)={Y

8
={x

6
}}

ζ
LT

R(x7)(A)={Z
6

={x
7

}} ζ
LT

R−1(x7)
(A)={Y

9
={x

7
,x

9
},Y

10
={x

7
,x

13
}}

ζ
LT

R(x8)(A)={Z
7

={x
2

,x
8

}} ζ
LT

R−1(x8)
(A)={Y

11
={x

8
}}

ζ
LT

R(x9)(A)={Z
8

={x
1

,x
7

,x
9

,x
11

}} ζ
LT

R−1(x9)
(A)={Y

12
={x

9
}}

ζ
LT

R(x10)(A)={Z
9

={x
10

}} ζ
LT

R−1(x10)
(A)={Y

13
={x

10
}}

ζ
LT

R(x11)(A)={Z
10

={x
11

}} ζ
LT

R(x12)−1(A)={Y
17

={x
12

}}

ζ
LT

R(x13)(A)={Z
14

={x
7

,x
11

,x
13

}} ζ
LT

R(x13)−1(A)={Y
18

={x
13

}}

Consequently, 

S
A

(d
1

)={x
1

,x
2

,x
6

,x
10

,x
12

} 

 S
A

(d
1

)={x
1

,x
2

,x
4

,x
5

,x
6

,x
7

,x
10

,x
11

,x
12

} 

S
A

(d
2

)={x
3

,x
8

,x
9

,x
11

,x
13

} 

 S
A

(d
2

)={x
1

,x
2

,x
3

,x
4

,x
5

,x
7

,x
8
,x

9
,x

11
,x

13
} 

Obviously, τ(d
1

)= 
5

9
and τ(d

2
)= 

5

10
= 

1

2
. The results are more informative than NS-RSM model. This is because 
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MLS finds the maximal limited consistent blocks of indiscernible objects and now objects in the same relation are similar 

to each other. For example, in ζ
LT

R−1(x1)
(A)={Y

1
={x

1
,x

9
},Y

2
={x

1
,x

12
}} object x

9
and object x

12
are not included in 

the same block as NS-RSM does. This lead to Y
2
⊆d

1
which allow object x

1
to be included in the lower approximation 

of d
1
. In ζ

LT

R−1(x2)
(A)={Y

3
={x

2
,x

3
},Y

4
={x

2
,x

6
},Y

5
={x

2
,x

8
}} object x

3
and object x

6
are not in the same block. 

This lead to Y
4
⊆d

2
which allow object x

2
to be included in the lower approximation of d

1
.

7 CONCLUSION 

In most real-valued information systems, attributes are incomplete to some degree which affect the process of ana-

lyzing data. Acquiring knowledge from such an IIS is difficult. So, researchers introduced many approaches to address 

this problem. Many solutions based on extending RST have been proposed. In this paper, non-symmetric similarity rela-

tion based rough set model (NS-RSM) has been investigated and analyzed. It was found that NS-RSM gathers objects 

that are not similar to each other in the same relation which results in unpromising results with respect to approximation 

accuracy. To address this problem, we present the maximal limited similarity model (MLS) that finds the maximal lim-

ited blocks of similar objects in similarity classes to ensure that objects in the same similarity class are similar to each 

other. This reduces the uncertainty from the data allowing accurate computation to be done for the lower approximation 

leading to promising results with respect to approximation accuracy. To demonstrate the efficiency of the proposed MLS 

model, comparisons of the approximation accuracy of the proposed model with NS-RSM have been carried out on 

four benchmark data sets. The results of the comparisons show that MLS is superior than NS-RSM. Also the comparisons 

demonstrate that MLS can obtain higher approximation accuracy than NS-RSM and can approximate the target set more 

accurately than NS-RSM. For further study, MLS model can be used to improve RST reduction. 
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