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Is Spacetime Non-metric?
Mark D. Roberts
1Burpham, United Kingdom

Abstract: If one assumes higher dimensions and that dimensional reduction from higher dimensions produces
scalar-tensor theory and also that Palatini variation is the correct method of varying scalar-tensor theory then spacetime
is nonmetric. Palatini variation of Jordan frame lagrangians gives an equation relating the dilaton to the object of
non-metricity and hence the existence of the dilaton implies that the spacetime connection is more general than that
given soley by the Christoffel symbol of general relativity. Transferring from Jordan to Einstein frame, which
connection, lagrangian, field equations and stress conservation equations occur are discussed: it is found that the Jordan
frame has more information, this can be expressed in several ways, the simplest is that the extra information
corresponds to the function multiplying the Ricci scalar in the action. The Einstein frame has the advantages that stress
conservation implies no currents and that the field equations are easier to work with. This is illustrated by application to
Robertson-Walker spacetime.
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1. Introduction
There are at least four motivations for studying the frame dependence of scalar-tensor theory. In order of ascending

importance these are: frame equivalence, spacetime connection and geometric description motivations. The frame
equivalence motivation is to find out if the various frames provide the same description of physics. Whether the
Jordan or Einstein frame or both or neither is the physical one has been discussed in[9,14,15]. There are various methods of
evaluating the physical worth of the field equations corresponding to the various frames: firstly experiments and
observations[27,7], secondly principles, such as the princilple of equivalence and so on, thirdly energy conditions,
although in the case of energy conditions it can be thought of the other way round: the value of the energy conditions or
otherwise is demonstrated by what they predict in various frames, fourthly possible applications to quantum theory[1,2,3].
In general relativity the spacetime connection is the Christoffel connection and this is derived from Palatini variation of
the Einstein-Hilbert action. The history of the Palatini varition is not straightforward, see[16,11,12]. Usually Palatini
variation is taken to give the connection, sometimes it is taken to give field equations[13,10,8,26,6]. Applying the Palatini
variation to the Jordan frame gives a non-metric connection. The only place where Palatini variation of the Jordan frame
is looked at is in[4,5]; however there it is not explicitly stated that the existence of a dilaton forces the geometry of
spacetime to be a Weyl geometry, which was suggested on string theory grounds in[23]. There are usually considered
to be two types of frame: the Jordan frame and the Einstein frame; perhaps because of the geometry involved it is better
to call the Jordan frame with non-metricity the Weyl frame. The geometric description motivation[23] is that at all levels
of description a geometric description is preferable to a matter field description. In other words it is preferable to have a
description involving the geometric side of the field equations to the stress side. In the present case this means that it is
preferable to have the dilaton as a geometric object rather than a matter field, and this indeed happens via equation (9),
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which shows that the dilaton can be thought of as a function of the scalar object of non-metricity.
The conventions used are signature −+++ and Riemann tensor

R.βγδ
α ≡ 2∂[γΓδ]β

α + 2Γ[γ|ρ|
α Γδ]β

ρ . (1)

Usually barred tensors are constructed with the Christoffel symbol, usually denotes covariant derivative with
respect to the full connection. Greek indices range over all dimensions, latin indices range over the three spatial
dimensions.

2. The Jordan Frame
The Jordan frame action is taken to be

S = dd� x − g �(Φ)R −香(Φ)(∇Φ)2 −V(Φ) + Sm[ exp ( 2α(Φ))gμν,ψm], (2)

where here � is called the primary dilaton function, 香 is the secondary dilaton function and V is the dilaton
potential, Sm is the matter action, compare [7,14]. �(Φ) is written as� when the ellipsis is clear. The action (2) depends
on three fields: {gμν,Φ,ψm} and has four freely specifiable functions of Φ: {�(Φ),香(Φ),V(Φ),α(Φ)}.

Assuming a symmetric metric and a symmetric connection it is straightforward to perform a Palatini variation by
varying the connection, compare [4] equation (8)

δΓμνλ

2 − g
− 2 − ggμν� ;λ + − g�(δλ

νgμρ + δλ
μgρν)

;ρ
= 0, (3)

[5] has more detailed calculations. The derivative of the determinant obeys
− g ;λ =−

1
2

− ggμνg..;λ
μν , (4)

using the λ,μ trace to remove the middle term and 4 to remove the last term in the μ,ν trace gives
(2 − d)t∇λ − g = d�'Φλ − g, (5)

now use the λ,μ trace and 5 to remove g..;ρ
ρν and ( − g);λ from 3 to give
∇λgμν =

2�'

(d − 2)t
Φλgμν. (6)

The object of non-metricity is defined in terms of the covariant derivative applied to the covariant form of the
metric, requiring that the metric has an inverse gives the contravariant form

Qλ..
μν ≡ ∇λgμν, gμρgρν = δν

μ, ∇λgμν =− Qλμν. (7)

For a Weyl geometry the object of non-metricity reduces to
∇λgμν = Qλgμν, (8)

in the present case using 6 the vector �λ is a gradient vector �λ� with
Q =

2
(d− 2)

ln (�), (9)

which relates the object of non-metricity � to the primary dilaton function � . Permuting the indices of the
covariant derivative (8) gives connection

Γμν
η = {μν

η } + Kμν
η , (10)

where the Christoffel symbol is
{μν
η } ≡

1
2
gηρ gρν,μ + gρμ,ν − gμν,ρ , (11)

and the contorsion tensor is
Kμν
η ≡

1
2
Qμδν

η + Qνδμ
η − Qηgμν . (12)

Metric variation of the action (2) gives the metrical stress
8πκ2Tμν = �Gμν −香ΦμΦν +

1
2
gμν 香Φρ

2 +V , (13)

where ��ν is the Einstein tensor. To get the stress expressed in terms of the Christoffel connection substitute (10)
into the Riemann tensor (1)

R.βγδ
α − R� .βγδ

α = 2K.[δ|β|;γ]
α + 2K.[γ|ρ|

α K.δ]β
ρ , (14)

substituting the object of non metricity (8) for the contorsion (12) the Riemann tensor becomes
R.βγδ
α − R� .βγδ

α = Qβ[γδδ]
α − Q.[γ

α gδ]β +
1
2
QβQ[δδγ]

α + QαQ[γgδ]β + Qρ2gβ[γδδ]
α , (15)

where the higher derivative terms use that � is a gradient vector and that the connection is symmetric and ��2 ≡
���� . This is the same equation as equation (21)[22] with the assumption that � is a gradient vector. From 15 or from
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[25] section III§5 for connection (12) the Riemann tensor obeys the first, second, third symmetry identities and the
Bianchi identity �[��ν�]λ� = 0 , note that Schouten [25] defines the Riemann tensor differently from (1) and that here
the torsion vanishes. Contracting over � and � gives the Ricci tensor

Rβγ − R� βγ =
d− 2
4

− 2Qβδ + QβQδ + gβδ
2

2 − d
□Q− Qρ2 , (16)

and then contracting over � and � gives the Ricci scalar
R − R� = (1 − d)□Q+

1
4
(1 − d)(d − 2)Qρ2. (17)

Using (16) and (17) the field equations (13) become
8πκ2Tμν = �G� μν +

(d − 2)
4

� − 2Qμν + QμQν −香ΦμΦν (18)

+
1
2
��ν (� − 2)t□� +

(� − 3)(� − 2)
4

���2 + 香Φ�
2 + �(Φ) ,

note the second derivative ��ν term. Using (9), � can be eliminated
8πκ2Tμν = �G� μν −�'Φμν − 香�ΦμΦν +

1
2
gμν 2�'□Φ+ (�'' + 香�)Φρ

2 +V (19)

where
香� ≡ 香+ �'' +

(1 − d)
(d − 2)

�'2

�
. (20)

Field variation gives the Euler equation
E({},Φ,t,h,V) ≡ 2h□({})Φ +�'R+ 香'Φρ

2 − V' = 0, (21)

in first term the covariant derivative is with the Christoffel connection, not the full connection as it comes from
acting back on − �. Using the Ricci identity stress conservation is

Jν ≡ 8πκ2T ..;μ
μν =−

1
2
Φν E({},Φ,t,h,V) +

(1 − d)
(d − 2)

E({},Φ,0,
�'2

�
,0) , (22)

the first term vanishes as it is just the field variation (21), vanishing current �ν or in other words stress
conservation implies that the second term produces a constraint on the form of the primary dilaton function �. The two
terms add linearly so that they can be replaced with one term with 香�th = 香 +�'2�� , however the two terms
cannot be replaced by one term soley by changing the connection. One can work with the full connection throughout
and produce �(Γ)���ν , but the situation is no better. There seems to be no way around it: either the stress is not
conserved or there is a constraint on the primary dilaton function � or the lagrangian has to be enlarged to include more
terms. Once an object of non-metricity is given an effective mass can be calculated from equations of the same form as
the Klein-Gordon equation and the Proca equation[17,22], namely (□ + �)��ν = 0, using equation (8) this gives a Euler
equation in �. In the notation (21) this equation is �({},�,1,(2� + � − 4)�, − ��), where � = 0,1,2,or 3 depending on
the details of the calculation and also the primary dilaton function � has been taken equal to one so that the
corresponding lagrangian includes the Ricci scalar.

3. The Einstein Frame.
To transform to the Einstein frame the metric is rescaled by a conformal factor

gμν → Ωg� μν, gμν → Ω−1g� μν, − g → Ω
d
2 − g� . (23)

The conformal factor connection is
Lμν
η ≡

1
2
Ω−1 Ωμδν

η +Ωνδμ
η −Ωηg� μν . (24)

and the connection transforms as
{} → {}� + L, Γ → Γ� + L, with Q� = Q + ln (Ω). (25)

For the lagrangian to be in the Einstein frame
− g�R → (Ω

d
2 − g� )�(Ω−1R� ) = − g� R� , (26)

or Ω = exp ( − Q) = �
2−d
2 , (27)

(9), (25) and (27) give �� = 0 , thus the transformed non-metricity vanishes, which is what would be expected if
one started by Palatini varying in the Einstein frame.

The metric transformation (23) transforms the potential and the dilaton dynamical term to give the action
S = dd� x − g� R� −

�
香
Φρ
2 −�

d(d−2)
4 V + Sm[ exp ( 2α(Φ))gμν,ψm]. (28)

Defining
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Ψ ≡
�
香� dΦ, V� ≡ �

d(d−2)
4 V, (29)

gives the Einstein frame action
S = dd� x − g� R� − Ψρ

2 − V� + Sm[ exp ( 2α(Φ))gμν,ψm], (30)

where Φ in the �� term can be replaced when the integral (29) has been evaluated, see below. Varying with
respect to the metric �� gives the metrical stress

8πκ2T� μν = G� μν −ΨμΨν +
1
2
gμν Ψρ

2 + V� . (31)

The matter action transforms as
Sm exp 2α(Φ) gμν,ψm → Sm exp 2α

香
�

� dΨ Ωg� μν,ψm , (32)

with Ω given by (27). For an example in which the integral (29) can be evaluated choose
� = γexp cΦ , 香 = βexp bΦ , (33)

with {�,�,�,�} constants. Then for � = �, Ψ = ���Φ and for � ≠ �
Ψ =

2
(c − b)

γ
β
exp

(c − b)
2

Φ , Φ =
2

(c − b)
ln

(c − b)
2

β
γ
Ψ , (34)

and
Ω = �

(2−d)
2 = γ

(2−d)
2 exp

(2 − d)
2

cΦ , (35)

substituting (35) into (32) gives
Sm γ

2−d
2 exp 2α(Φ) +

(2 − d)
2

cΦ g� μν,ψm , (36)

which simplifies to ��[�� �ν,ψ�] when
α(Φ) =

(d − 2)
4

cΦ + ln ( γ) . (37)

No transformation of the form Φ → �(Φ� ) , will recover the second derivative ��ν term of (18); this can only be
done by transforming the metric, �� �ν → Ω−1��� �ν which gives back (18) when ��� = �.

In the Einstein frame there is no problem with stress conservation as
J� ν ≡ 8πκ2T� ..;μ

μν =−
1
2
ΨνE� ({},Ψ,0,1,V� ), (38)

and in this case the Euler equation from varying the action (30) with respect to Ψ is just what appears on the right
hand side. Transforming this Euler equation back to the Jordan frame

E� ({},Ψ,0,1,V� ) → E({} + C,Φ,0,
�
香
�
(2−d)
2 ,V� ), (39)

a contorsion � can be found which corrects for any Φ�
2 term, in the present case the contorsion ��ν

η is of the same
form as (12), but with � replaced by � and

4. Cosmology.
The Robertson-Walker line element can be put in the form

where

and for k = +1, 0, -1 respectively. N is called the lapse and R the scale factor. N can be
absorbed into the line element in which case N = 1 and this gives the Robertson-Walker line element in proper time. For
the choice N = R Robertson-Walker space-time is conformal to the Einstein static universe and by convention the time
coordinate is denoted by η. For N = 1 the scale factor R can be expanded as a Taylor series around a fixed time t = t0
thus

where the Hubble parameter and
the deacceleration paramter are defined by

the subscript “0” indicates that the

parameter is evaluated at t = t0, and
Take the pressure and the density to vanish so that there is vanishing stress which can be considered to be a
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vacuum[21]. This can be justified as whatever governs cosmological dynamics it appears not to be the pressure and
density of luminious matter. This leaves just the scalar field and the metric, whether the scalar field can be called dark
matter or dark field and so on is just a matter of terminology.

For the minimally coupled scalar-Einstein equations the Robertson-Walker line element (41) has solutions[20]

where

,
c is the speed of light and Ξ is equal to both the scale factor and the lapse, i.e. Ξ = N = R. The k = 0 solution is one

of the few solutions known to have an exact form for the world function[19]. To transfer to the Jordan frame, with d = 4,
use

so that, for the k = 0 example

and an arbitrary function has appeared in the scale factor R. Once the primary� and secondary 香 dilaton functions
have been specified the solution can be transferred from conformal time to proper time, for example if

[Trial mode]then with

Another exact scalar-Einstein solution is[17,18]

where σ is a constant. This solution can implode from nothing to form a singularity of the Kretschmann curvature
invariant RμνσρRμνσρ. It can also be transformed using (48) with b = −2

showing that such implosions also happen in other theories. Non-metric quantum cosmology has been studied[24].

5. Conclusion.
The Jordan frame action contains as much information as given by both the Einstein frame action and the

transformation (27) between frames. This is not immediate as both the lagrangians and variables are different in the two
cases. The Jordan frame action contains more information than the Einstein frame action; because all the information is
contained in the action in the Jordan frame it must be preferable to the Einstein frame where there is both an action and
an action independent transformation rule. Aesthetic grounds suggest that it is best to have just an action, as does
Okham’s razor. When the primary dilaton function � is fixed, for example in many dilaton models it is fixed to be the
exponential function, the extra information is still required, all that happens is that equations such as (9) and (27)
simplify to (35). The transformation between the frames is not like a gauge transformation, because for a gauge
transformation any result should be gauge independent. In other words for a gauge theory although the constraint might
differ the dynamical information is the same, whereas here the Jordan frame is bigger as it contains the two freely
specifiable dilaton functions� and 香 and so contains more dynamical information.

The Einstein frame has two advantages. The first is that stress conservation (38) is automatic, in other words the
current vanishes J¯ν = 0. For the Jordan frame in general there is a current (22), presumably this can be made to
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vanish by adding more terms to the lagrangian. The second is that the Einstein frame is much simpler and easier to work
with. This is illustrated by using known exact scalar-Einstein solutions and transferring them to the Jordan frame. For
cosmology this gives equation (47) where the primary dilaton function � has appeared in the scale factor: this
suggestes the possibility of comparing cosmological and particle physics predictions of what the primary dilaton
function� could be.

Palatini variation shows that if the dilaton exists then spacetime is non-metric, as conjectured in[23]. One has
essentially three choices either: i)Palatini variation does not correspond to anything in nature, ii)Spacetime is
non-metric, iii)scalar-tensor theory does not correspond to anything in nature.
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