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Abstract: According to previous reports, nearly one in 10 genetic diseases are caused by nonsense mutations around the 

world. Nonsense mutations lead to premature transcription terminations in cells, which in turn generate non-functional, 

truncated proteins. In recent years, read-through drugs are playing increasing prominent roles in the researches related 

to genetic diseases caused by nonsense mutations. However, due to the fact that the mechanisms lying behind transla-

tion termination still remain to be elucidated, the mechanistic research and clinical application of read-through drugs are 

facing new challenges. This review mainly discusses about the pathogenesis of genetic diseases caused by nonsense 

mutations, and then introduces the current clinical application of read-through drugs. Finally, we display some problems 

that remain to be solved and propose some possible coping strategies. 
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In the process of protein synthesis, the termination of codon means the end of translation. However, in some cases, 

such as gene mutation, the original codon encoding an amino acid is converted into a termination codon, resulting in 

early termination of translation and the production of nonfunctional truncated proteins. These abnormal proteins disrupt 

the normal function of cells, leading to genetic diseases such as Duchenne mus-cular dystrophy (DMD) and cystic fi-

brosis (CF). This abnormal termination codon is called a premature termination codon (PTC), and the mutation is called 

a nonsense mutation. According to statistics, around 1/10 of human genetic diseases (especially monogenic diseases) 

caused by nonsense mutations in the world is caused by
[1]

. 

In order to treat diseases caused by PTC, PTC reading therapy emerged in recent years, and has achieved encour-

aging results. The therapy uses a number of read-through drugs to restore protein synthesis by eliminating decoding 

errors caused by PTC during the translation process. Currently, the commonly used drugs for promoting reading are 

aminoglycosides and non aminoglycosides, the two major categories of
[2]

. Among them, aminoglycosides include tradi-

tional aminoglycoside antibiotics (such as amikacin, tobramycin, balomycin, gentamicin and hereditary mycin) and 

synthetic aminoglycoside derivatives (such as NB30, NB54, NB74, NB84 and TC007). Non-aminoglycosides are Ata-

luren (PTC124), Negamycin, Tylosin, Clitocine, RTC13/14, and some macrolide antibiotics
[3]

. This article reviews the 

mechanism and clinical application of reading-promoting drugs in order to provide reference for the research and treat-

ment of genetic diseases caused by nonsense mutations. 

1. The mechanism of promoting drug reading 

In the process of translation, sometimes the ribosome will cause "misreading" of the genetic information of mRNA, 

that is, the termination codon will be used as a meaningful codon to prolong the peptide chain. This misreading mecha-

nism is the theoretical basis of PTC reading therapy, that is, using drugs to improve the probability of ribosomal mis- 
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reading, to treat some diseases caused by PTC. In order to understand the above mechanisms, the mechanisms of exten-

sion and termination of translation, extension and termination of translation under the influence of drugs, and 

drug-induced PTC reading are explained. 

1.1 Stop codon read through mechanism 

The translation of intracellular proteins includes two processes: elongation and termination. In the process of pep-

tide chain extension, the cognateaminoacyl tRNA (Cognateaminoacyl tRNA) first enters the ribosome A site, and then 

the amino terminal and the carboxyl terminal of the peptide chain undergo dehydration and condensation, thus prolong-

ing the peptide chain. Finally, with the transposase EF-G, the tRNA dissociates from the ribosome, which moves a co-

don toward 3', ready to accept the next associated aminoacyl tRNA
[4]

. 

During the termination of peptide chain, the termination codon (UAA, UGA, UAG) is not recognized by amino-

acyl tRNA, but by the release factor (RF). In prokaryotes, release factors include RF1, RF2 and RF3. RF1 and RF2 are 

responsible for terminating codon; RF3 is GTP enzyme, which plays a role in assisting the former two. 

In eukaryotes, the release factors include eRF1 and eRF3, which combine to terminate the execution of the com-

plex. ERF1, which is similar to aminoacyl RNA, can recognize and bind three termination codons and directly regulate 

the release of new peptide chains. ERF3 is similar to RF3 and eRF1
[5]

. 

Although cells contain many mechanisms to ensure proper translation, the efficiency of translation termination is 

still difficult to achieve 100%, and this efficiency is related to the competition between near-cognate aminoacyl tRNA 

(Near-cognate aminoacyl tRNA with only two base and codon pairs) and eRF1. If the proximally associated aminoacyl 

tRNA accidentally binds to the termination codon, allowing the nonsense codon to be decoded again into a meaningful 

codon, the extension continues until the next termination codon, a phenomenon known as termination codon reading. In 

general, the probability of PTC reading through is less than 1%, and the probability of normal termination of codon 

reading through is less than 0.1%. In addition, studies have shown that the read probabilities of the 3 stop codons are 

UGA > UAG > UAA
[2]

. 

1.2 Drug induced PTC reading mechanism 

In 1996, Howard et al.
[6]

 first used drug-induced PTC reading to correct nonsense mutations in mammalian cells. 

After nearly 20 years of research, it is generally believed that the key point of reading through therapy is to make 

near-related aminoacyl tRNA competently inhibit eRF1, promote the binding of near-related aminoacyl tRNA and PTC, 

thereby increasing the probability of PTC reading through. In the course of PTC reading therapy, all kinds of amino 

acids may be integrated into polypeptide chain
[7]

. If PTC is not at a critical site of a functional protein, such as a cata-

lytic center, then PTC read-through therapy 

The method can at least partially restore the function of damaged proteins and benefit patients with genetic diseas-

es such as DMD. 

1.2.1 Drug induced codon misreading mechanism induced by  

In prokaryotes, ribosome screening mechanism for associated aminoacyl tRNA has been well understood. First, 

aminoacyl tRNA enters the A site of the ribosome in the form of tRNA/EFTu.GTP trimer (eukaryotic corresponding to 

tRNA/eEF1A.GTP). Then G530, A1492 and A1493 bases in the ribosomal Helix44 region were screened for aminoacyl 

tRNA
[8]

, which is the stage in which aminoglycosides work. Normally, when an A site associated with aminoacyl 

tRNA binds to 16S RNA, A1492 and A1493 flip out of the interior of Helix44, interacting directly with the microchan-

nel of the cis-anticodon helix, and G530 converts from cis-conformation to trans-conformation. This conformational 

change will accelerate the hydrolysis of GTP, promote the dissociation of EF-Tu, and lead to a series of cascade reac-

tions, so that the synthetic peptide chain can be extended. After entering the A site, the proximally associated aminoacyl 

tRNA could not induce conformational changes in A1492, A1493 and G530, and was eventually excluded. Structur-

al biology studies have shown that aminoglycosides can bind to two bases A1408 and G1491 on Helix44 to form hy-

drogen bonds and alter the conformation of Helix44, thereby inducing structural effects similar to those associated with 

aminoacyl tRNAs, i.e. the release of A1492 and A1493 from the helix, forcing them to act as near-related amino groups. 
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Acyl tRNA. Although G530 does not undergo significant conformational changes due to the action of aminoglyco-

sides, the changes in A1492 and A1493 are sufficient to provide appropriate free energy and greatly increase the proba-

bility of misreading
[9]

. 

Some related studies have also proposed different views on the process of the interaction between proximally re-

lated aminoacyl tRNA and ribosomes. Ogle et al.
[10]

 suggested that the binding of related tRNA to ribosomes could 

change the 30S subunit from open to closed. Conversely, the closure of the 30S subunit was not significant when the 

near-related tRNA entered the A site, and the binding of aminoglycosides to the 30S subunit caused the 30S subgene to 

rotate and shut down, allowing for meaningful codon misreading. However, Natalia and other
[11]

 think that the research 

of Ogle has certain limitations. They proposed that both the amino-tRNA and the near-related amino-tRNA could shut 

down their domains once they bound to the 30S subunit. 

1.2.2 Drug induced stop codon read through mechanism 

The terminating processes of prokaryotes and eukaryotes are different. Laurberg et al.
[12]

 suggested that when pro-

karyotic translation terminates, RF1 or RF2 binds to site A and the ribosome conformation changes. This change ena-

bles RF1 or RF2 to accurately decode ribosomal 30S. 

The heart extends to the 50S subunit of the peptidyl transferase center. Like aminoacyl tRNA, RF and codon inter-

actions involve three bases G530, A1492 and A1493, but these three bases are not directly involved in terminating co-

don recognition, but help stabilize RF's catalytic center, promote the hydrolysis of peptidoacyl tRNA on the ribosome 

and release the peptide chain. Although the mechanism of aminoglycosides inducing stop codon reading is not fully 

understood, the effect of aminoglycosides on A1492 and A1493 may be one of its mechanisms. The conformational 

changes of the two bases result in the competitive binding termination codon of the near-related aminoacyl tRNA to RF, 

resulting in plasmid identity and relatively weak binding of aminoglycosides
[13]

. This also explains the loss of the effect 

of the reading-promoting drugs on the termination codon in eukaryotes. In eukaryotes, the 18S subunit of ribosome has 

a slightly less PTC effect than the 16S subunit of prokaryotes, while in prokaryotes it interferes with the synthesis of 

whole proteins. 

1.3 Drug selection mechanism for PTC and stop codon. 

Although PTC-induced diseases have been greatly improved by reading-through drugs, the mechanism of their ac-

tion has also brought some worries to clinical application: whether reading-through drugs will affect the translation 

process of cells; whether some peptide chains will be prolonged and induced by stopping codon reading-through. 

Cell unfolded protein response? The researchers selected Hsp70 as an indicator of unfolded protein response. Ac-

cording to Keeling et al, the concentration of Hsp70 was only slightly elevated when large doses of reading-promoting 

drugs were administered to primary fibroblasts. It can be seen that PTC 

Reading therapy has neither significantly affected the rate of translation nor seriously affected the normal stop co-

don recognition. Why are drugs that promote reading more sensitive to PTC? Amrani et al.
[15]

 suggested that the resi-

dence time of ribosomes at normal termination codons was longer than that at PTC, suggesting that the translation ter-

mination efficiency at normal termination codons was higher than that at PTC, which created the conditions for pro-

moting the role of the drug. Hoshino et al.
[16]

 showed that eRF3 interacts with the polymeric A-binding protein (PABP) 

at the 3'end of mRNA to improve the efficiency of translation termination. If eRF3 binds to the normal termination co-

don, it is closer to PABP and facilitates the interaction; if it binds to PTC, it is farther away from PABP and the interac-

tion is weaker. In practice, PABP abundance, the relative length of 3'UTR and the nucleotide sequence around the ter-

mination codon also affect the read-through
[9]

. 

2. Clinical application of drugs for promoting reading 

In recent years, many experiments have confirmed the reading-promoting activity of reading-promoting drugs at 

different levels
[9]

. Gentamicin, hereditary mycin (G418) in aminoglycosides, a series of synthetic balomycin derivatives 

(NB30, NB54, NB74, NB84), and PTC124
[3]

 in non-aminoglycosides have been studied extensively. . Hereditary dis-

eases used in clinical trials include CF, DMD, Ataxia telangiectasia (AT), Rett syndrome (RTT), hemophilia A and B 



 

4 | Alfred Zimmerman et al. Genetic Disease Study 

(HA and HB), mucopolysaccharidosis type I (MPS-I), spinal muscular atrophy. Spinal muscular atrophy type I (SMA I), 

Usher syndrome type I (USH1), X-linked nephrogenic diabetes insipidus (XNDI), congenital muscular dystrophy 

(CMD), colorectal cancer (CRC), familial diabetes insipidus Adenomatous polyposis, Limbgirdle muscular dystrophy 

type 2B (Miyoshi/LGMD2B) and so on. 

Among them, CF and DMD genetic research is the most in-depth and the most clinical value. Gentamicin and PTC 

124 are the only drugs that have entered the clinical trial phase, and the derivatives of balomycin (NB54, NB84) are 

considered to be a potential new generation of drugs. The following is an illustration of the progress in the study of 

drugs for promoting reading. 

2.1 Study on the application of gentamycin 

Gentamicin is one of the most widely studied drugs. Although some clinical trials have confirmed its efficacy in 

some PTC-related diseases, its wide application in clinic is limited because of the toxic and side effects of aminoglyco-

side antibiotics. 

2.1.1 Treatment of DMD 

In 1999, Barton-Davis et al.
[34]

 confirmed for the first time that gentamicin could promote PTC reading in ani-

mals by using Mdx (3185C T) mouse model. In 2001, Wagner et al.
[35]

 administered gentamicin sulfate intravenously 

for 14 consecutive days to 4 patients with nonsense mutation of DMD / BMD (nmDBMD), but no complete expression 

of Dystrophin was found before and after administration. In 2003, Ploitano et al.
[36]

 carried out similar clinical trials in 4 

patients with nonsense mutation of DMD. Results Immunohistochemical staining showed intact expression of 

full-length atrophic protein in 3 patients with nonsense mutation of UGA. Meanwhile, plasma creatine kinase (CK) lev-

el and cardiopulmonary function were improved. Therefore, Ploitano et al. speculated that gentamicin might only be 

effective in some nonsense mutant DMD patients. In 2010, Malik and other
[20]

 conducted a longer clinical trial. The 

results showed that there were no significant ototoxicity, vestibular toxicity and nephrotoxicity in the subjects 6 months 

after receiving the appropriate concentration (7.5 mg/kg). It was also found that the increased expression of myotrophic 

protein after gentamicin treatment may be partly related to the dosage of gentamicin and the basal expression of myo-

trophic protein before treatment. It is noteworthy that although the expression of amyotrophic protein increased after 

treatment, clinical efficacy showed that, in addition to plasma CK levels were significantly reduced, patients with mus-

cle strength, maximal voluntary isometric contraction test (MVICT), forced vital capacity (FVC), 6-minute walking 

distance (6 MWD) and other clinical evaluation indicators were only slight. Improvement has no significant clinical 

significance. Accordingly, Malik et al
[20]

 thinks that this may be related to gentamicin concentration. If the dose is in-

creased, there may be better clinical results, but it will increase the risk of toxic side effects. 

2.1.2 Treat CF 

In 2000, Wilschanski et al.
[37]

 validated the efficacy of gentamicin in nonsense mutant CF (nmCF) patients under 

nasal administration. They used Nasal potential difference (NPD) as a therapeutic evaluation standard. The results 

showed that 7 of the 9 subjects with W1282 * nonsense mutation showed signs of partial Cl_channel recovery after 14 

days of treatment. However, after 1 weeks of withdrawal, the NPD of the subjects returned to the pre drug status. In 

2007, Sermet-Gaudelus et al.
[21]

 selected the Y122* mutant with the best response to gentamicin as the entry point on 

the basis of cell experiments, and treated 9 CF patients with this mutant. After 15 days of continuous intravenous ad-

ministration, the clinical symptoms (including cough, sputum production, respiratory status, vital capacity and other 

physiological indicators) of the experimental group were significantly improved, while those with other mutations 

(G542 *, R1162 *, W1282 * and R553 *) had no significant clinical effect. It also suggests that gentamycin may only 

promote the reading of specific nonsense mutations. 

In the same year, Clancy et al.
[38]

 also carried out nasal administration of 11 patients with nmCF, the results showed 

that no significant changes in the function and localization of CFTR were detected. This is obviously in conflict with the 

experimental results of Wilschanski et al. Clancy et al.
[38]

 suggested that this might be related to the difference in ge-

nome composition of the study subjects --- most of the genotypes selected by the former were W1282 * / W1282 * or 

W1282 * / G542 *; while Clancy's subjects were mostly heterozygotes with nonsense mutations and deletion mutations 



 

Genetic Disease Study Volume 2 Issue 1 | 2018 | 5 

(such as F508 / G542 *) and basically did not contain W1282 *. . In addition, the differences in the efficiency of non-

sense-mediated RNA decay (NMD) pathways and the slight differences in the way of administration may also influence 

the experimental results. 

In 2005, James et al.
[39]

 treated 5 patients with severe hemophilia with nonsense mutations (3 HA, 2 HB) by intra-

venous gentamicin (7 mg/kg) for 3 consecutive days. Results Activated partial thromboplastin time (APTT) and plasma 

coagulation factor activity (F_or F_) were slightly improved in 2 patients. In addition, there was a slight increase in the 

F IX antigen in 1 subjects (2%~5.5%), but no active F IX was detected. This indicates that the F IX induced by the pa-

tient does not play an effective role in procoagulant action. In addition, even in two patients who responded to gentami-

cin, there was no complete correlation between shortened APTT and increased coagulation factor activity. James et 

al.
[39]

 believed that this was due to the limitations of detection methods, because slight changes in the activity of F_or 

F_ (1.6% ~ 2.0%) were difficult to pass general methods. 

It is measured. Only by fluorescence thrombin generation test (FTGT) can we get better correlation. In general, 

gentamicin has many limitations on the treatment of severe hemophilia caused by nonsense mutations. 

2.2 Study on the application of Barone mycin derivatives (NB54 and NB84) 

Because of the side effects of traditional aminoglycoside antibiotics, Nudelman et al.
[3]

 designed and synthesized a 

series of derivatives (NB30, NB54, NB74 and NB84) with lower toxicity and higher efficiency. Among them, NB30 

and NB54 are the first and second generation of PAM derivatives respectively, and NB74 and NB84 are the third gener-

ation of this series. Compared with the first two generations, the third generation had higher efficiency and less toxicity. 

Current studies at the cellular level in vitro have confirmed that these derivatives have read-through activity for non-

sense mutations in CF, DMD, MPS-I, RTT, USH1 and other genetic diseases, but there are few reports in vivo. In 2011, 

Rowe et al.
[24]

 used the CF mouse model (Cftr/hCFTR-G542*) to verify that NB54 also had a good dose-dependent 

read-through activity in vivo. At the same time, compared with gentamicin, mice were better tolerated under high dose 

of NB54. In 2014, Gunn et al.
[25]

 reported NB84 long-term treatment of Iduatm 1 Kmke MPS I mice (IDUA-W402*). 

The results showed that after 28 weeks of treatment, the abnormal phenotypes in brain, heart, bone and other tissues 

were significantly reduced, and the GAG storage in all tissues was significantly reduced compared with the control 

group. In addition, the activity of mice returned to the wild-type level, and no significant toxic side effects were ob-

served. This indicates that the series of drugs may have better clinical application prospects. 

2.3 Application Research of PTC124 

PTC124, the most widely studied non-aminoglycoside reading-promoting drug, is currently in the third phase of 

clinical trials in the United States and has been approved for sale in some European countries
[41]

. Compared with ami-

noglycosides, this drug has the advantages of low toxicity, high efficiency and oral administration, so it is widely used 

in the treatment of many nonsense mutation genetic diseases. In addition to DMD and C F, PTC124 enhancers were 

confirmed in nonsense mutations such as Miyoshi/LGMD2B, USH I C, and carnitine palmityltransferase 1A deficien-

cy
[31,32,42]

. 

2.3.1 treatment of DMD 

In 2007, Welch et al.
[30]

 reported that PTC124 had high reading-promoting activity on primary myocytes of Mdx 

mice cultured in vitro. They found the ratio of amyotrophic protein to myosin in DMD patients treated with low con-

centrations of PTC124 (5 ug/mL) 

The value reached 40%~60%, and the ratio did not increase after increasing the concentration of the drug. Moreo-

ver, animal experiments on Mdx mice further confirmed that PTC124 was low toxic and effective in vivo (the atrophic 

protein of experimental mice returned to normal levels of 20% - 25%). In the same year, Phase 1 clinical trials on the 

safety and pharmacokinetics of PTC124
[43]

 confirmed its safety in humans. Studies have shown that the maximum ef-

fective concentration (2-10 ug/mL) can be achieved by three doses daily (10 mg/kg, 10 mg/kg, 20 mg/kg), and there are 

no obvious side effects and accumulation in vivo. 

The subsequent 2 clinical trials showed that PTC124 is safe and effective in the treatment of nmDMD. In a phase 2 
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clinical trial, 38 boys with nmDMD underwent 28 days of treatment, and muscle biopsy showed a significant increase 

in the expression of amyotrophic protein in 34% of the subjects
[44]

. Quantitative analysis showed that 61% of the sub-

jects had an increased expression of myotrophic protein and 84% had a decreased serum CK level. This indicates that 

the damaged muscle cells have improved with the increase of the content of the dystrophin. But Finkel et al.
[44]

 also 

pointed out that only the expression of myotrophic protein in biopsy tissues and the change of serum CK level as the 

evaluation index of pharmacodynamics is not enough (because biopsy tissues can not represent the overall situation of 

the muscle, CK levels fluctuate relatively large, but also affected by the patient's activity time), should be used. A more 

scientific evaluation item is used as an index to judge the curative effect of DMD patients. 

To this end, the United States conducted a longer phase 2B clinical trial (double-blind trial). They recruited 

174 boys from 11 countries with nmDBMD who were able to walk (6 MWD (> 75 m) and divided them into three 

groups: low-dose (40 mg / kg / d), high-dose (80 mg / kg / d) PTC 124, and placebo for 48 weeks. The results showed 

that the treatment effect of the low dose group was obvious. The mean difference of 6 MWD between the two groups 

was 31.3 m, reaching the minimum clinical significance change (MCID) of 28.5-31.7 m
[45]

. Timed functional tests 

(TFTs) such as climbing stairs and lying upright also showed that muscle function declined more slowly in the low-dose 

group than in the placebo group. After 48 weeks of treatment, 74% of the low-dose group had no deterioration, com-

pared with 56% of the placebo group. However, it should be noted that the progress of the disease in the high-dose 

group was not as good as that in the low-dose group, but was similar to that in the placebo group, especially in the 

high-dose group with high concentration (>19.3 ug/mL), and there was no significant difference in the evaluation in-

dexes between the high-dose group and the placebo group. It should be closer to the low dose group
[41]

. The research-

ers believe that this is consistent with the bell shaped dose effect curve hypothesis proposed by PTC124. In addition, 

after data analysis, the researchers concluded that children older than 7 years of age with a certain walking ability 

might be more stable. Phase 3 clinical trials and phase 3 extended trials on PTC124 for nmDBMD are under way to 

further verify the efficacy of the drug. Significant clinical significance. 

2.3.2 Treatment of CF 

In 2005, two phase 2A clinical trials of PTC124 for CF were conducted in the United States and Israel in parallel. 

The results of the Israeli group showed that PTC124 had a significant therapeutic effect on CF. After two rounds of 

14-day oral administration of PTC124 (16 mg/kg/d, 40 mg/kg/d, with a 14-day stoppage interval), the average NPD of 

23 subjects decreased by 7.1 mV and 3.7 mV
[46]

. Total chlorine transport values of 57% and 43% of the patients reached 

the normal range (> 5 mV) in the first and second rounds of trials, respectively, but returned to abnormal state after 

withdrawal. In addition, some subjects had slight improvements in vital capacity, lung symptoms, body weight, and 

neutrophil count. At the same time, Kerem et al.
[46]

 also found that in subjects with the same nonsense mutation type 

(W1282*), the change of total chlorine transport value (CFTR expression) was positively correlated with the amount of 

intracellular mRNA template, and the type of PTC and the upstream and downstream sequence of PTC may also be 

factors affecting the reading efficiency. 

In 2006, researchers conducted a 12-week phase 2B clinical trial on 19 patients who had participated in the 2-year 

trial. The results showed a significant improvement in chloride secretion in 64% (7/11) low-dose group (16 mg/kg/d) 

and 57% (4/7) high-dose group (40 mg/kg/d) (total chlorine transport value < 5 mv)
[47]

. At the same time, the results 

also showed that the recovery of CFTR function was time-dependent and returned to the state before treatment after 

withdrawal. The following year, 30 CF patients under 18 years of age in France and Belgium were also treated with 

PTC124 in clinical trials
[48]

. About 50% of the subjects changed their total chlorine transport value to or above 5 mV 

after two rounds of treatment, and the improvement of the high dose group was relatively greater. This indicates that 

PTC124 is equally effective in treating children with nmCF. 

In 2009, a phase 3 clinical trial involving 238 nmCF patients was initiated with the support of the above clinical 

trials. In a double-blind trial conducted by 36 centers, subjects were treated for 48 consecutive weeks (40 mg/kg/d). The 

researchers used "FEV1% predicted" and "rate of deterioration of lung symptoms" as primary endpoints and secondary 

endpoints, respectively. The results showed that there was no significant difference in the above two indexes between 

the experimental group and the placebo group, and there was no significant difference in the results of chloride concen-
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tration and NPD in sweat between the two groups. This is clearly inconsistent with previous clinical trials; however, 

further studies have found that this may be due to long-term use of tobramycin in CF patients interfering with the treat-

ment of PTC124. There was a significant difference between the results of patients who had not been treated with to-

bramycin for a long time and those of the control group (P < 0.05), and the results of cytological studies on luciferase 

also confirmed that aminoglycoside antibiotics such as tobramycin weakened the ability of PTC124 to promote reading 

comprehension. Therefore, another phase 3 trial is under way to further confirm the efficacy and safety of PTC124 in 

NMCF patients without tobramycin. 

3. Existing problems and coping strategies 

Although data have shown that reading-promoting drugs are effective in the treatment of DMD and CF, there are 

still many problems to be solved. 

3.1 The effect of promoting drug reading 

In the clinical trials of DMD and CF, either aminoglycosides or PTC124, only some of the subjects had better effi-

cacy, and a considerable number of subjects did not respond significantly to reading-promoting drugs
[21,38,44]

. According 

to the previous study on the mechanism of promoting reading drugs, the mechanism of many new drugs is still unclear. 

In order to further prove the specificity and sensitivity of reading-promoting drugs, more data on the mechanism of ac-

tion of new drugs are needed. 

3.2 Incorporation of non functional amino acids 

Because of the addition of near aminoacyl tRNA at the PTC site, the newly synthesized peptide chains are not all 

active. If the mutation site happens to be in the functional region of the protein, or is a special amino acid indispensable 

to the function of the protein, then the vast majority of the translated proteins may not be active, thus affecting the effi-

cacy. Since different drugs may induce different proximally related tRNA to enter the ribosomal A site corresponding to 

PTC, it is recommended to try other drugs for patients who are insensitive to one drug. 

3.3 The interference of NMD channels 

NMD pathway often reduces the abundance of PTC-carrying mRNA in cells, thus reducing the target of 

drug-mediated reading (mRNA template) and the amount of protein synthesized, which directly affects the efficacy of 

drug-mediated reading
[2]

. For this reason, researchers can try to use NMD pathway inhibitors to partially restore the 

content of mRNA template. 

3.4 Drug delivery and side effects 

Most aminoglycoside read-through drugs are administered intravenously, which is inconvenient for patients re-

quiring long-term treatment, compared with oral PTC124 preparations. More importantly, long-term use of aminogly-

coside antibiotics such as gentamicin increases the risk of ototoxicity and nephrotoxicity
[23]

. In contrast, PTC124 has 

more advantages in this respect, and new aminoglycosides with low toxicity and high efficiency such as NB54, NB84 

also have application prospects. 

3.5 The problem of immune response 

For patients with nonsense mutations that do not express the target protein at all before treatment, the protein pro-

duced by the read-through drug is likely to be a new antigen for the body. And this new antigen will lead to the produc-

tion of specific immune cells in vivo, and react with them, and eventually be cleared by the immune system. Although 

this is only a theoretical hypothesis, tests have found that T cells with strong reactivity to amyotrophic protein
[20]

 

have been detected in a patient with DMD who did not respond to gentamicin treatment. Accordingly, in the specific 

treatment process, it is suggested that weigh the pros and cons and use immunosuppressive agents for treatment. 

3.6 The mechanism of action of new drugs for promoting reading, such as PTC124 
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Auld et al.
[50]

 suggested that there were loopholes in the design of luciferase reporter gene experiments for screen-

ing PTC124. Their experiments show that PTC124 is a competitive inhibitor of luciferase, which can bind and stabilize 

luciferase in cells and prolong its half-life. After cell lysis, the activity of firefly luciferase increased. In other words, the 

luciferase gene containing the early termination codon may not increase its expression due to the read-through effect of 

PTC124. To solve this problem, more structural biological evidence is needed to support the interaction between 

PTC124 and ribosomes. 
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