
30

Copyright © 2017 -. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International
License (http://creativecommons.org/licenses/by-nc/4.0/), permitting all non-commercial use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Control and Systems Engineering (2017)

doi:

Original Research Article

Design and Development Based on Embedded System

Huiguo Peng,Weiyong Yao,Weiyi Lin

Information Engineering College, Panzhihua University of Technology, Sichuan, China

ABSTRACT

The demand for equipment has been unable to meet the current and future high performance application and
development needs with the rapid development of electronic technology and upgrading of traditional industries in
China. At the same time, intense market competition and technical competition require that the development cycle of
the product to be as short as possible. Obviously, the software and hardware of embedded system are becoming more
important foundation of technological innovation in various fi elds. The embedded system is a combination of advanced
computer technology, semiconductor technology, electronic technology and the specific application of various
industries. This determines that it must be a technology-intensive, capital-intensive, highly fragmented and innovative
knowledge integration system. The embedded type is based on the application of computer technology-based hardware
and software can be tailored to adapt to the application system on the function, reliability, cost, size, power and other
strict requirements of the special computer system. The emergence of consumer appliances and cheap microprocessors
embedded systems will form larger application areas in daily life to as the embedded system usually has low power
consumption, small size and high integration. Embedded employment is widely embedded in the social needs of large
talent. The content of the paper is clear in the embedded control system overview - development - application writing
ideas in three chapters gradually. Chapter 1 introduces the defi nition, frame, characteristic, development history, current
situation and prospect of the embedded control system in detail. The development of the embedded control system
mainly discusses the development steps and methods. The third chapter embedded control system. This paper discusses
the practical application of embedded control system in public life. As the application of these research results in the
fi nal summary of the various aspects of the system capacity and analysis of the existing problems for further research to
provide a direction and valuable experience.
KEYWORDS: Electronic technology embedded system control computer integrated system

Citation: Huiguo Peng, et al. Design and Development Based on Embedded System. 1(1): 1–9.

*Correspondence to: Weiyi Lin, Information Engineering College, Panzhihua University of Technology, Sichuan,
China. weiyionly@126.com

1. Introduction

1.Embedded systems

The computer system can handle and manage a variety of data including the text, numbers, pictures and various
instructions. People want to create a variety of intelligent machines and these machines need a brain system. Some of
these small machines need to give them a small set of can be embedded in the 'brain' system. How smart the 'brain'
depends on its software. This type of software is hidden in some of the larger systems to manage and control these
systems with a microprocessor-specific software hardware system called embedded computer systems, usually is
embedded systems. As the embedded system itself is a very broad extension of the term, the entire product with the
embedded characteristics of the control system can be called embedded systems. Therefore, it is diffi cult to give it an
accurate defi nition. In general, the embedded system can be divided into hardware and software parts, the hardware
generally consists of high-performance microprocessors and peripheral interface circuit while the software consists of
application platform and program made up of hardware abstraction layer, operating system and board support package.

2. The purpose and meaning of the question choosing

Embedded system technology has been widely used in industrial control systems, information appliances,
communications equipment, medical equipment, intelligent instruments and other fi elds such as mobile phones, ADA,
MP3, handheld devices, smart phones, set-top boxes and others. It can be said that embedded systems are everywhere.

Huiguo Peng, et al

31

The market demand for embedded systems is rapidly growing. Enterprises are putting their efforts to use the
development of embedded systems to keep pace with the market demand and the need of competition. However, the
development of embedded systems based on chaos and methods of research is seriously lagging behind at the same time
which is related to its characteristics into the city system.

3. The embedded system of advanced programming language

The Ada language was a powerful generic system development language developed and used by the US Department
of Defense in the 1970s, initially for Ada83. It supports modular, independent compilation, co-processing and other
functions. Its reliability, maintainability, readability are quite good. Later, it was improved in order to support the OOP
(Object-Oriented Programming) better and formed the current widely used Ada95. Ada language can greatly improve
the system's clarity, reliability, maintainability and other performance indicators [2,3]. It is the only language designated
by the US Department of Defense which can be used in the development of military systems.

The C language was a system programming language studied and put into use by Dennis Richie in 1972 at AT&
Bell Labs. Its design goal is to make C has effi ciency of assembly language and high-level language programmability.
Its most representative application is the UNIX operating system. From the mid-20th century, C language involved
in real-time system has been generally welcomed and now it is the most widely used embedded system programming
language. C ++ was developed and put into use by Bjarne Stroustrup in Bell Labs in 1995. C + + in support of modern
software engineering, OOP, structured and other aspects of the C has been fruitful improvements, but slightly weak in
the program code capacity, execution speed, complexity of the program than the C language program performance.

Modula-2 was developed by Nicklans Wirth in the late 1970s under the system design language developed by
Pascal and Modula. Its main goal is to improve Pascal in terms of modularity, system programming and co-processing.
Modula-2 has a strong type of inspection capabilities and a wealth of low-level support. Therefore, it can be used to
design a complete real-time program without the support of assembly language. Modula-3 was developed in 1988
by DEC (Digital Equipment Company) and ORC (Olivetti Research Center) according to Modula-2 developed and
put into use in the system development language. The goal is to design a powerful but easy-to-use, general-purpose
programming language. It has improved Modula-2 in terms of co-processing, OOP, automatic garbage collection and
support for C and UNIX.

Java is the network language and embedded systems are in the function, price, size, power consumption, time to
market have special requirements. So, the Java language is not suitable for embedded systems applications by the
speed and code capacity constraint. However, Sun Company is not willing to give up this development potential of the
huge application market. He improved and modifi ed Java then released J2ME (Java2 Micro Edition). It is a subset of
the Java API that contains only the key features of Java and is designed specifi cally for embedded systems with harsh
requirements for memory. J2ME roughly divided the object applied into two categories which are the equipment with
internal memory in between 128KB ~ 512KB and equipment with internal memory is greater than 512KB. Diff erent
user interfaces and software packages will be provided according to diff erent categories.

4. To solve the key issues

The key issues to be addressed are:

1. The various modules of the test of hardware.

2. The design and debugging of software.

2. ARM Processor Architecture and ARM Instruction Set

1.The register and processor mode

1.ARM has 7 basic working modes:

User: Non-privileged mode, most of the tasks performed in this mode. Limit your memory access and you cannot
read hardware directly.

Normal program execution mode

FIQ: This mode will be entered when a high-priority interrupt is generated.

High-speed data transmission and channel processing

IRQ: This mode will be entered when a low priority interrupt is generated.

The usual interrupt handling

Supervisor: This mode will be entered when a reset or soft interrupt instruction is executed.

Design and Development Based on Embedded System

32

A protection mode used by the operating system

Abort: This mode will be entered when an exception is accessed.

Virtual storage and storage protection

Undef: This mode is entered when an undefi ned instruction is executed.

Software simulation hardware coprocessor

System: Uses the privileged mode of the same set of registers as the User mode.

Privileged operating system tasks

2. Register group

In the 26-bit system, ARM processor has twenty-seven registers. Some of them are only used under certain
conditions, so usually only sixteen registers can be used at a time.

• Register 0 to Register 7 is a general purpose register and can be used for any purpose. Unlike the 80 x 86 processor,
a particular register is required to be used as a stack access or the result of a mathematical calculation is placed in an
accumulator like the 6502 and the ARM processor is highly fl exible in register usage.

• Registers 8 through 12 are general-purpose registers but use their shadow registers when switching to FIQ mode.

• Register 13 is typically used as an OS stack pointer but can be used as a general purpose register. This is an
operating system problem, not a processor problem, so if you do not use the stack, you can corrupt your code freely as
long as you later restore it. Each processor mode has a shadow register for this register.

• Register 14 holds the address of the return point in full to facilitate the writing of subroutines. When you execute
the branch with the connection, the return address is stored in R14. Besides, the exit address is stored in R14 when the
program is run for the fi rst time. All instances of R14 must be saved to other registers (not actually valid) or on a stack.
This register has shadow registers in each processor mode. Once the connection address has been saved, this register can
be used as a general-purpose register.

• Register 15 is the program counter. It holds the status of the processor in addition to holding the twenty-six digits
of the address currently used by the program.

For clarity, provide the following chart:

User mode SVC mode IRQ mode FIQ mode APCS

R0 ------- R0 ------- R0 ------- R0 a1

R1 ------- R1 ------- R1 ------- R1 a2

R2 ------- R2 ------- R2 ------- R2 a3

R3 ------- R3 ------- R3 ------- R3 a4

R4 ------- R4 ------- R4 ------- R4 v1

R5 ------- R5 ------- R5 ------- R5 v2

R6 ------- R6 ------- R6 ------- R6 v3

R7 ------- R7 ------- R7 ------- R7 v4

R8 ------- R8 ------- R8 R8_fi q v5

R9 ------- R9 ------- R9 R9_fi q v6

R10 ------ R10 ------ R10 R10_fi q sl

R11 ------ R11 ------ R11 R11_fi q fp

R12 ------ R12 ------ R12 R12_fi q ip

R13 R13_svc R13_irq R13_fi q sp

R14 R14_svc R14_irq R14_fi q lr

------------- R15 / PC ------------- pc

The rightmost column is the name used by the APCS code. APCS, ARM Procedure Call Standard, provides a
compact mechanism for writing routines that can be intertwined with other routines. The most notable point is that there

Huiguo Peng, et al

33

are no clear restrictions on where these routines come from. They can be compiled from C, Pascal or can be written in
assembly language.

APCS defi nes:

• Restrictions on the use of registers.

• Use the stack convention.

• Pass / return parameters between function calls.

• A stack-based structure that can be 'backtracked' to provide a list of functions (and given parameters) from the
point of failure to the program entry.

Condition:

• N = 1 - result is negative, 0 - result is positive or zero

• Z = 1 - result is 0,0 - the result is not 0

• C = 1 - carry, 0 - borrow

• V = 1 - result overfl ow, 0 result does not overfl ow

Q:

• Only ARM 5TE / J architecture support

• Indicates whether the enhanced DSP instruction overfl ows

J bit:

• Only ARM 5TE / J architecture support

• J = 1: The processor is in Jazelle state

Interrupt interrupt bit:

• I = 1: Disable IRQ.

• F = 1: Disable FIQ.

T Bit:

• Only ARM xT architecture support

• T = 0: The processor is in ARM state

• T = 1: The processor is in Thumb state

Mode bit (processor mode bit):

• 0b10000 User

• 0b10001 FIQ

• 0b10010 IRQ

• 0b10011 Supervisor

• 0b10111 Abort

• 0b11011 Undefi ned

• 0b11111 System

When the processor executes in ARM state:

• All instructions are 32 bits wide.

• All instructions must be word aligned.

• So the value of pc is determined by bits [31: 2], bits [1: 0] are undefi ned (so the instruction cannot be halfword /
byte aligned).

When the processor executes in Thumb state:

• All instructions are 16 bits wide.

Design and Development Based on Embedded System

34

• All instructions must be halfword aligned.

• So the pc value is determined by bits [31: 1], bits [0] are undefi ned (so the instruction can not be byte aligned).

When the processor executes in Jazelle state:

• All instructions 8 bits wide

• Processor implementation of word access to take four instructions at a time

3. Embedded Linux Programming Environment

1.The use of Linux compiler vi

1.vi mode

Vi has three modes which are the command line mode, insert mode and the bottom line mode. The following specifi c
describes the function of each mode.

(1) Command line mode.

Users in the use of vi editing fi les, the initial entry for the general model. In this mode, you can move the cursor up
and down to 'delete characters' or 'line delete' and other operations, you can also 'copy', 'paste' and other operations, but
you cannot edit the text.

(2) Insert mode.

Only in this mode, the user can edit the text input. The user can press the Exs key to return to the command line
mode.

(3) Bottom line mode.

In this mode, the cursor is on the bottom line of the screen. The user can save or exit the fi le. You can also set the
editing environment such as looking for a string, column number and others.

2.vi the basic process

(1) Enter vi, that is entering vi hello in the command line,. At this point into the command line mode, the cursor is
located at the top of the screen.

(2) In the command line mode, enter i into the insert mode, as shown in the following fi gure, you can see, in the
bottom of the screen shows 'insert' that insert mode, in this mode can enter text information.

Huiguo Peng, et al

35

(3) Finally, in the insert mode, enter Esc which changes the current mode into the command mode and in the bottom
line, enter ': wq' (save out) to the bottom line mode, as shown below.

2. gcc compiler

(1) Pretreatment

At this stage, the compiler compiles the stdio.h in the above code, and the user can view it using the gcc option '-E',
which causes gcc to stop the compilation process after the preprocessing ends.

(2) Compilation

Gcc compiles the code into assembly language.

(3) Compilation

The compilation phase is to convert the '.s' fi le into the target fi le. The reader can use the option '-c' to see the binary
code of the assembly code that has been converted to '.o'. The statement is as follows.

[Root @ localhost Gcc] # gcc -c hello.s -o hello.o

(4) Link

After successful compilation, it entered the link phase. Here is an important concept related to the function library.

3. Make project manager

1. Makefi le introduction

When the make command is executed, a Makefi le is required to tell the make command what to do to compile and
link the program.

First, we use an example to illustrate the Makefi le's writing rules. This example comes from the GNU make use
manual, in this example, our project has 8 C files, and 3 header files, we have to write a Makefile to tell the make
command how to compile and link these fi les. Our rule is:

(1). If this project is not compiled, then all of our C fi les should be compiled and linked.

(2). If a few C fi les of this project are modifi ed, then we only compile the modifi ed C fi le and link the target program.

(3). If the project's header fi le is changed, then we need to compile the C fi le that references these header fi les and
link the target program.

2. Makefi le basic structure

(1) Objects that need to be created by the make tool, usually the target fi le or executable fi le.

(2) The object to be created depends on the amount of documents.

(3) Create each target need to run the command.

3.Makefi le variable

Makefi le is often contains a lot of fi les and commands, which is reason of existence of Makefi le. Here you can give a
little more complex Makefi le to explain.

Design and Development Based on Embedded System

36

In the above example, let's look at the rules of edit:

Edit: main.o kbd.o command.o display.o \\

Insert.o search.o fi les.o utils.o

Cc -o edit main.o kbd.o command.o display.o \\

Insert.o search.o fi les.o utils.o

We can see that the [.o] fi le string is repeated twice and if our project needs to add a new [.o] fi le, then we need to
add two places (should be three places, there are A place in clean). Our makefi le is not complicated, so add it into two
places will not be very tired. However, we may forget a need to join the place when the makefi le is complicated which
led to the compiler failed. So, for easy maintenance of makefi le, we can use variables in makefi le. The variable for
makefi le is also a string that understands that the macro in the C language may be better.

4. Conclusions

With the rapid development and widespread use of Internet / Intranet technology, many companies have built their
own local area network. They not only can quickly publish and communicate information through the network, but
also search and access to information quickly through the network. The network has changed our daily life and brought
profound changes in enterprise management. The establishment of Web-based recruitment management system is to
meet the needs of the development of the times.

Embedded system has great potential in future development with embedded systems as a symbol of the post PC era
has arrived. However, the embedded system is a very close combination of hardware and software topics especially
related to bios development and boot loader development. You are required to have a deeper understanding of the
hardware. Learning embedded systems required us to master a lot of knowledge. So, the order of learning must not be
chaos. We should start and carry on step by step start in understanding the embedded system development architecture.
Build the development environment needs: hardware platform, compiler, debugger, RTOS, C / C ++ library, protocol
stack and others. It is best for embedded scholar to fi rst analyze the source code of a RTOS - UCOS which is the easiest
then re-analysis of a communication protocol stack implementation - TCP / IP which is the most practical. Profi cient in
a single-chip development integration environment - keil C is the most classic while profi cient in a MCU development
integrated environment - ADS 1.2 is the most popular.

Through this graduation design, I have had more specifi c understanding on my computer hardware and the entire
architecture of the computer from the bottom to the top of the application layer and the middle of those agreements. I
also have a detailed understanding on the infi ltration into the lives of people in various fi elds embedded system design
and development process. The ability to solve problems for me to understand the problem is an excellent calcination and
my computer level is also a great improvement.

References

1. Kang Yimei, Zhang Yongge, Li Zhijun, Hu Jiang, Wu Wei. 'Embedded Software Test'
2. Liu Yongtao, editor. ARM embedded architecture and interface technology'
3. Ge Yuhui, Tian Jingbing, Tang Lenggang. Comparative study of human resource management model [J]. Commercial

Research, 2002,252 (8): 76
4. Tian Hongmin, Lu Weifeng. Design and Implementation of Human Resource Management System. Journal of Jiangxi

Education Institute (General Sciences) .2003 (6).
5. Wang Feng, Zhang Jing, He Wenjuan, Internet-based human resources management system, microcomputer development, 2003

(9) P (95 ~ 97).
6. Yu Hong Chuan, Zhang Zhisheng, Shi Jinfei. ERP Human Resource Subsystem Solution Research and Implementation Modern

Manufacturing Engineering, 2003 (1) P (12 ~ 14).
7. Timothy Budd. Object-oriented Java programming thinking. Beijing: Tsinghua University Press, 2002 (8)
8. Chen Jinhui, Wang Jinghao, ed. (XML and Java programming Daquan) Beijing: China Railway Publishing House 2002 (2), 36.
9. ZSC / Pacific Internet Institute compiled, JAVA programmers must read: basic articles (2) object-oriented programming

concept. Pacifi c Internet.
10. US Way S. Horstmann, et al. The latest Java2 core technology volume workers: Principles. Beijing: Mechanical Industry Press,

2002 (2).
11. 'JDBC and Java database programming' Beijing: China Electric Power Press, 2002 (3), 34.
12. Hua Qingyuan, et al., editor. Embedded Linux operating system

