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Abstract: Gene expression profiles in blood are increasingly being used to identify biomarkers for different affective 
disorders. We have selected a set of 29 genes to generate expression profiles for healthy control subjects as well as for 
patients diagnosed with acute post-traumatic stress disorder (PTSD) and with borderline personality disorder (BPD). 
Measurements were performed by quantitative polymerase chain reaction (qPCR). Using the actual data in an anonym-
ous form we constructed a series of artificial data sets with known gene expression profiles. These sets were used to test 
14 classification algorithms and feature selection methods for their ability to identify the correct expression patterns. 
Application of the three most effective algorithms to the actual expression data showed that control subjects can be dis-
tinguished from BPD patients based on differential expression levels of the gene transcripts Gi2, GR and MAPK14, 
targets that may have links to stress related diseases. Controls can also be distinguished from acute PTSD patients by 
differential expression levels of the transcripts for ERK2 and RGS2 that are known to be associated with mood disord-
ers and social anxiety. We conclude that it is possible to identify informative transcription profiles in blood samples 
from individuals with affective disorders. 
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Introduction 

he molecular basis of affective disorders is still 
poorly understood. Psychiatric disorders such 
as major depression or post-traumatic stress 

disorder are heterogeneous disorders that are consi-
dered to arise from a complex interplay of several 
genes and environmental factors. Due to the hetero-
geneous and polygenic nature of these disorders, they 
are also difficult to treat effectively. In the case of de-
pression, 20% of the affected individuals show full 
remission with the current antidepressants. This 
might be related to the fact that research in the field of 
psychiatry historically has focused mainly on drugs 
targeting monoamine receptors and transporters, in 
various combinations, leading to only slightly differ-
ent profiles[1].  

On this background, there is clearly a need to better 
understand the biological basis of complex psychiatric 
disorders and to identify biomarkers that go beyond 
monoamine transporters and receptors. This could pave 
the way for the development of new drugs and, at the 
same time, make it possible to predict which of the 
current drugs to prescribe to a given patient. Tran-
scriptional biomarkers in blood may help us achieve 
these goals, and during the last few years a variety of 
such biomarkers have been suggested as alternatives 
to brain markers[1,2]. This is the case, for instance, for 
post-traumatic stress disorder[3–6], bipolar disorder[7–10], 
and major depression[11–14]. Use of markers in the blood 
is a standardized approach and, as only a blood sample 
is needed, the approach is fast, inexpensive and prac-
tically non-invasive. However, data analysis to identi-
fy possible biomarkers will not be straightforward as 
complex psychiatric diseases are likely to involve a 
number of molecular changes. Hence, we believe it 
will require a multivariate approach to identify useful 
patterns in the data. Given that many different kinds of 
multivariate algorithms are available, a major chal-
lenge in biomarker research will be the identification 
of appropriate methods of analysis. 

To address this question, we measured gene expres-
sion of a focused panel of targets in whole blood sam-

ples from control subjects and patients who were di-
agnosed with either borderline personality disorder or 
post-traumatic stress disorder. Next, based on the real 
data, we constructed simulated data sets with known 
differences between the simulated controls and simu-
lated patients. Testing of 14 different classification 
algorithms and feature selection methods with the si-
mulated data provided an understanding of how well 
each algorithm performed. Finally, using the best al-
gorithms from the simulation we applied these algo-
rithms to the real data sets to examine their utility in 
practice.  

Materials and Methods 

The Selected Genes 

We searched the literature for gene expression changes 
linked to affective and anxiety disorders in some way 
(such as altered expression in disease state or altera-
tion with drug treatment). Due to limited availability 
of human studies in blood samples, we considered 
results from both human and animal experiments, 
from both blood and brain tissue, and from both RNA 
and protein expression measurements. We screened 
our initial list to determine which targets could be re-
liably detected in blood with qPCR (quantitative Po-
lymerase Chain Reaction) and arrived at the genes 
listed in Table 1. Supplementary figure S1 provides 
links to references supporting the rationale for the in-
clusion of the selected targets in the panel. The se-
lected genes are involved in specific biological func-
tions, such as cellular growth and proliferation as well 
as cell death/apoptosis. Some of the genes are asso-
ciated with inflammatory and immunological path-
ways such as immune response or the development 
and function of the hematological system. We found 
no correlation above 0.3 between any of the gene ex-
pressions and BMI or age in healthy controls[15]. 

Ethics Statement 

All of the clinical protocols used to enroll healthy 
control subjects or patients diagnosed with an affec-
tive disorder (Table 2) were approved by a local ethics  
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Table 1. The selected 29 genes and associated functions 

Gene Accession Number Function 

ADA (adenosine deaminase)  NM_000022 metabolism or immune response 

ARRB1 (beta-arrestin 1)  L04685 GPCR signaling or immune response 

ARRB2 (beta-arrestin 2)  BC007427 GPCR signaling or immune response 

CD8 alpha (CD8 antigen alpha polypeptide) M12824 immune response 

CD8 beta  (T-cell surface glycoprotein CD8 beta chain) M37601 immune response 

CREB1 (cAMP responsive element binding protein 1)  NM_134442 cell growth or proliferation  

CREB2 (cAMP responsive element binding protein 2)  M86842 cell growth or proliferation  

DPP4 (dipeptidyl peptidase 4)  M74777 metabolism  

ERK1 (extracellular signal-related kinase 1)  M84490 cell growth or proliferation  

ERK2 (extracellular signal-related kinase 2)  M84489 cell growth or proliferation  

Gi2 (G protein, alpha-inhibiting activity polypeptide 2)  X04828 GPCR signaling or cell growth or proliferation  

Gs (G protein, alpha-stimulating activity polypeptide 1)  AF493897 GPCR signaling or cell growth or proliferation  

GR (glucocorticoid receptor)  X03225 glucocorticoid signaling or stress response  

INDO (indoleamine pyrrole 2,3-dioxygenase)  NM_002164 inflammation  

IL-1β (interleukin-1 beta)  NM_000576 inflammation 

IL-6 (interleukin-6)  M14584 inflammation 

IL-8 (interleukin-8)  M28130 inflammation 

MAPK14 (mitogen-activated protein kinase 14) (p38 MAPK)  L35253 proliferation or inflammation 

MAPK8 (mitogen-activated protein kinase 8)  AY893269 stress response 

MKP1 (dual specificity phosphatase 1)  X68277 proliferation 

MR (mineralocorticoid receptor) M16801 glucocorticoid receptor signal. or stress response 

ODC1 (ornithine decarboxylase)  NM_002539 cell death or apoptosis 

P2X7 (purinoreceptor P2X7) (P2RX7)  NM_002562 inflammation or cell death 

PBR (peripheral-type benzodiazepine receptor)  BC001110 stress response or neurosteroid biosynthesis 

PREP (prolyl endopeptidase)  D21102 metabolism 

RGS2 (regulator of G-protein signaling 2)  NM_002923 G protein signaling 

S100A10 (S100 calcium-binding protein A10) (p11)  NM_002966 monoamine signaling 

SERT (serotonin transporter)  NM_001045 monoamine signaling 

VMAT2 (vesicle monoamine transporter 2) L23205 monoamine signaling 

This selection of genes is based on the literature, incorporating information from both human and animal experiments and from both RNA and 
protein expression measurements. The list was screened to select targets that could reliably be detected in blood with qPCR. See supplementary figure 
S1 for more information. 

 

Table 2. Basic demographic data for the control and patient groups 

Group Geographic region N Average age Gender composition MW (age) MW (gender) 

Controls England (UK) Denmark (DC) Serbia (PTSD) 196 42 78% male N/A N/A 

BPD  USA 21  33 90% female  0.003 P< 0.0001 

Acute PTSD Serbia 66 46 100% male  0.002  0.010 

Remitted PTSD Serbia 41 45 100% male 0.056 0.044 

Trauma  Serbia 87 42 100% male 0.457 0.003 

The names listed in the first column of the table are used throughout the paper to refer to the different groups. Geographic region refers to the lo-
cation where the samples were collected. A Mann Whitney test (MW) was used to compare the age and gender distributions between the control group 
and each patient group. The p values for these comparisons are reported in the last two columns of the table. 
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committee as follows: UK (Brent Medical Ethics 
Committee), DC (Danish Ethical-Scientific Commit-
tees and the Danish Data Protection Agency), PTSD 
(Ethical Review Board of the University Medical 
School, Belgrade, Serbia), BPD (Western Institutional 
Review Board). The samples were collected according 
to all applicable laws and regulations. All individuals, 
at all clinical sites, read and signed an informed con-
sent document prior to donating a blood sample. 

Total RNA Isolation from Human Blood 

Human blood was collected in PAXgeneTM blood 
RNA tubes (PreAnalytiX) according to the manufac-
turer’s instructions and stored at −80oC until process-
ing. Whenever possible, collection was made in the 
morning. Prior to RNA extraction, samples were in-
cubated overnight at room temperature and centri-
fuged at 3000 G for 10 minutes. The pellet was 
washed with water, recentrifuged, resuspended in ly-
sis buffer (Ambion)/ 177 nM sodium acetate pH 5.5 
and extracted with acid phenol/chloroform. Total RNA 
was purified from the aqueous phase using the RNA-
queous-96 automated kit (Ambion) following the ven-
dor’s instructions. A second DNase I step was added 
to eliminate all contaminating genomic DNA. Desalt-
ing of the RNA was accomplished by applying the 
samples to a MultiScreen plate (Millipore). The de-
salted RNA was resuspended in water and stored at 
−80°C. RNA QC was performed using a Bioanalyzer. 

cDNA Synthesis and Quantification 

Reverse transcription of 1 µg of total RNA was ac-
complished using Superscript II (Invitrogen) per the 
vendor’s protocol. The resulting cDNA was desalted 
using a MultiScreen plate, re-suspended in water and 
quantitated using Quant-itTM Oligreen ssDNA reagent 
(Invitrogen). Based on the QC results, the cDNA con-
centrations were normalized to the same concentration. 

Quantitative Polymerase Chain Reaction (qPCR) 

For qPCR assays, replica 96 well plates were assayed. 
Replica plates also contained 3 wells of water to serve 
as a negative control and 3 wells of reference cDNA. 
The utility of the reference cDNA is that it allows re-
sults from different experiments to be compared since 
all samples are expressed relative to the reference 
(see below). PCR assays were performed with hy-
drolysis probes on either a 7900HT Fast Real Time 
PCR System (Applied Biosystems) or an MX3000 
instrument (Agilent) using BrilliantII FAST QPCR 

Master Mix (Agilent). Duplicate assay plates were run 
for each gene and the results were averaged.  

Normalization of Gene Expression 

In order to effectively compare gene expression pro-
files between different samples, it is essential to con-
trol for variation caused by the day to day differences 
in the efficiency of enzymatic reactions, instrument 
performance, and pipetting. The preferred way to mi-
nimize the influence of these variables is through the 
use of multiple normalization transcripts[16–18]. We 
evaluated a collection of 7 candidates (Table 3) for this 
purpose using GeNorm (PrimerDesign).  

 
Table 3. Normalization genes 

Gene Gene Accession 
Number 

B2M (beta-2-microglobulin) NM_004048 

GAPDH (glyceraldehyde-3-phosphate dehydrogenase) NM_002046 

PPIA (peptidylpropyl isomerase A) NM_021130 

RPLPO (ribosomal protein, large, P0) NM_001002 

RPL13A (ribosomal protein L13a) NM_012423 
TBP (TATA box binding protein, transcription factor 
IID) NM_003194 

UBC (ubiquitin C) NM_021009  

The genes were evaluated using the GeNorm software package by 
testing multiple groups of healthy controls or patients for expression 
variation. The combination of these genes achieves good normalization, 
as determined by a pair wise variation value (V) of 0.15 or less[19]. 

 

The goal of this process is to identify at least 3 tran-
scripts whose expression is not influenced by vari-
ables in the study design (such as disease state, drug 
treatment, or demographic factors). By testing differ-
ent combinations of controls and patients, we ob-
served that the rank order of the normalization tran-
scripts differed depending on the specific group tested 
(supplementary figure S2). Some transcripts were 
identified as stable most of the time (RPL13A, RPLPO) 
while others were less so (GAPDH and UBC), but 
there was not a consistent panel of 3 or 4 transcripts 
that was always the best with all combinations tested. 
Because our long term goal is to compare gene ex-
pression profiles across many different patient and 
control groups, and since such comparisons require 
the same normalization scheme in all cases, the best 
solution is to use all 7 of the normalization transcripts 
in combination. This is indeed a valid approach, since 
the degree of variation for all 7 transcripts combined 
is acceptable, as defined by a pairwise variation score 
of 0.15 or less (supplementary figure S2). An added 
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advantage of using a large number of genes for nor-
malization is that this dampens the influence of any 
single gene whose expression may change unexpect-
edly due to unforeseen reasons (such as drug treat-
ments, genetic background or ethnicity).  

Transcription Data Analysis 

The expression level for each unknown cDNA sample 
was calculated relative to the reference cDNA using 
the 2-delta delta C(T) method[20]. Copy numbers were 
determined by multiplying the relative expression 
values by the number of copies of each transcript con-
tained in the reference cDNA. The copy number de-
terminations for the reference cDNA were made sepa-
rately by measuring the expression level of each tran-
script in the reference against a standard curve of syn-
thetic DNA for each gene of interest. 

Control Subjects and Patient Groups 

Table 2 summarizes the basic demographic data for 
the healthy control subjects and patients examined in 
this investigation. BPD (borderline personality dis-
order) patients were diagnosed according to DSM IV 
guidelines and did not present other acute psychiatric 
symptoms. Patients diagnosed with symptoms of acute 
PTSD (post-traumatic stress disorder) or remitted 
PTSD (according to DSM IV guidelines) are veterans 
of military conflict. Trauma patients had been exposed 
to a variety of traumatic events without displaying 
symptoms of PTSD. At the time the blood samples 
were collected for the transcription profiling experi-
ment, approximately 25% of the BPD patients were 
receiving treatment with antidepressant (either venla-
faxine or duloxetine) and about 30% of the patients 
diagnosed with acute PTSD were receiving treatment 
with a variety of medications. We chose to utilize a 
large control group derived from several geographic 
regions for comparison to the different patient groups, 
rather than using much smaller, matched control 
groups for each comparison. The intent was to mimic 
some of the genetic, cultural, and dietary heterogenei-
ty that exists in the general population and we felt that 
this provided the best way to evaluate our analyses.   

Our decision not to utilize matched controls for 
each patient group resulted in data sets that are not 
matched by age and gender. As shown in Table 2, all 
of the patient groups are significantly different from 
the control group in terms of gender composition and 
two are different with respect to age distribution. Be-
cause of this imbalance, we used the control group to 

conduct an analysis of the impact of age and gender 
on the expression of each of the transcripts in our pan-
el. No transcripts in the panel demonstrated differen-
tial expression due to age based on the observation that 
the Spearman correlation coefficients for age versus 
gene expression are less than 0.3[15]. With respect to 
gender, our analysis revealed that ARRB2, ERK1, 
IL-1β on levels between the genders is quite similar 
(supplementary figure S4). Regardless, proper inter-
pretation of our results requires that we account for 
the possibility of gender bias as it relates to the gene 
expression profiles in our patient and control groups. 

Classification with Variable Selection  

It would obviously be of great benefit if one were able 
to predict the diagnosis of a patient solely based on 
the gene expressions in a blood sample. Such predic-
tion is especially difficult for complex psychiatric 
diseases where multiple genes are assumed to be in-
volved. While many different analysis methods exist, 
e.g. classification algorithms, we would like to under-
stand which type of algorithms performs the best in 
relation to the present purpose. Therefore, we have set 
up a simulation study to test a variety of well-known 
classification algorithms. In this way we are able to 
examine how different combinations of explanatory 
variables are identified with various classification 
methods. 

Classification with automatic variable/feature se-
lection offers a supervised multivariate approach to 
prediction of future events, e.g. response to treatment 
or disease course, and molecular diagnosis[21] as well 
as an algorithm-oriented approach to extracting the 
variables responsible for class separation and predic-
tion. Common univariate methods like t-tests and 
Wilcoxon tests “are fast and conceptually simple. 
However, they do not take correlations and interac-
tions between variables into consideration, resulting 
in a subset of variables that may not be optimal for 
classification”[21]. Multivariate variable selection ap-
proaches, on the other hand, recognize that the subset 
of variables with best univariate discrimination power 
are not necessarily the best subset of classification 
variables, and try to determine which combinations of 
variables yield high prediction accuracies. qPCR gene 
expression data and classification analysis range be-
tween traditional statistics and microarray analysis as 
measured by the number of samples and variables. For 
most groups in the present study, the ratio of the 
number of subjects to the number of measured gene 
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expressions is around 1–3, making it necessary to 
consider both microarray approaches and traditional 
statistical methods.  

On this background, we decided to set up a simula-
tion study to investigate which classifiers and feature 
selection methods would be most reliable for analysis 
of qPCR data, taking different kinds of gene interac-
tions into account (see below). Key issues were iden-
tification both of classifiers able to determine the cor-
rect explanatory genes and of performance measures 
suitable of rating the classifiers.  It is feasible from a 
purely technical perspective to measure relative tran-
scription differences between control subjects and 
patients. However, it is difficult to place such observa-
tions into a meaningful biological context since the 
absolute range of mRNA expression in healthy indi-
viduals has not been defined for the transcripts in our 
panel. Furthermore, studies conducted in different labs 
are difficult to compare because different normaliza-
tion schemes influence both the intensity and direction 
of the apparent expression changes. For these reasons, 
it was difficult to predict for any particular gene how 
the transcription profile in patients might differ from 
that of healthy controls. Therefore, we elected to ap-
proach the evaluation of the classifiers tested in this 
study in an open ended manner.  

The use of simulated data sets allows us to create 
situations where we define the outcome, that is, we 
decide which combination of variables is used to de-
fine the outcome.  In the simplest case, one could 
imagine that increased or decreased expression of one 
or several transcripts would be sufficient to distin-
guish controls from patients and achieve good classi-
fication accuracy. To mimic this, we evaluated the 
performance of the algorithms when the relative ex-
pression of one or more transcripts was placed above a 
defined threshold. Because we could not rule out the 
possibility that very high or very low expression of a 
particular transcript might result in the same biologi-
cal outcome, a separate iteration involved testing the 
algorithms when the relative expression values fell 
within a defined expression interval. Smaller relative 
expression changes (up or down) may not be sufficient 
to effectively discriminate controls from patients. 
However, due to interactions between gene products 
within biological pathways, such small changes 
may be amplified in a way that would provide a means 
to discriminate the two groups. For that reason, we 
also tested scenarios in which either the ratio or the 
product of two (or more) transcripts were used for 

classification. As noted above, we tested situations 
where the ratios or products fell above a defined 
threshold as well as when they fell within a defined 
interval. 

Simulation Study 

The simulation study was divided into two phases. In 
phase 1, the simulated data sets had approximately the 
same number of variables as the real data; 30 variables 
were used. The number of samples per data set was set 
to both N=100 and N=1000, which represents the 
number of samples in the current data set as well as 
the size of data sets likely to be analyzed in the near 
future. The correlation between variables was set in 
some data sets to 0 and in other data sets to 0.5. The 
major distinction between phase 1 and phase 2 was 
that in phase 1 all variables were drawn from a normal 
distribution, while in phase 2 a realistic data set (based 
on actual data) was considered, see the distribution 
histograms in supplementary figures S5 and S6. 

(1) Phase 1 
In the first phase, we wanted to rule out classifiers 

that could not solve tasks we deemed important and, 
hence, defined a list of 42 linear and nonlinear tasks.  

The major aspects of the phase 1 tasks were as fol-
lows. To begin with, the outcome was just a function 
of a single variable x that could fall above a threshold 
“a” or in a specified interval a ≤ x ≤ b, as shown 
in Figure 1. This was done to understand how the 
classifiers would perform with simple tasks. Hereafter, 
the outcome was taken as a function of different com-
binations of two or five variables in a linear, ratio or 
product combination, and always either above a thre-
shold or in a specified interval. 

Three separate issues were examined. First, differ-
ent magnitudes of two variables were tested (X1≈X2, 
X1≈10*X2 and X1≈100*X2). This was done in or-
der to see whether the relative magnitude of the in-
volved variables played a significant role. Next, dif-
ferent fractions of data points classified as Y=1 (0.05, 
0.20 and 0.50) were considered. This was very rele-
vant to us, as in some cases, the number of patients 
was much smaller than the number of controls. Finally, 
in order to determine how small a difference the clas-
sifiers could detect, two populations with different 
mean values in gene 1 were investigated. The mean 
values of gene 1 ranged from (total of five scenarios): 
Y=1 if Gene 1 ~N(−3,1), Y=0 if Gene 1 ~N(+3,1)) to 
Y=1 if Gene 1 ~N(−0.25,1), Y=0 if Gene 1 ~N(+0.25,1).  
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Figure 1. Simulated data sets for classifier selection.  
Multiple stimulated data sets containing different known patterns of expression were constructed with N=100 or N=1000 values and different degrees 
of correlation between the variables. First the outcome is just a function of one variable falling above the threshold “a” or in an interval b<x<c. He-
reafter, a variety of tasks are considered where the outcome is a function of two or five variables in different linear, ration and product form. A total of 
14 classification algorithms were evaluate to quantify the ability to find the pattern in the various data sets. 

 

Tested Classifiers and Automatic Feature  
Selection Methods 

Our focus was on classifiers with either built-in varia-
ble selection or with variable selection as a pre-step to 
classification — all available in the statistical lan-
guage R (http://www.r-project.org/). As listed in Table 4, 

 
Table 4. Tested classifiers and variable selection methods 
available in R 

 Classifier Description 

1 Pelora with only the first Pelora cluster used to avoid 
overfitting[22,23]  

2 SLR – Stepwise Logistic Regression[24,25]  

3 PLR - Penalized Logistic Regression with a stepwise variable 
selection[26] 

4 RPART - Recursive PARTioning (classification tree), see[27] 

5 NB – Naive Bayes is a standard classifier known to perform 
well[28,29]  

6 LDA – Linear Discriminant Analysis is a classical classifier[29,30]  

7 SKNN – Simple K Nearest Neighbor. K-NN is described in[29,31,32]  

8 Random Forest[33–35]  

9 QDA – Quadric Discriminat Analysis is also described in[31,36,37]  

10 SVM – Support Vector Machines[37,38] 

11 NNET – Neural NETwork with a single-hidden-layer[37] 

12 LogitBoost – a boosting machine learning technique[37,39]  

Initial testing demonstrated that the variable selection method var-
selrf performed well. Hence, the classifiers NB, LDA and Random 
Forests were started with varselrf selected variables. 

a range of different methods were chosen for phase 1. 
Initial testing where the outcome was dependent on 
either a single variable or the sum of two variables 
demonstrated that the variable selection method (var-
selrf[40,41]) performed very well, so the classifiers NB, 
LDA, SKNN and random forest were started off with 
the varselrf-selected variables. QDA, SVM, NNET 
and LogitBoost were tested with two different variable 
selection methods: msc (based on Mass Spectra Clas-
sification[37]) and varselrf (variable selection based on 
random forests). 

Accuracy, Cross-validation and the Jaccard 
Similarity Coefficient  

In order to determine the performance of a classifier 
for both two and multiple class tasks, we decided to 
measure the accuracy of the predictions[42]. 

The accuracy was measured in each cross-valida-
tion sample and finally averaged. As recommended by 
Kohavi[43], 10-fold stratified cross-validation was used. 
This also meant that the accuracy measured would 
not be (too) inflated due to overfitting. To measure 
how well a classifier identified the correct variables, 
the Jaccard similarity coefficient[44] was used. The 
Jaccard score yields a number (0–100%) indicating 
how well a given classifier identifies variables com-
pared to the correct explanatory variables as de-
fined by us. The higher the Jaccard score is, the better 
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the agreement will be between the variables identified 
in the analysis and the predefined variables.  

The phase 2 data set is based on the control group 
as well as the borderline personality disorder and 
acute PTSD patients. 25 variables/genes were in-
cluded. The number of samples was 263. The mean 
correlation between the 25 genes was 0.26, that is, in 
the range of correlations considered in the phase 1 
study. All data was normalized the same way; the va-
riables used were in one case transformed to z-scores 

(standard score;  xz µ
σ
−

= , where µ  is the mean 

and 𝜎 is the standard deviation), as in phase 1, and in 
another case, the actual expression values were used. 
These two approaches were chosen in order to see if 
the outcome of the classification algorithms differed. 
As in phase 1, the outcome was defined as different 
combinations of the variables. 33 different tasks were 
given to the classifiers (description available on re-
quest) with most of them similar to the tasks in phase 
1, that is, to begin with, the outcome was just a func-
tion of one variable above a threshold or in an interval. 
Then, the outcome was a function of different combi-
nations of two or five variables in a linear, ratio or 
product form and always either above a threshold or in 
a specified interval.  

Three separate studies were performed: Firstly, we 
wanted to look at the completely random outcome to 
observe how the classifiers / variable selection method 
would perform in this situation. Secondly, by looking 
at different fractions of data points classified as Y=1 
(0.05, 0.20 and 0.50), we could mimic the situation 
with unbalanced data sets. Finally, we would test the 
actual data (no z-score transformation) by looking at 
different magnitudes of two involved variables (X1≈
X2, and X1≈(100-300)*X2).  

Classification and Variable Selection Proce-
dure Working with the Real Data 

Since the accuracy values are dependent on the group 
sizes (which differ among the different patient and 
control groups), the following classification procedure 
was used to determine whether a group separation was 
possible, and if possible, how to report the responsible 
genes:  

1. Calculate 10-fold stratified CV (cross-validation) 
accuracies in the real case scenario, i.e. with the actual 
control and patient data. The variable selection pro-
cedure is included in each cross-validation. 

2. Calculate permuted accuracies by performing 10 
permutations (the result is almost the same using 100 
permutations, however, the computation times are 
much longer) of the class labels leading to 10 × 10 
(CV) = 100 permuted / random accuracies. The per-
mutation step is applied in order to calculate the accu-
racy values expected at random in the real data set 
(excluding the class label) for a classifier[45].  

3. Compare the 10 real case accuracies with the 100 
permuted accuracies using a t-test if the accuracy val-
ues follow a normal distribution (tested with a Shapi-
ro-Wilk test[46]), otherwise use a Wilcoxon test[47].  

4. Significant result is obtained (that is, the groups 
are separable) if the p-value is below the significance 
level of 1% (adjusted for multiple tests).  

5. Genes corresponding to the significant result are 
listed. Genes are extracted from the complete data set 
from each classifier (selected genes may depend on 
classifier). Overlapping genes are reported.  

To get additional useful information from the clas-
sifications, the positive and negative predictive values 
(PPV and NPV respectively) are reported as well to-
gether with the false positive and true positive rates 
(FPR and TPR respectively, the latter also known as 
sensitivity). They are defined as: 

   
      

PPV
number of True Positives

number of True Positives number of False Positives

=

+

   
      

NPV
number of True Negatives

number of True Negatives number of False Negatives

=

+

   
      

FPR
number of False Positives

number of False Positives number of True Positives

=

+

   
      

TPR
number of True Positives

number of True Positives number of False Negatives

=

+
 

Results 

Phase 1 

An example of one of the 42 simulation results from 
phase 1 in the form of plots with the x-axis rep-
resenting the accuracy and the y-axis the Jaccard score 
is shown in Figure 2. The abbreviations in the plots 
refer to the classifier names given in the classifier list 
above. A suffix of ‘.RF’ means that the variable selection 
method ‘varselrf’ (variable selection based on random 
forests) was used as a pre-step to the corresponding  
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Figure 2. Classification performance when two variables sum 
to an outcome that exceeds a threshold.  
A simulated data set (N=100) was analyzed in which the expression 
pattern was linked to two variables, the sum of which exceeds a given 
threshold. A total of 16 classifier possibilities were evaluated. The best 
performing classifiers are: PLR, Pelora, SLR, SVM.RF, QDA.RF, 
NNET.RF, RF.RF and RPART. The figure was made in Excel based on 
output from R. The Jaccard score is a measure of how well a classifier 
identifies the correct variables, two in this case, and accuracy indicates 
how well a classifier is at predicting the outcome, here above a given 
threshold. 
 
classifier. Otherwise, the feature selection method 
‘msc’ (variable selection based on mass spectra classi-
fication) was used as a pre-step to the quadratic dis-
criminant analysis (QDA), Random Forest (RF), sup-
port vector machines (SVM), neural network (NNET) 
and boosting LogitBoost classifiers.  

In Figure 2, the 16 classifier possibilities are shown 
for a task involving a linear combination of two va-
riables with an outcome that exceeds a given threshold. 
Furthermore, there is no correlation between the va-
riables. This plot indicates that the LDA, NB, SKNN, 
LogitBoost, LogitBoost.RF, QDA, NNET and SVM 
classifiers do not perform well for this kind of task.  

By looking at 42 simulation plots (four more plots 
are shown in the supplementary figures S7 thru S10, 

the remaining plots are available on request) corres-
ponding to the different linear and nonlinear phase 1 
tasks, we concluded in a manner similar to Table 
5 below;  

• The variable selection method varselrf seemed 
very promising especially in connection with 
the classifiers SVM, random forest or QDA 
dealing with a broad range of linear and nonli-
near classification problems.  

• When the outcome was a linear combination of 
variables, SLR and Pelora did the best classifi-
cation job.  

• The following cases were not well handled by 
the above mentioned classifiers in general:  

• “Large” ratios involving 5 variables  
• “Large products” involving 5 variables 
• Data sets of size N=100 with only 5% Y=1  
• The difference between Y=0 and Y=1 variable 

mean values was ~0.5  
Most importantly, we concluded that the following 

classifiers and variable selection methods in general 
performed the worst: NB (varself selection method), 
LDA (varself selection method), SKNN (varself selec-
tion method), QDA (msc selection method), SVM 
(msc selection method), NNET (msc selection method) 
and LogitBoost (msc and varselrf selection methods). 
Hence, these methods are not part of the classifiers 
tested in phase 2. The reasons for poor performance 
were typically that these classifiers and selection me-
thods yielded low Jaccard score (i.e., they were not 
able to identify the responsible genes satisfactory) 
and/or bad accuracy score considered overall for the 
various tasks. 

The worst performing classifiers from phase 1 were 
omitted, and thus, the following classifiers and feature 
selection methods would be tested in phase 2:  

 
Table 5. Phase 2 tasks solved with accuracies above 80% and a Jaccard score above 70% 

2 groups % task solved Average accuracy Average Jaccard Tasks solved 

Pelora 28% 95% 97% r1,r3,r9,r16,r17,r18,r22 

SLR 36% 100% 100% r1,r3,r9,r16,r17,r18,r20,r21,r22 

PLR 28% 100% 100% r1,r3,r5,r9,r16,r17,r18 

RPART 56% 94% 97% r1,r2,r3,r4,r6,r16,r17,r18,r20,r21,r22,r23,r24,r26 

Random Forest (varselrf) 52% 95% 98% r3,r4,r5,r6,r7,r8,r9,r20,r21,r22,r23,r24,r26 

QDA (varselrf) 48% 89% 98% r3,r4,r6,r7,r8,r9,r20,r21,r22,r23,r24,r26 

SVM (varselrf) 52% 97% 98% r3,r4,r5,r6,r7,r8,r9,r20,r21,r22,r23,r24,r26 

NNET (varselrf) 16% 91% 94% r3,r4,r9,r22 

The column ‘Tasks solved’ refers to the specific tasks solved (available on request). r4, for instance, involves the task defined as -0.95 ≤ X2+X3 
≤ 0.95 => Y = 1, else Y = 0 and is shown in Figure 3. The conclusions in the text sum up the table.  
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1. Pelora with only the first Pelora cluster used  
2. SLR  
3. PLR  
4. RPART  
5. QDA  
6. Random Forest  
7. SVM  
8. NNET  
QDA, Random Forest, SVM and NNET were tested 

with the variable selection method varselrf.   

Phase 2 Simulation Results 

In Figure 3, an example of the results from phase 2 is 
presented. In this case a non-linear task is examined. 
Four more plots are shown in the supplementary fig-
ures S11 through S14; the remaining figures are 
available on request. The abbreviations in the plots are 
the same as in phase 1. Here it should be emphasized 
that one-gene simulations were only performed to see 
how the classifiers dealt with this task, and they are 
not included in the examples below. Since the diseases 
we consider are believed to be polygenetic, a classifier 
is not of interest if it only performs well in a single 
variable/single gene case. In order to compare the 
classifiers on a quantitative basis, we decided to focus 
on classifiers that yielded an accuracy above 80% and 
had a Jaccard similarity score above 70%. This we be-
lieved would reflect good-performing classifiers on 
the available qPCR data, even though these percen-
tages were chosen more or less arbitrarily. In Table 5,  
 

 
 

Figure 3. Classification performance when two variables sum 
to an outcome in a specified interval.  
A simulated data set (N=263) was analyzed in which the expression 
pattern was linked to two variables, the sum of which falls within a 
specified interval. Here, a total of 8 classifiers were evaluated in phase 
2. Three classifiers do not perform well; SLR, Pelora and PLR, while 
the encircled classifiers solve this task well. Note, however, that several 
of the classifiers only perform well in connection with varselft (variable 
selection based on random forests). Jaccard score and accuracy are as 
defined in Figure 2. 

the eight classifiers are listed together with information 
on the percentage of tasks solved, the average accu-
racy (above 80%), the average Jaccard score (above 
70%) and the specific tasks solved. 

Based on Table 5 and the 33 simulation plots, we 
concluded;  

• Above an accuracy threshold of 80% and a 
Jaccard score of 70%, RPART, SVM (varselrf) 
and Random Forest (varselrf) solved the largest 
fraction of given tasks.  

• SVM and Random Forest solved the same tasks, 
however, SVM yielded a slightly higher accu-
racy.  

• RPART was very good at dealing with one va-
riable (threshold and interval) incl. small frac-
tion of 1’s. Furthermore, RPART identified 
some of the same variables as varselrf did. It 
was reassuring to have the same variables se-
lected by two methods (although the methods 
share some similarity they are not identical).  

• SLR solved less tasks than RPART and SVM, 
but more than Pelora and yielded both 100% 
average accuracy and 100% average Jaccard 
score. Furthermore, unlike Pelora SLR is able 
to handle categorical clinical variables well.  

• Accuracy thresholds above 80% seem to yield 
very high Jaccard scores > 95% and high clas-
sifier accuracies ~90–95%.  

• As expected standardization (e.g., scaling by 
subtraction of the mean and division with the 
standard deviation) of data yielded the same 
results as unstandardized data. 

• NB! In general, all classifiers were used with 
default settings or default recommendations. 

Optimizations of various settings would probably 
lead to different results, including a possible greater 
risk of over-fitting. Based on phase 1 and phase 2 sim-
ulation studies, we decided to focus on: 

• SVM in combination with varselrf  
• RPART  
• SLR  

SLR can handle linear cases with multiple variables 
above a threshold a task that neither SVM nor RPART 
is good at. Furthermore, we defined key variables / 
gene expressions as those that permit groups of equal 
sizes to be separated with an accuracy > 80%. If 
groups could not be separated with SVM, RPART or 
SLR, we would say there were no expression differ-
ences between the groups.  
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Results with Actual Data from Control Subjects 
and Patients 

Variable Selection and Classification Among Various 
Groups 

The most promising algorithms identified above 
were applied to various comparisons between actual 
control and patient groups. Four main two-group 
comparisons were made; controls vs borderline per-
sonality disorder (BPD) patients, controls vs PTSD 
acute patients, controls vs remitted PTSD patients and 
controls vs individuals who suffered trauma without 
developing PTSD. Below the results of these four 
comparisons are presented in summary tables includ-
ing genes selected to differentiate groups, PPV (posi-
tive predictive value), NPV (negative predictive value) 
and both the actual accuracy values as well as the 
permuted accuracy values (in parentheses in the 
tables), all in percentages. It is also mentioned below 
for each table whether the accuracy values of a com-
parison is significant on the 1% significance level 
compared to permuted values. Finally, in supplemen-
tary figure S15 the number of true and false positives 
and negatives for each comparison and each classifier 
is shown.  

The controls were derived from 3 different subject 
groups (DC, UK and Serbian controls) and the 29 
gene expression values were used for comparison. 
Firstly, the controls (N=196) were compared with the 
BPD patients (N=21) in Table 6. In general, the genes 
selected were very similar regardless of variable se-
lection technique, with Gi2, GR, and MAPK14 re-

peatedly identified by the algorithms. Furthermore, all 
accuracies were high and significant compared to the 
permuted values (data not shown). The reasons for the 
high permuted values are unbalanced data sets. The 
positive predictive values were high except for RPART. 

Table 7 compares controls to PTSD acute patients 
(N=66). In general, the genes selected depended on 
the variable selection technique. It was noted that 
ARRB2, ERK2, and RGS2 were consistently picked. 
Also, it was noted that RPART performed worse than 
the other classifiers, just as in the case with controls vs 
BPD patients. All accuracies were significant com-
pared to the corresponding permuted values (data not 
shown) except for RPART. The positive predictive and 
sensitivity values were considered marginal.  

In Table 8, controls were compared to remitted 
PTSD patients (N=41). The two groups could not be 
separated by any classifier on the 1% significance lev-
el (data not shown, and note how close the actual and 
permuted accuracy values are). The PPV and sensitiv-
ity values were markedly lower than in the PTSD 
acute patient case (Table 7). Finally, in Table 9, con-
trols were compared to patients suffering trauma but 
without PTSD (N=87). All accuracy values were sig-
nificant compared to permuted values. However, the 
PPV and sensitivity values were not impressive so the 
two groups are poorly separated regardless of classifi-
er employed. It was noted that ARRB2 and ERK2 were 
consistently picked just as they were in the PTSD 
acute patients. Otherwise, Gs, MKP1 and IL-6 were 
also consistently picked. 

 
Table 6. Summary of controls vs BPD patients 

Classifier Genes selected to differentiate groups PPV NPV FPR TPR Accuracy (permuted) 

SVM/varselrf  Gi2, GR, MAPK14 97 99 1 87 98 (90) 

SLR  Gi2, GR, MAPK14, MR 93 99 1 88 98 (88) 

RPART  Gi2, GR 68 98 3 75 95 (88) 

In the table positive and negative predictive values (PPV and NPV), false positive and true positive rates (FPR and TPR) and accuracy 
values are in percentages. Permuted accuracy values are in parentheses in the last column and explained in the second step in the “Classifica-
tion and variable selection procedure working with the real data” section. All accuracy values are significant compared to permuted values 
(data not shown). The analyses were done in R 

 
Table 7. Summary of controls vs PTSD acute patients 

Classifier Genes selected to differentiate groups PPV NPV FPR TPR Accuracy (permuted) 

SVM/varselrf  ARRB2, ERK2, RGS2  72 82 6 37 80 (73) 

SLR  ARRB1,ARRB2, CD8 beta, ERK2, IDO, 
IL-6, MR, ODC1, PREP, RGS2  77 87 8 60 84 (71) 

RPART  -  48 82 20 49 72 (64) 

In the table PPV, NPV, FPR, TPR and accuracy values are in percentages. Permuted accuracy values are in parentheses in the last column. All ac-
curacy values are significant compared to permuted values (data not shown) except for RPART (p-value: 0.02349). The analyses were done in R. 
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Table 8. Summary of controls vs PTSD in remission 

Classifier Genes selected to differentiate groups PPV NPV FPR TPR Accuracy (permuted) 

SVM/varselrf  - 49 86 6 22 82 (82) 

SLR  - 33 86 10 28 80 (81) 

RPART  - 28 86 14 28 76 (75) 

In the table PPV, NPV, FPR, TPR and accuracy values are in percentages. Permuted accuracy values are in parentheses in the last column. No ac-
curacy values are significant compared to permuted values (data not shown). 

 
Table 9. Summary of controls vs trauma patients without PTSD 

Classifier Genes selected to differentiate groups PPV NPV FPR TPR Accuracy (permuted) 

SVM/varselrf  ARRB2, CREB1, DPP4, ERK1, ERK2, Gs, IL-6, 
IL-8, MAPK8, MKP1, MR, PBR, PREP, SERT  51 76 16 40 71 (65) 

SLR  ADA, ARRB2, CD8 beta, CREB1, ERK2, Gs, IL-6, 
MAPK14, MKP1, MR, RGS2, VMAT2, IL-1 beta  59 80 17 51 73 (64) 

RPART  ARRB2, ERK2, Gs, IL-6, IL-8, MKP1, PREP, SERT  63 83 17 61 76 (58) 

In the table PPV, NPV, FPR, TPR and accuracy values are in percentages. Permuted accuracy values are in parenthesis in the last column. All ac-
curacy values are significant compared to permuted values (data not shown). 

 
Discussion 

Classifiers and Variable Selection Methods 

By using a simulation study, we were able to point to 
SVM (Support Vector Machines) combined with var-
selrf (variable selection based on random forests), 
RPART (Recursive Partitioning) and SLR (Stepwise 
Logistic Regression) as suitable classifiers and varia-
ble selection methods for analyzing our qPCR gene 
expression data. The same parameters were then ap-
plied to generate classification results using actual 
data from control subjects and patients. Whereas posi-
tive and negative predictive values (PPV and NPV) 
were not assessed in the simulation study design, these 
values were derived for group comparisons based on 
actual data, and could therefore be used to further rank 
the classifiers. RPART distinguished itself by having 
consistently lower PPV and accuracy values in almost 
all of the group comparisons.  This raised concerns 
about the predictive ability of RPART and we decided 
to exclude this classifier from more detailed analyses.  
We therefore proposed that the most promising clas-
sifiers and variable selection methods for analyzing 
the qPCR data are SVM combined with varselrf, and 
SLR. It is possible that a better performance could be 
obtained by tuning the parameters of the chosen clas-
sifiers and variable selection methods, using methods 
described in reports from the R-project[24,27,40,48]. 
Another possible strategy for improving performance, 
at least for SLR, would be to include categorical clin-
ical variables together with gene expression data, ra-
ther than treating them as independent variables. All 

strategies to further optimize must be weighed care-
fully against the risk of over-fitting. In addition, it 
should be mentioned that SVM and SLR are determi-
nistic classifiers and that another approach relevant for 
psychiatry could have been to use a probabilistic clas-
sifier such as RVM (relevance vector machine).  

The Simulation Study  

Some consideration should be given to issues asso-
ciated with the simulation study. First of all, the basis 
for the mathematical approach to the gene-gene inte-
ractions was an approximation, because we do not 
know the exact biological interactions between genes 
on the expression level. Therefore, we investigated a 
variety of simple mathematical constructs in the form 
of different linear and nonlinear tasks. Had we chosen 
to pursue alternative types of mathematical approach-
es, different classifiers and variable selection methods 
might have been selected, such as, for instance, regu-
larized discriminant analysis, classification using ge-
neralized partial least squares, neural networks, and 
other types of more advanced methods.  

Regarding the choice of classifier, an alternative 
strategy would have been to identify a single classifier 
capable of handling a broad range of classification 
tasks. In practice we were unable to identify such a 
classifier that would perform sufficiently well in all of 
our classification tasks; moreover we valued having 
multiple types of classifiers as a way to check for con-
sistency among the gene signatures. It was also ne-
cessary to make some strategic choices with respect to 
the use of a single accuracy measure. Had we only 
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focused on two-group comparisons, the Matthews cor-
relation coefficients would have been a superior 
choice[49]. However we were interested in multiple 
group (> 2 group) comparisons and, therefore, focused 
on a single accuracy measure with broad utility[42]. A 
limitation of relying on a single accuracy measure, 
however, is that unbalanced group sizes alone can bias 
the output. For this reason, we incorporated permuta-
tion tests which, albeit time consuming, were able to 
improve the benefit of the accuracy measure. In the 
case of 2-group comparisons we were also able to 
supplement the accuracy value with PPV, NPV, FPR 
and TPR as measures of predictive value and thereby 
generate a highly informative assessment of overall 
classification performance.   

A final issue has to do with the stability of the clas-
sifier.  Evaluation of this parameter was beyond the 
scope of the simulation study. However, it should be 
mentioned that stability can be assessed via modifica-
tions to the data set. One or more observations can be 
removed from the data set; alternatively incorrect ob-
servations can be inserted.  If the classification result 
(including accuracy, PPV, NPV, FPR and TPR values) 
is obtained before and after the modification exercise, 
the stability parameter can be determined as a function 
of change in classification result relative to data per-
mutation. 

Whole Blood Biomarkers for Psychiatric Diseases 

As described in the results section, several genes were 
differentially expressed in healthy controls and patient 
groups, allowing for potential insights into disease 
pathology, and also for the possibility of dis-
ease-associated transcriptional biomarker signatures. 
We found that healthy control subjects could be sepa-
rated from patients with borderline personality disor-
der based on a common set of genes selected by mul-
tiple classifiers: Gi2, GR and MAPK14. As noted ear-
lier, the expression of Gi2 is influenced by gender 
(supplementary figure S3), with higher expression in 
female control subjects relative to male controls (sup-
plementary figure S4). The BPD patients analyzed in 
this study are 90% female as compared to the control 
group which is 78% male, raising the possibility that 
Gi2 is selected by the algorithms simply because of 
gender bias. If this were true, one would predict that 
the expression level of Gi2 in the patients would be 
greater than that seen in the control group. However, 
comparison of the expression level of Gi2 between the 
BPD patients and controls reveals that the patients 

actually display only 61% of the expression level as 
controls. This relationship is in the opposite direction 
that would be expected if gender were the driving 
force for selection of Gi2 by the classification algo-
rithms. For this reason, we are confident that Gi2 
has been properly identified as a transcript that is use-
ful to discriminated controls and BPD patients.  

Our analysis has also shown that healthy control 
subjects could be separated from patients with acute 
post-traumatic stress disorder using another common 
set of genes: ARRB2, ERK2 and RGS2. There is the 
possibility that the selection of ARRB2 by the classi-
fication algorithms is the result of gender bias. Female 
controls demonstrate slightly higher levels of expres-
sion of ARRB2 than male controls (supplementary 
figure S4). Since our control group contains 22% fe-
males whereas the acute PTSD patient group contains 
no females, the slightly elevated expression that we 
see in the controls relative to the acute PTSD patients 
could be caused by gender alone. The most cautious 
interpretation of these results is that ERK2 and RGS2 
expression levels are reliable discriminators of the two 
groups but the ARRB2 result must be considered ques-
tionable. Conversely, healthy controls could not be 
significantly differentiated from remitted PTSD sub-
jects on the basis of gene expression. This result, 
which may be viewed as congruent with the clinical 
course, suggests that gene expression values may be 
‘normalized’ upon remission from PTSD. We can-
not be sure, however, whether the outcome for remit-
ters reflects a limitation of the 29 gene list (which was 
not targeted specifically to the biology of PTSD) or 
the analysis per se.  

Finally, healthy control subjects were differentiated 
from subjects who experienced trauma without PTSD 
on the basis of seven significant and commonly se-
lected genes: ARRB2, CREB1, ERK2, IL-6, Gs, MKP1 
and MR. Although all classifiers yielded significant 
results, the individual PPV and sensitivity values for 
the trauma group were relatively weak, indicative of 
an overall marginal separation. We know that the ex-
pression of both ARRB2 and Gs are influenced by 
gender (supplementary figures S3 and S4), so as noted 
above care must be taken when evaluating the selec-
tion of these genes by the classification algorithms. 
The most conservative interpretation is to only con-
sider CREB1, ERK2, IL-6, MKP1 and MR as genes 
that are informative for separation of the controls and 
the trauma patients.  

At first glance it may appear incongruent that the 
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algorithms distinguish control subjects from these pa-
tients, albeit weakly, despite the lack of a clinical di-
agnosis of PTSD. Rather than viewing this result as a 
limitation of our approach, we interpret it as support 
for the use of the technology. It is known that repeated 
trauma increases the risk for PTSD. The fact that these 
individuals have not been diagnosed with the disease, 
yet still exhibit some of the gene expression patterns 
displayed by patients who have been diagnosed, sug-
gests that we may be detecting gene expression 
changes that are related to an increased vulnerability 
to develop PTSD. If confirmed, this could aid detec-
tion of individuals at risk and thus supportive treat-
ment and efforts to avoid further trauma could be im-
plemented to avoid development of the clinical dis-
order.  

A brief discussion of the biology associated with 
informative genes is warranted. Genes of interest for 
BPD (Gi2, MAPK14 and GR) can be characterized as 
linking peripheral stress-related hormone / neuro-
transmitter signals with downstream signaling cas-
cades, to regulate the balance of pro- vs anti-infla-
mmatory processes and cell survival vs death. For 
example, Galphai2 functions in the signal transduc-
tion pathway for stress-relevant chemokines (such as 
IL8, IL10), neurotransmitters and hormones that acti-
vate Gi/o-coupled receptors (as opposed to Gs-, Gq- 
or G12/13-coupled receptors), with implications for 
inflammation as well as peripheral blood cell motility 
and survival[50]. The MAP kinase MAPK14 (or p38) 
acts downstream of Galphai2 to elicit inflammatory 
responses (including upregulation of IL6), phosphory-
lation of transcription factors and apoptosis or cell 
senescence (death)[51,52]. The glucocorticoid receptor 
GR is a key component of the HPA / stress axis, wide-
ly observed to be dysfunctional in mood disorders[53]. 
Current findings for HPA axis dysregulation in BPD 
are somewhat equivocal however, suggesting that ad-
ditional variables such as disease segmentation or 
co-morbidities may need to be considered to fully un-
derstand the relationship.    

Genes of interest for PTSD point similarly to G 
protein-coupled receptor (GPCR) signaling, specifi-
cally via expression changes for ERK2 (a downstream 
MAP kinase that stimulates proliferation via transcrip-
tional regulation) and RGS2 (a regulator of GPCR 
signal duration). Other noteworthy genes include the 
mineralocorticoid receptor MR, a high affinity gluco-
corticoid receptor whose altered expression relative to 
GR (measured as the GR/MR ratio) is indicative of 

HPA / stress axis disturbance[54]; and ornithine decar-
boxylase (ODC-1), a rate-limiting enzyme for synthe-
sis of biogenic polyamines (specifically putrescine) 
associated with anti-apoptotic activity.  Altered in-
flammatory status in PTSD is further indicated by 
changes in the cytokine IL6 and the cytokine-stim-
ulated transcript for indoleamine 2,3-dioxygenase 1 
(IDO), which diverts tryptophan into kynurenine (ra-
ther than 5-HT), with implications for cytotoxicity and 
altered glutamatergic signaling[55,56]. The convergence 
on GPCR and glucocorticoid signaling mechanisms, 
inflammatory processes and apoptosis is consistent 
with previous findings for differentially expressed bl-
ood transcripts in PTSD[3,57–59]. Genes of interest for 
subjects with trauma but not PTSD (ERK2, MR, and 
others), when grouped into pathways, are largely 
overlapping with genes of interest for PTSD, again 
highlighting a common theme of stress-induced cha-
nges in GPCR signaling, inflammatory mediators, cell 
proliferation and death.   

Some of the recurrent transcriptional classifiers re-
sulting from the analysis of BPD, or PTSD, or trauma 
without PTSD (ERK2, RGS2, GNAI2, MAPK14, GR) 
were further analyzed for functional interactions and 
associations using Ingenuity Pathway Analysis soft-
ware (IPA). Top-ranking disease associations included 
inflammatory response (as expected) as well as deve-
lopmental disorders, skeletal / muscular disorders, car-
diovascular disease and cancer. Top-ranking canonical 
pathways included inflammatory processes (chemo-
kine and interleukin signaling), HPA / stress response 
(CRF signaling) and once again, cancer (specific tis-
sue factors). These disease and pathway associations, 
while interesting and provocative from the viewpoint 
of disease comorbidity and novel treatment modalities, 
also highlight a risk of using transcriptional signatures 
for classifying affective disorder, i.e., lack of disease 
specificity. This risk might be minimized in various 
ways. One approach would be to expand the candidate 
gene list in order to derive a more complex and dis-
tinctive transcriptional signature for the target disorder. 
Another strategy involves prescreening individuals for 
co-morbid disease such as cancer, in advance of tran-
scriptional profiling for affective disorder. In this 
study, care was taken to exclude individuals with se-
rious medical disorders to avoid complication.   

This work began as a pilot study and was focused 
primarily on identifying discriminating algorithms 
with the collected data, and not designed as an exten-
sive attempt to find all biomarkers for the affective 



A classifier driven approach to find biomarkers for affective disorders from transcription profiles in blood 

 

62 Advances in Precision Medicine, vol 1, issue 1, 2016 

disorders considered. Thus, our findings regarding 
targets that can be used to separate BPD or acute 
PTSD patients from healthy controls must be consi-
dered preliminary due to the small numbers of patients 
involved. However, we have also applied these same 
algorithms to the analysis of gene expression patterns 
from much larger cohorts of depressed patients, and 
the results substantiate those presented here[60]. Com-
parison of gene expression patterns between 174 mild 
to moderately depressed patients and 198 healthy con-
trols using SVM combined with varselrf identified 11 
targets that, in combination, could separate the groups 
with 90% accuracy. Importantly, Gi2, MAPK14, 
ARRB2 and ERK2 were included on this list. Likewise, 
analysis of the expression profiles in 307 severely de-
pressed patients versus these controls using relevance 
vector machine, an algorithm similar to SVM, demon-
strated that Gi2 and MAPK14 were two of the targets 
providing a strong means to discriminate between the 
groups. Given that depression symptoms can be in-
tertwined with both BPD and PTSD, it is reasonable 
that there is overlap in the gene expression profiles for 
these disorders. As such, the findings with the much 
larger depression studies provide support for the va-
lidity of the results we obtained here using much 
smaller BPD and PTSD patient populations. A second, 
related limitation is that about one third of the BPD 
and acute PTSD patients were receiving treatment 
with various medications at the time the blood sample 
was collected for transcription profiling. Given the 
small number of patients available for analysis, and 
the diversity of the medications in use, it was not 
practical to account for these variables in the analyses. 
Therefore, we cannot rule out that some of our obser-
vations are influenced by the variable medication re-
gimens. Finally, potential confounders that could im-
pact gene expression profiles, such as recent stress and 
early life stress[15], were not measured in the control 
and patients groups. Despite these possible confounds, 
the informative genes and associated pathways from 
our PTSD analysis are consistent with literature re-
ports for these patient populations[3]. It is also note-
worthy that peripheral transcripts can be correlated to 
some extent with gene expression patterns in the 
CNS[61]. The relationship between peripheral and cen-
tral transcripts is born out in several other published 
reports of subjects with psychiatric disorder[3,4,7,8,11,12], 
(also supported and reviewed in[62]). Taken together, 
these findings point to the utility of blood transcripts 
as informative and useful biomarkers for affective and 

anxiety (or psychiatric) disorders, pending validation 
in independent studies.  

Conclusion 

In summary, we have described a process of evaluat-
ing multiple classifiers based first on simulated data 
and secondly on clinical data, which can support the 
selection of optimal classifiers for evaluation of dis-
ease-relevant transcriptional biomarkers in human bl-
ood samples. Our study demonstrates that many com-
monly used multivariate algorithms designed to iden-
tify patterns in complex data sets do not perform 
equivalently. Algorithms such as SLR and RF/SVM 
perform the most reliably under a broad set of condi-
tions with simulated data sets that mimic transcription 
profiling data. Application of these algorithms to the 
analysis of actual transcription profiles from blood 
samples suggests that they can identify patterns that 
effectively discriminate control subjects from patients 
with affective disorders. Refinement of these ap-
proaches could lead to the identification of biomarkers 
that, pending further validation in studies including 
larger numbers of individuals, are valuable for the 
diagnosis of psychiatric diseases. 
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