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ABSTRACT

The digital universe is growing at significant rates in recent years. One of the main responsible for this sentence is the 
Internet of Things (IoT), or IoT, which requires a middleware that should be capable to handle this increase of data 
volume at real time. Particularly, data can arrive in the middleware in parallel as in terms of input data from radio-
frequency identification readers as request-reply query operations from the user’s side. Solutions modeled at software, 
hardware, and/or architecture levels present limitations to handle such load, facing the problem of scalability in the IoT 
scope. In this context, this article presents a model denoted Eliot - elasticity-driven IoT - which combines both cloud 
and high-performance computing to address the IoT scalability problem in a novel electronic product code (EPC)
global-compliant architecture. Particularly, we keep the same application programming interface but offer an elastic 
EPC information services (EPCISs) component in the cloud, which is designed as a collection of virtual machines 
(VMs) that are allocated and deallocated on the fly in accordance with the system load. Based on the Eliot model, we 
developed a prototype that could run over any black box EPCglobal-compliant middleware. We selected the Fosstrak 
for this role, which is currently one of the most used IoT middlewares. Thus, the prototype acts as an upper layer over 
the Fosstrak to offer a better throughput and latency performances in an effortless way. The results are encouraging, 
where Eliot outperforms the non-elastic approach both in terms of response time and request throughput.
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1. Introduction

The number of digital devices is doubling in size every 2 years and may prove to be multiplied by 10 between the 
years 2013 and 2020. This means an increase from the current 4.4 trillion gigabytes of data to 44 trillion gigabytes in only 
7 years1. This jump is expected thanks to the advent of the Internet of Things (IoT) which enables things to be connected 
anytime, anyplace, with anything, and anyone using the internet communication substrate [1,2].

Among different technologies such as near-field communication, ZigBee, and QR codes, the radio-frequency 
identification (RFID) has been seen as the most used communication standard to enable unique identification on objects 

1 http://cloudtimes.org/2014/04/17/internet-of-things-will-multiply-the-digital-universedata-to-44-trillion-gbs-by-2020/.
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or things. RFID works with a large interval of frequencies, ranging from 120 KHz to 3.1 GHz, consequently supporting 
different speeds and coverage radius so enabling a vast number of applications fields. Thus, the IoT ecosystem commonly 
consists of accessing applications, the RFID middleware, to process and store data captured from RFID tags, and the 
hardware itself with RFID-enabled sensors and tags [3].

As traditional curve of technological products, we can observe the lowering costs and the increasing sophistication in 
the production of RFID tags. This scenario has led to significant and renewed interest in this technology so causing the 
emergence of standards. In this scope, we can highlight the driving force from logistics and supply chain companies on 
adopting the electronic product code (EPC)global Class 1 Gen 2 standard [4-6], which provides the notion of EPC to unique 
identify a physical object stored in an RFID tag. Briefly, the main objective of the EPCglobal is to provide an architecture 
to collect vast amounts of raw data from a heterogeneous RFID environment, filter them, compile them into usable data 
structures, and send them to computational systems. To accomplish this, EPCglobal defines the following components [7]: 
(i) RFID readers (also denoted RFID sensors); (ii) application level events (ALEs), for filtering and collecting EPC data; 
(iii) EPC information services (EPCISs) to store EPC data, as well as to exchange this data along the EPCglobal network; 
(iv) EPC capturing applications, as a box in the middle between ALE and EPCIS, regulating how the former sends data 
to the last. Each company has its own set of components, so the idea is to generate value by providing a standard way of 
capturing data from objects along the partners involved in a particular application field (including, for example, suppliers, 
enterprises, resellers, clients, buildings, and users).

Figure 1 illustrates the EPCglobal architecture, emphasizing the hardware, the middleware, and the user application 
parts. According to the EPCglobal ideas, each company (member of a supply chain, for example) has an instantiation 
of the middleware, so it is possible to track data from any EPC object by looking up its location using the hierarchical-
structured object naming service system. In addition, the components inside the middleware can be arranged arbitrarily 
among different servers in the local network, although the traditional deployment considers a single compute node for this 
purpose [2]. The deployment is particularly pertinent for performance purposes impacting mainly in two characteristics of 
the IoT systems [2,3,8,9]: (i) Real-time analysis of the huge amount of data that may be generated by sensors at any time; 
(ii) service level for time-bounded user applications that access and use processed RFID data.

At the EPCglobal terminology level, we need to properly deal with both the incoming data at the ALE software and 
the possible time penalties when a high traffic of requests accesses EPCIS or raw data from the ALE concomitantly. 
Thus, aligned with the performance issue, the modeling of a unique server to accommodate the components of an 
EPCglobal-compliant middleware clearly implies in scalability problems. Scalability can be seen as the ability of a 
system, network, or process, to handle a growing amount of work in a capable manner or its ability to be enlarged to 
accommodate that growth [10]. Thus, the use of a centralized server incurs in two traditional performance problems: 
Limitation of processing capacity and network bottleneck (mainly when using transmission control protocol/internet 
protocol (TCP/IP) over Ethernet network substrates). Instead of using an underprovisioned infrastructure and then solving 
the scalability problem, one can take profit of a computational cluster which resources are commonly static allocated 
to handle sporadic peak loads properly. In this case, an information technology (IT) infrastructure becomes expensive 
resulting in low resource utilization and wastage of energy due to, in average, we would work with an overprovisioned 

Figure 1: Electronic product code global architecture: Hardware, middleware, and application parts
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resource infrastructure. An alternative to address the IoT deployment problem consists of exploring cloud computing, and 
more precisely, its concept of elasticity to manage the EPCglobal components. Elasticity is the degree to which a system 
is able to adapt to workload changes by provisioning and deprovisioning resources in an autonomic manner such that at 
each point in time, the available resources match the current demand as closely as possible [11,12].

In this context, as an alternative to address the scale and dynamic IoT traffic at both RFID system and accessing 
application levels, we are proposing an EPCglobal-compliant architecture named Eliot2 (elasticity-driven IoT). To 
the best of our knowledge, Eliot appears a pioneer model toward the joint analysis of cloud elasticity and high-
performance computing techniques applied to the IoT panorama. The idea is to bring benefits both to the IoT platform 
administrators and IoT users. Besides an easier IoT deployment replication using VMs, the former group can save 
either energy, on private clouds, or budget, on pay-as-you-go driven public clouds so avoiding an overprovisioned 
resource infrastructure. Performance is the expected keyword to be delivered to end users since the system is capable 
of adaptations to accommodate resources in accordance with the incoming load. Eliot was modeled to answer the 
following problem statement:
• How can we model an EPCglobal-compliant computational architecture and IoT algorithms to manage cloud 

elasticity in face of addressing the dynamic and scalable demands from user applications and RFID readers?
To accomplish the aforesaid question, Eliot presents a manager in charge of controlling the horizontal elasticity using 

VM replication and lower and upper load thresholds. Since the EPCglobal interfaces were maintained, the on-demand 
resource reorganization is offered changing neither the hardware of readers nor any line of code in the users’ applications. 
This article describes the Eliot’s rationales, besides, a prototype that uses the Fosstrak3 middleware as a black box 
counterpart and runs over the Amazon public cloud. Particularly, Fosstrak is one of the most used middlewares for IoT, 
being engaged on real cases in both industry and commerce areas [5,6]. The evaluation results are encouraging, where 
elasticity provided a better usage of network bandwidth, response time, and requests per second ratio when compared 
to the results obtained with the fixed deployment. In addition, we highlight the benefits on request timeout management 
when using an elastic-assisted IoT execution.

The remainder of this article will first introduce our work motivation in Section 2. Here, in brief, we will discuss 
about our previous work emphasizing conditions and deployments of ALE and EPCIS components to reach a scalability 
problem. Section 3 describes Eliot architecture in details, while Section 4 encompasses technical issues regarding 
prototype implementation. The evaluation setup and the discussion on the results are explained in Sections 5 and 6. 
Related work is addressed in Section 7 which presents a comparison table that considers the scalability thematic in IoT 
environments. Finally, Section 8 presents the final remarks, highlighting the scientific contribution to the state of the art 
and showing some directions of future work.

2. Motivation: Benchmarking IoT performance and scalability

We started our IoT scalability investigation in Gomes et al. [13], where we proposed a micro IoT benchmark named 
µIB. Using Fosstrak, µIB aimed at measuring the IoT scalability in a single server so presenting the first thoughts about 
what conditions could be interesting for IoT. Thus, µIB combined different configurations including the number of tags, 
readers, sequential requests at each thread, as well as the number of threads from an accessing application performing 
simultaneous access to ALE and EPCIS components. ALE works with raw data from readers, performing data filtering 
and collection, while EPCIS stores preprocessed data in a datastore and retrieves it when an incoming request arrives 
on its query interface. Both tags and readers were emulated using the Rifidi system. The idea was to observe eventual 
performance bottlenecks and requests timeouts when enlarging the number of threads and/or tags.

ALE module has indicated a limitation that could process up to only 200 requests simultaneously. If a client runs 201 or 
more threads requesting SOAP queries, a timeout occurs and the ALE component crashes. Even requests to EPCIS did not 
respond afterward, being necessary to restart Tomcat (the Fosstrak container) to provide a stable system again. Analyzing 
the response time and central processing unit (CPU) usage in Figure 2a, it is not possible to visualize a saturation tendency 
that would justify the limitation of 200 threads. Hence, it seems to be a Fosstrak implementation issue.

The EPCIS component, in turn, has a different behavior when compared to ALE. As depicted in Figure 2b, CPU usage, 
network traffic, and response time increase as the threads and requests are growing as well. Close to 90% of CPU load, we 
observe that the inclination of both the CPU and incoming network curves is not so aggressive. Particularly, the draw of the CPU 
curve presents the same behavior of the traditional network throughput, where the measures grow quickly and remain near to 

2 https://github.com/eliot-project/eliot.
3 https://code.google.com/p/fosstrak/.
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the limit of the technology. The most important fact is that the outbound network traffic starts to decrease suddenly when CPU 
usage crosses the value of 95%. This indicates a possible timeout and requests drop problem as increasing the number of threads.

Figure 3 illustrates an EPCIS test that helps us to explain the average behavior described earlier in Figure 2b. First, 
Figure 3 presents a peak on the inbound network traffic due to the accumulation of requests made by 512 threads at the 
same time and a strong decreasing afterward. The CPU usage reaches around 100% in few seconds, remaining close 
to this rate up to the end of the test. From 4 to 26 s, the outbound network traffic is higher than the inbound, indicating 
that the RFID tags sent by the Rifidi emulator are being captured by Fosstrak Capture Application properly, saved in 
the MySQL, and returned as response of the EPCIS queries. However, around 26 s, the outbound network traffic begins 
to decrease abruptly, keeping values below the inbound traffic. Meanwhile, the inbound traffic keeps a normal average 

Figure 3: Electronic product code information service test with 512 threads, 8 requests per thread, and 16 tags

Figure 2: Average behavior of the evaluated components: (a) Application level events; (b) electronic product code information 
services. Both graphs were obtained using 16 tags and 16 requests per thread

a

b
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floating value. Considering the response of the queries, RFID data tags cannot be seen after this event. This can be 
explained analyzing the CPU, which became exhausted so not processing data sent by the Rifidi timely, resulting in a gap 
>10 s between the request and the response.

ALE generates data that were saved in the EPCIS component according to EPCglobal architecture. In this way, Figure 4 
depicts the ALE response time while requesting EPCIS exhaustively. From 0 to 12 s, ALE is running normally, responding 
every 2 s (default Fosstrak parameter) in accordance with its cycle parameter. From 12 to 66 s, there are 512 threads making 
requests to the EPCIS. During this interval of time, CPU usage keeps almost constant around 100%, and the responses of 
ALE do not obey the 2 s of interval as seen earlier. It causes a cumulative delay, and RFID tags are saved in database with 
a high gap of time according to the system clock. It explains why outbound network traffic decreases significantly after 
crossing 25 s. Elapsed 66 s, the requests to EPCIS are concluded and the ALE response time returns to obey the 2 s interval.

In brief, our previous investigation [13] concluded the following gaps: (i) There is a technical limitation of parallel 
incoming requests, particularly observed for the ALE component; (ii) in EPCIS, the CPU load does quickly close to 100% 
when growing the number of parallel requests, emphasizing both its CPU dependency and a possible opportunity to develop 
distributed load balancing approaches; (iii) the most impressive observation was the performance degradation when stressing 
ALE and EPCIS concomitantly, delaying the response time of both components and so not meeting the requirements of time-
constraint applications; and (iv) a high number of timeouts on query operations, particularly when employing 512 threads 
doing parallel requests to the middleware. Next section presents our approach to address the aforementioned gaps.

3. Eliot: Proposal of an elastic EPCglobal-compliant architecture for the IoT

This section describes Eliot - A novel proposal of an EPCglobal-compliant architecture that explores the concepts of resource 
elasticity from cloud computing and load balancing from high-performance computing. We modeled Eliot to use an existing 
EPCglobal-compliant middleware (addressed as a black box) so adding the incremental features but maintaining the standard 
EPCglobal application programming interface (API). In addition, we developed Eliot with the following design decision in 
mind: (i) Division of the EPCIS component in two subcomponents, each one created to answer distinct demands, i.e., internal 
demands derived from the ALE and external querying requests coming from user applications; (ii) horizontal elasticity at 
both EPCIS subcomponents, enabling the on the fly addition (scaling out operation) and reduction (consolidation or scaling in 
operation) of VMs when providing the IoT service; (iii) the model must be performance peak aware for not wasting time on 
unnecessary resource allocation and deallocation actions; (iv) to allow a quick deployment of the IoT infrastructure since its 
components will be encapsulates in VM templates so enabling the system replication on other companies/places easier.

3.1. Architecture

Figure 5 illustrates the Eliot architecture. Before introducing the cloud elasticity support, we will first discuss about 
two Eliot’s recommendations: The first is the adoption of a distributed datastore to address the EPCIS repository and 
the second concerns a multicore machine to run the ALE component. The EPCglobal specification affirms that an 

Figure 4: Execution of the application level events, where the requests come from a single thread. In parallel, the electronic product 
code information service is capturing requests from 512 threads
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Figure 5: (a) Standard view of the electronic product code (EPC)global architecture; (b) Eliot EPCglobal-compliant architecture 
which offers cloud elasticity at EPC information service (EPCIS) level, not changing either capture or user applications. The 
transparency feature is enabled by the EPCIS load balancer, while the elasticity manager on the fly controls the number of capture 
and query virtual machines informing the former about monitoring data resource reorganization updates. Finally, the shading parts of 
the architecture refer to Eliot’s recommendations to explore performance in an effortless way

a

b
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implementation of the EPCIS is free both to use any internal representation for data and to implement the queries using 
any database or query technology, as long as the results seen by a client are consistent with EPCIS specification. In this 
way, the use of distributed and/or low latency-driven NoSQL databases that present automatic load balancing among 
the nodes represents an effortless way to improve I/O performance. Yet, it is not uncommon to observe the support of 
automatic data replication and high availability on such systems. Technically, even with the prefix “No” in the name, this 
kind of database normally offers an SQL-compatible API so expanding its use to legacy systems.

Although focusing on EPCIS, our study started by analyzing cloud elasticity in the scope of the ALE component. 
Each EPCglobal deployment has traditionally a single ALE, which is in charge of managing and exchanging data 
with physical readers. The standard communication protocol for this is the low-level reader protocol (LLRP), which is 
normally implemented using Sockets. LLRP establishes that the communication between the ALE and a reader must be 
preconfigured and must remain static while both sides are turned on.

This preconfiguration includes some properties of the reader, including its IP address and a communication port so 
establishing a fixed one-to-one (particular ALE to a particular reader) interaction style. In this way, this static configuration 
does not make viable the proposition of a dynamic load balancing at ALE level in a black box fashion, i.e., without 
reimplementing the ALE source code. Considering this, we are only proposing to execute ALE in a multicore machine to 
profit from a possible multithreaded implementation.

The standard definition of the EPCIS enables two communication interfaces for this component: (i) Capture interface, 
which stores information from the capturing applications, performing only write operations and (ii) query interface, in 
charge of enabling database queries which were requested by users or client applications so performing uniquely read 
operations. Considering this clear division on the provided services, Eliot architecture divides the EPCIS in subcomponents: 
One for the capture interface and another for the query interface. Each subcomponent was included in a VM template, 
which can be seen as a building block to instantiate or consolidate VMs in accordance with the elasticity algorithms. This 
decoupling decision turns the performance monitoring simpler, besides, aiding the selection of thresholds and the use of 
load balancing algorithms, particularly applied to each case.

The main Eliot’s modules are the elasticity manager and the EPCIS load balancer. For the sake of simplicity, the 
names manager and load balancer will be used in the remaining of the manuscript. The manager is in charge of identifying 
overprovisioning and underprovisioning situations periodically, so deallocating or allocating VMs to offer resources as close 
as possible to the application needs. Eliot uses reactive and horizontal cloud elasticity, hiding from the user the management 
of both rules-conditions-actions statements and lower and upper thresholds to provide cloud elasticity. Besides a periodical 
resource monitoring, the manager uses time series to compute a load prediction (lp) in which will serve as input for the elasticity 
algorithms. The idea is to take decisions for the future not only observing a single value in the past but also a collection of them.

As detailed in Section 3.2, this strategy is useful to avoid elasticity actions when detecting either performance peaks 
or sudden drops.

Besides dispatching requests to VMs in accordance with their respective status, the main role of the load balancer is to 
offer transparency to capture and user applications on accessing the EPCIS component. A simple manner of providing this 
capability but not depending on network devices comprises the use of HTTP protocol both in terms of client and server. 
We modeled an HTTP server to receive requests and an HTTP client to dispatch them to the VMs in accordance with a 
load balancing policy. The manager updates the load balancer once the status of the VMs or the number of them suffers a 
change. Finally, Figure 5b depicts the manager and the load balancer outside the cloud, but they could be mapped inside 
the cloud without changing the Eliot’s concepts. Particularly, the manager uses the API provided by the cloud middleware 
to perform both resource monitoring and VM provisioning (allocation and deallocation).

3.2. Elasticity metric and scaling in and out decisions

This subsection discusses about Eliot elasticity capacity, highlighting how monitoring data are organized and which 
type of data is captured. Eliot employs time series analysis over a collection of CPU load data to extract meaningful 
statistics and characteristics of the system. Particularly, we adopted the Weighted Moving Average (WMA) technique, 
also known as the Aging process, to avoid false-positive and false-negative elasticity actions. Basically, we are assigning 
a weight equal to 1/2 for the most recent load observation, dividing this by 2 at each subsequent element in the time series. 
For example, considering an upper threshold of 80% and observations such as 72, 70, 78, 71, and 81 (the most recent), 
the computed load will inform the value of 74.62 as the result of the following development: 81 74 78 70 72

2 4 8 16 32
+ + + + . In 

this way, the last value 81 will not trigger elasticity action since it is evaluated as a false positive. Thus, our strategy can 
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amortize the importance of peaks since an erroneous allocation will not really be needed if we analyze the historical data 
of the IoT system.

Considering we are addressing EPCIS as two groups, at each monitoring period, we evaluate the need of elasticity 
actions on them separately. For the sake of simplicity, the remaining of this subsection will only discuss about query 
interface elasticity, but the same ideas are applied to the complementary interface. Periodically, the elasticity algorithm 
takes place and captures the value of load as presented in Equation 1. As depicted in Figure 5b, here, b represents the 
current number of VMs for addressing the query EPCIS interface. l(j) is an arithmetic average of all running VMs at 
monitoring index j, where load(i,j) means the CPU load of VM i at monitoring index j. Taking into account this value, 
Eliot computes the lp starting by the last observation j. lp(j) is a recurrent function that implements the Aging concept, 
working in accordance with a parameter denoted window. window, in turn, refers to the number of elements to be analyzed 
in the time series. Today, this parameter is fixed and informed at Eliot’s compilation time, but we intend to explore it with 
adaptivity depending on the system stability as future work.

=

1
( )= ( )⋅∑

b

i 1

l j load i, j
b  (1)

1
( )

2( )
1 1

( ) ( )
2 2

 == 
 + ≠

l j fj t - window+1
lp j

lp j - 1 l j ifj t - window+1  (2)

As a reactive elasticity controller, the manager operates with lower and upper thresholds to offer a simple strategy for 
scaling in and out operations. Both thresholds are set at prototype level, being informed, for instance, at development, or 
application launching time. First, if lp(j) is larger than the upper threshold, the manager instantiates a new VM. On the 
other hand, if lp(j) is shorter than the lower threshold, an existing VM is deallocated (always maintaining at least a single 
instance). Our elasticity modeling follows the standard way to provide this feature on Web applications [14]: There is a 
manager that handles incoming requests and spawns additional VMs if the volume of requests exceeds a given threshold, 
or yet, terminates VMs when demand goes down.

4. Prototype implementation

Aiming at evaluating the Eliot’s algorithms, we developed a prototype in Java that runs over the Amazon public 
cloud. We are also using the code of the Fosstrak v.2.1.2 to enable the EPCglobal components, so Eliot implements the 
load balancer and the manager besides the creation of the cloud templates for the EPCIS VMs. Despite recommending a 
non-SQL datastore, this version of the prototype uses MySQL which is the standard option for EPCIS repository in the 
Fosstrak software package. Following we will discuss development details about the Eliot’s components and how we 
modeled and implemented user applications for the tests.

4.1. Elasticity manager and load balancer

The manager acts in accordance with the push method to get and update monitoring data about the VMs. Hence, 
each VM contains a monitoring module that verifies periodically the CPU usage as well as the input/output network 
traffic. We established the period as 1 s, so after expiring it, each monitoring module sends data to the manager using the 
UDP transport protocol. At the manager side, the data are used to update a table with VM information, and then, the lp 
computation takes place to decide about any elasticity action (Subsection 3.2 for details). Technically, both allocation and 
deallocation procedures are triggered using API directives from the EC2 Amazon development package when either lp is 
shorter than the lower threshold or when lp is greater than the upper threshold.

This version of the prototype only implements a load balancer to handle the EPCIS query interface. The load balancer 
consists of a HTTP server (in Java: com.sun.net.httpserver.HttpServer), a HTTP client (in Java: org.apache.http. client.
HttpClient), and a load balancing policy. Hence, the HTTP server offers a unified SOAP interface to receive requests 
from clients, redirecting an incoming call to a target VM using the HTTP client, and a load balancing policy. Today, the 
load balancer implements the Round-Robin policy to dispatch the entering demands to VMs. This strategy was selected 
because the VM template (including data and setup) is the same among the instances, besides, the fast scheduling calculus 
associated to the Round-Robin strategy.
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Figure 6: Four different load patterns that drive the input workload, i.e., the simultaneous requests in accordance with the number of active 
threads

4.2. User application

We developed a synthetic application that has the following characteristics:

(i) It launches a set of threads, which perform simultaneous queries to the EPCIS query interface and (ii) we are 
evaluating different load patterns to observe the elasticity behavior under distinct input workloads. Concerning the topic 
(i), the application starts launching up to 512 threads that will sleep automatically, waking up in accordance with the 
load pattern. Particularly, we implemented the constant, ascending, descending, and wave load patterns as illustrated in 
Figure 6. Hence, the difference among the profiles concerns the number of concurrent threads triggering EPCIS queries 
at the same time. In the constant profile, for example, the application quickly uses the maximum number of threads, 
maintaining this number up to near the end of the execution. The descending load pattern is characterized by a sudden 
increase on the number of threads, decreasing this value up to 1 when arriving the end of the application. Finally, the wave 
explores a sinusoid function with two periods so reaching twice the peak of threads.

5. Evaluation methodology

This section presents the evaluation methodology, mainly discussing about the assessed deployments and observed 

metrics. First, considering Equation 2, we are applying the aging concept with a window equal to 7, so 
7

1

2
 is equal to 

0.0078 implying that we are attributing a weight lower than 1% for the last element in the time series. 

Aiming at observing the possible gains involving the EPCglobal components decoupling and the cloud elasticity, we 
are considering three IoT infrastructure deployments for the tests:
i. Centralized: This deployments concern the use of a single server and, consequently, not offering elasticity. This 

deployment does not use any Eliot software, but only the Fosstrak ALE and EPCIS components executing in a 
unique machine.

ii. Distributed, but not elastic: Here, we are using Eliot but not allowing any elasticity action. Eliot was configured 
to execute with a lower threshold equal to 0 and an upper threshold equal to 100. The lp in Equation 2 will never 
exceed these values and, consequently, elasticity actions will never take place.

 iii. Distributed, with elasticity support: This deployment represents our main focus of attention since we expect 
to observe if elasticity is or not really beneficial for performance and under which conditions this happens. To 
accomplish this, the values of 30% and 70% are loaded for the lower and upper thresholds, respectively. According 
to Dawoud et al. [15], these values are representative to test reactive, and, in particular, horizontal, elastic systems.

All deployments were executed in the EC2 Amazon cloud. Particularly, Figure 7 illustrates the deployments ii and iii. 
Both start with a single VM for the EPCIS query interface, but the last deployment can expand this number up to 5. The 
comparison between deployments i and ii is pertinent to observe the impact of decoupling the EPCglobal components 
in different machines. Our previous tests (Section 2) revealed that the adoption of a single compute resource is highly 
prejudicial for the performance of an EPCglobal system. In addition, comparisons considering the deployments i and iii, 
and ii and iii, are useful to evaluate the Eliot’s elasticity algorithm, its lp function, besides, performance issues considering 
latency and throughput measures.

For each combination of load pattern (in the application side) and deployment (in the IoT infrastructure side), we are 
generating graphs to observe the response time along the execution, the number of simultaneous requests (threads), the 
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value of the lp (Equation 2), and the output network throughput. The horizontal axis is expressed in seconds denoting the 
elapsed execution time, while the vertical axis was converted to present normalized percentage values, so all metrics can 
be plotted in the same graph. Thus, our idea in this point focuses mainly on verifying possible relation among the collected 
metrics. In addition to the graphs, each aforesaid combination also reports data about the average behavior as follows:
• Mean network output throughput in k bytes per second: Informs the average volume of data that were dispatched 

by the load balancer;
• Mean response time per request in milliseconds: This index expresses the average time between the sending of 

requests to the load balancer and the return of the responses;
• System throughput as an average of the requests per second: This index represents the total number of requests 

divided by the total execution time of the test.

Figure 7: Deployments ii (distributed, but not elastic) and iii (distributed, with elasticity support) in the EC2 Amazon cloud. Both 
start with a single virtual machine to handle the electronic product code information services query interface. In addition  deployment 
iii can extend the number of 1 virtual machine up to 5
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6. Experimental results

Here, we are presenting the performance results and the behavior of each observed metric in subsection 6.

6.1. Performance and metrics behavior when varying the load patterns and IoT deployments

Figure 8 depicts the behavior of 256 requests in a constant fashion. For the non-distributed and distributed but not 
elastic deployments, parts (a) and (b) of the figure, the measures remain constant without major fluctuations. On the 

Table 1: Mean lp and mean CPU usage on each verified load pattern
Load patterns and measures IoT deployments

(i) Centralized (ii) Distributed not elastic (iii) Distributed and elastic
Constant

Mean amount of used CPUs for EPCIS 1.0 1.0 3.9
Mean lp (%) 96.3 96.3 50.3

Ascending
Mean amount of used CPUs for EPCIS 1.0 1.0 4.2
Mean lp (%) 89.2 87.5 53.3

Descending
Mean amount of used CPUs for EPCIS 1.0 1.0 2.9
Mean lp (%) 87.0 75.3 53.2

Wave
Mean amount of used CPUs for EPCIS 1.0 1.0 2.7
Mean lpp (%) 85.5 79.8 50.8

CPUs: Central processing units

Figure 8: Results when executing the constant function on three IoT deployments: (a) Centralized; (b) distributed, but not elastic; 
and (c) distributed, with elasticity support. The observed metrics were normalized to be plotted in the same graph

a

b

c
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Figure 9: Results when executing the ascending function on three IoT deployments: (a) Centralized; (b) distributed, but not elastic; 
and (c) distributed, with elasticity support

a

b

c

other hand, we can observe two behavior patterns at the elastic configuration: First, the response time of the requests is 
directly related to the lp; second, the output network traffic is directly related to the number of allocated VMs. Besides, 
in Figure 8c, we identify that the elasticity is really obeying the employed thresholds since scaling in and out operations 
take place when the lp exceeds the lower and upper bounds. Figure 9 illustrates the graphs for the ascending load pattern, 
which ends with 256 threads performing simultaneous requests. In (a) and (b), we can visualize that the response time 
is proportional to the number of simultaneous requests. Contrary to (a) and (b), in part (c), we emphasize the fact that 
the output network traffic comes off in relation to the lp curve, accompanying the tendency of increasing the number of 
allocates VMs. In this way, lp measure becomes independent, not influencing the other measures.

Figure 10 presents the results for the descending load pattern, which jumps quickly for 256 requests and decreases this 
number as the application advances as well. Again, the response time is proportional to the number of requests. However, 
the configuration that comprises a distributed and elastic architecture presented an output network traffic that comes 
away from the lp curve, now following the number of allocated VMs. We can highlight that the number of allocated 
VMs remains high while the number of parallel requests decreases. This occurs thanks to the value of 30% for the lower 
threshold, which is only achieved at the end of the execution. Therefore, a possible improvement concerns the use of 
adaptable thresholds to avoid resource wasting, as presented in part (c) of Figure 10. Figure 11 presents the behavior of 
the wave load pattern. Both parts (a) and (b) of this figure show that the number of parallel requests dictates the behavior 
of the other curves. In part (c), we observe that the resource allocation is in accordance with the number of requests, 
being allocated in the ascending part and deallocated in the descending one. Particularly, the second period presents an 
underprovisioned situation since the lp does not exceed the upper threshold.

Table 1 and Figure 12 present information related to averages. We emphasize the reduction on the response time in 
about 47% when comparing the distributed scenario with and without elasticity support. In addition, corroborating with 
our previous work [13] (discussed in Section 2), 63.5% of gain was observed when comparing deployments ii against 
i. Thus, the fact of separating database, EPCIS and ALE in different machines, is beneficial to avoid bottlenecks and 
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Figure 10: Results when executing the descending function on three IoT deployments: (a) Centralized; (b) distributed, but not 
elastic; and (c) distributed, with elasticity support

a

b

c

performance penalties related to interferences among the EPCglobal components when at least one of them is overloaded. 
The ascending function presented a larger consumption of CPUs, maintaining five EPCIS query interface VMs for more 
than a half of the execution. This measure is an average of execution time in seconds and consumed CPU on each single 
second (our monitoring period equal to 1 s was previous explained in Section 4).

In a general perspective, considering the four evaluated load patterns, the response time for the queries is deeply related 
to the number of parallel requests. In addition, the larger the number of requests, the higher the use of CPU. Besides data 
processing, the communication among the EPCglobal components occurs over TCP for reliability purposes. 

Particularly, this transport protocol performs intermediary memory data copies, checksum computation and maintains 
timers for data retransmission and flow control [16,17]. All these procedures implemented in software and executed in the 
kernel of the operating system, so spending cycles of the CPU that hosts the operating system. In other words, the standard 
network communication protocol relies on CPU penalties to offer a reliable end-to-end communication semantics for end 
users. In this way, the larger the number of parallel requests, the higher the network flow and, consequently, the CPU 
usage as well. Moreover, we concluded that the output network traffic is directly influenced by the lp when analyzing 
both the centralized and the distributed, but not elastic architectures. Nevertheless, the network flow in the distributed 
and elastic configuration advances close to the number of allocated VMs for handling EPCIS query interface requests.

6.2. Observing the aging concept behavior

Instead of only allocating a new VM when the instantaneous use of the CPU exceeds the upper thresholds, Eliot 
uses the Aging technique for load forecast and peak smoothing. Figure 13 explores the benefits of using this technique 
over an execution that implements the descending load function. After crossing 100 s from the start of the test, we have 
allocates three EPCIS query interface VMs. In this moment, 70 simultaneous requests are being performed with a mean 
response time of 100 ms. After this moment, the use of the CPU grows up, and the lp increases as well. Close to 110 s, 
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Figure 11: Results when executing the wave function on three IoT deployments: (a) Centralized; (b) distributed, but not elastic; 
(c) distributed, with elasticity support.

a

b

c

the CPU use exceeds the upper threshold; however, the lp (as defined in Equation 2) does not surpass this upper limit. 
We are using the aging concept for the lp computation, which employs a weighted moving average over a time series 
composed by a set of CPU load observations. Hence, the analysis of not only one but also several points incurs on not 
performing scaling out operations in the mentioned moment. In addition, we can observe that the load decreases in the 
next steps, showing the correctness of the Eliot’s procedure. After 130 s, deallocations take place since the lp is below 
than the lower threshold.

6.3. Possible improvements on elasticity management

We are using only Aging technique to decide about elasticity actions, where the most recent observation receives the 
weight ½, the second observation is multiplied by ¼, and so on. At present, this technique is employed uniquely over the 
CPU metric; more precisely, each load observation takes into account an arithmetic average of the CPU load of each VM 
that is able to receive EPCIS queries. This subsection starts by analyzing the possible impacts of adding the response 
time as a decision factor together with the aging-based lp. Thus, the response time could enter in Eliot’s algorithm to 
indicate a quality of service or QoS. The addition of a single VM normally implies on response time reduction, but the 
obtained time could not be enough to maintain a quality of service. In this way, at each scaling out action, it is possible to 
check the new response time and allocate more than one VM whether this metric remains above a predefined QoS. The 
complementary situation is also truth: Although not reaching yet the lower threshold in accordance with the aging-based 
lp, if the response time could be satisfied with a fewer number of VMs, then, we can anticipate the scaling in action.

Besides the use of the response time, other possible improvement concerns the use of adaptable thresholds. The 
current version of Eliot’s prototype uses fixed values for the lower and upper load thresholds; however, the use of 
adjustable limits can imply on both better system reactivity and energy saving. First, in an application that presents a 
long but not steep load increase, we can improve reactiveness by reducing the upper threshold to execute scaling out 
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operations sooner. On the other hand, we can elevate the value of the lower threshold to anticipate VM consolidation, 
helping on energy and budget savings. Particularly, this last idea could be applied in the scope of Figure 10c, which 
shows a situation in which the load is decreasing, but the resources remain allocated to the end of the execution.
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Figure 13: Comparison involving the aging-based load prediction (lp) and the central processing unit electronic product code information 
service curve: Even this last exceeding the upper threshold, lp avoids elasticity actions due to understands a peak on application load

Figure 12: Average measures collected in the tests: Mean network output throughput in k bytes per second; mean response time per 
request in milliseconds; and system throughput as an average of the requests per second
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7. Related work

This section first presents commercial and open-source systems available today to implement an IoT infrastructure 
[5,18-23]. After that, considering the scalability keyword, we can classify the IoT academic research initiatives in the 
following groups: (i) Non-EPCglobal compliant [24-31] and (ii) extensions or performance-driven implementations for 
the EPCglobal standard [32-37]. Thus, Subsections 7.2 and 7.3 discuss academic initiatives in details.

7.1. Commercial and open-source systems

The main purpose of an RFID middleware is to collect large amounts of raw data from a heterogeneous RFID environment, 
filter them, compile them into usable format, and offer them to enterprise systems. According to Li [38], the development 
of an RFID-enabled application with real-time data processing is a challenge effort in many ways: Architecture efficiency 
to process high volumes of data intelligently and in real time; scalability according to business demands; and compliance 
with ongoing standards. Particularly, scalability and load balance are indispensable characteristics when enabling high-
performance RFID middlewares. In this way, Table 2 summarizes the efforts of commercial and open-source systems and 
middlewares that address these topics. These systems refer to projects available in the Internet for download.

Multiagent-based RFID middleware [18] was designed using the concept of agent-oriented software engineering.

Its architecture is divided mainly in three layers: Device management, data management, and interface. Fosstrak 
[5] is an EPCglobal middleware that includes reader interface, filtering and collection component (ALE), and EPCIS. 
Particularly, an EPCIS provides a standard interface for access and persists EPC data, allowing business events and 
making them available to the application.

WinRFID [19] is a multilayered middleware developed using .NET framework. It focuses on infrastructure scalability 
and administration, event and data intelligent process and dispatching, enterprise application, and business partner 
integration.

Hybrid middleware [20] is a middleware based on group communication in peer-to-peer (P2P) networks. It is purely 
designed for an electronic parking management system. Other work is the reliable framework for radio-frequency 
identification [21], which was designed to offer reliability, load balancing, high throughput, and scalability. Logistics 
IT (LIT) [22] is a middleware designed using the concepts of ALE and EPCIS. ALE architecture in LIT consists of four 
layers: Application, state-based execution, continuous query, and reader.

7.2. Non-EPCglobal-compliant initiatives

Li et al. [24] argued the idea of using cloud to centralize the entire IoT infrastructure of an enterprise that presents 
several branches. Thus, services such as domain mediation, application context management, billing, and metering can 
be done easier, generating knowledge over enterprise’s data. Im et al. [25] explored scalability by proposing a new 
mashup (MaaS) service model, called IoT MaaS as a service, defined as composition of thing model, software model, 
and computation resource model. In this way, cloud computing is used to host the IoTMaaS instance, including a service 
driver, interface adapter, processing engine, web service substrates, and protocols to different sources of data.

Biswas and Giaffreda [26] investigate the idea of using IoT-centric cloud as a paradigm that extends cloud computing 
and services to the edge of the network, close to objects. The idea is to distribute data to move it closer to the end users to 
eliminate latency, reduces high traffic, numerous hops, and supports mobile computing and data streaming. To accomplish 

Table 2: Comparison of RFID middlewares
MARM [18] Multiagent systems Not addressed

Fosstrak [5] Separated server, simulation mode, or embedded on RFID reader Subscription of readers

WinRFD [19] Distributed middleware modules Not addressed

Hybrid [20] Multiring P2P network P2P systems

RF2ID [21] Virtual paths between virtual readers and physical readers Path management

LIT [22] Common reader management interface State-based execution model

RFID: Radio-frequency identification, P2P: Peer to peer, RF2ID: Reliable framework for radio-frequency identification, LIT: Logistics information 
technology, MARM: Multiagent-based radio-frequency identification middleware 
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this, they proposed the idea of local and global clouds. Local cloud maintains the infrastructure layer, while the global 
cloud is responsible for data movements and knowledge extraction. Nastic et al. [27] presented an experimental system 
named Patricia, which comprises both a framework and a novel programming model for IoT applications on cloud 
platforms. Its core idea is to enable the development of value-added IoT applications, which are executed and provisioned 
on cloud platforms but leverage data from different sensor devices and enable timely propagation of decisions to the edge 
of the infrastructure. Although presenting an Execution Manager responsible for elasticity, any elasticity algorithm or idea 
was proposed in the article.

Sarkar et al. [29] presented a research initiative called  distributed internet-like architecture for things (DIAT), which is a 
simple, scalable, accommodates heterogeneous objects, and also allows interoperability among these heterogeneous objects. 
They defined a cognitive entity, called observer, that plays a key role in automated machine-to-machine communication to 
provide a service intelligently. Several cognitive functions such as dynamic service creation, modeling, and execution are 
incorporated in the proposed architecture. DIAT and Patricia are non-EPCglobal-compliant proposals that do not explore cloud 
elasticity. A scalable IoT service search is proposed in Ben Fredj et al. [30]. To overcome scalability issues, the authors use 
Semantic Web Technologies in conjunction with hierarchical distributed processing and mechanisms to reduce the searching 
cost such as clustering and aggregation. Athreya et al. [31] proposed a framework for self-managing devices, comprising 
measurement-based learning and adaptation to changing system context and application demands. Particularly, they developed 
a generalized optimization framework that allows software agents to manage and control protocol parameters and behaviors.

7.3. Extensions or performance-driven implementations for the EPCglobal standard

Guinard et al. [32] defended that deploying and maintaining IoT systems are time consuming. In this way, they affirm 
that cloud computing simplifies the deployment and maintenance of the EPC software stack and contributes to a wider 
adoption of the EPC Network standards and tools. Particularly, focusing on performance, EPCglobal initiatives can be 
divided in accordance with the component addressed in the standard: (i) Tag [33]; (ii) discovery service [34,35]; (iii) 
EPCIS [36,39]; and (iv) ALE [37].

• Tag: Wireless identification and sensor data management middleware is a system to support ubiquitous 
computing with passive sensor-enabled RFID [33]. By extending the EPCglobal standard, they work at the tag 
level, working with sensor tags data streams that store an EPC and sensor data. As Eliot, the prototype also uses 
Fosstrak but extends it to work with sensor-enabled RFID.

• Discovery service and ONS: Tieyan and Deang proposed the use of P2P to develop an efficient, fault tolerant, 
and scalable IoT discovery service [34]. The protocol relies on a novel P2P discovery service for a reader 
to retrieve RFID tag information from EPCglobal network. Li et al. [35] proposed a new central indexing 
discovery service system using distributed NOSQL database HBase to better support big data and parallel 
processing. The new storage schema uses object ID as row key, event timestamp as column identifier, and event 
index content as cell value.

• EPCIS: Li et al. [36] proposed an extension of the EPCIS data model to reduce event data volume on a large 
scale by extracting common information of event data into one configuration file. Itsuki and Fujita [39] are 
using P2P to organize the EPCIS repository. Particularly, the EPC of a product and the product information 
as server content are hashed and the hash values are registered to other servers as a new node in the network. 
Again, we have the problem of maintaining either an underprovisioned or overprovisioned infrastructure.

• ALE: Schmidt et al. [37] also exploited the use of P2P technology, now in the scope of the ALE EPCglobal 
component. ALE may be connected to several hundreds of readers. Thus, they propose an efficient way to solve 
this problem based on a distributed hash table; more precisely, a mechanism to distribute the ALE using chord, 
a well-known P2P lookup system, and being transparent for business applications. Any ALE is translated into 
a node of the P2P system. When receiving specifications, it has to split and distribute it to other involved ALEs 
and merge all reports locally before sending the final report to the business application. Besides not presenting 
elasticity (the solution works with a fixed number of ALE nodes), we can also envision the following problem: 
Although redistributing the requests, we still have a one-to-one connection between the ALE node and reader, 
so the network can be a bottleneck in this case.

8. Conclusion

As argued by Yin et al. [40], data obtained at scale can bring intelligence to user applications since existing adequate 
communication and data capturing and filtering substrates. Together with this affirmation, we also observe that is common 
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tech trend presenting the exponential growth of IoT from today up to 20203. In this context, this article described Eliot: 
An elastic-driven IoT architecture responsible to distribute EPCglobal components in the cloud in accordance with the 
dynamic requests from readers and user applications. The elasticity facility is offered in an effortless way to IoT users, 
who do not need to change any line of code in their applications. In addition, at the IoT infrastructure perspective, the 
administrator can use any EPCglobal-compliant middleware as a black box, needing only to install the elasticity manager 
and load balancer components from Eliot, besides, creating VM templates to support both the EPCIS query and capture 
interfaces. At the scientific contribution viewpoint, we emphasize the use of the aging concept in the Eliot’s architecture 
to address scaling in and out operations so avoiding possible VM allocation oscillations and VM thrashing.

The results were conducted over three deployments: (i) Single server with Fosstrak; (ii) EPCIS, EPCIS repository 
and ALE components distributed in different machines, but not using elasticity; and (iii) distributed configuration as 
mentioned in ii, but here with elasticity support. Network operations use the TCP protocol, which is processed at software 
level in the OS kernel, so the components of this protocol overload a single CPU when stressed with multiple network 
connections. Hence, the simple fact of spreading the EPCglobal components in a distributed fashion presents a significant 
improvement. Deployment iii is pertinent to support input load variations, outperforming deployment ii in the response 
time, network throughput, and requests throughput metrics. Besides performance benefits, cloud elasticity can yield 
significant cost savings when compared to the traditional approach of maintaining an overprovisioned infrastructure 
modeled to support demand peaks. Moreover, the use of VM templates to accommodate an EPCglobal component is 
pertinent for replicating the IoT among different companies: Prepare VMs once, run anywhere.

Future work includes the tuning of the Eliot’s elasticity algorithm by adding the metric response time, besides, the 
CPU load currently used. Furthermore, we think to explore the idea of adaptable lower and upper thresholds to improve 
system reactiveness and energy savings. Finally, we plan to work with real trace data on the next Eliot’s evaluation. 
Particularly, we intend to perform agreements with global courier delivery services companies, such as Fedex and DHL, 
to obtain their log file of a single day of work.
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