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Abstract: A method for the measurements of the flow rate of high temperature molten slag using image identification 
was proposed. Image of molten slag could be acquired by high-speed camera. The flow rate of molten slag was 
calculated by the diameter, which was obtained by the edge detection, and the velocity of the feature points obtaining 
by threshold segmentation. Feature points could be found on the liquid column of molten slag by photo graphing, which 
showed that the method is feasible. Then glycerite was used to study the influences of different shooting parameters on 
the measurement accuracy. The effects of exposure time, frame rate and focal length on measurement accuracy were 
obtained. At the same time, it was found that the selection of location and length of feature region would also have a 
significant impact on the measurement accuracy.
Keywords: Flow; Measurement; Algorithm; High Temperature Molten Slag; Image Identification

Introduction
China is a big country in the steel industry, and its annual steel output accounts for about 50% of the world’s steel 

output. Blast furnace slag is an important by-product of 35 in the iron and steel industry. It is often used to produce 
cement clinker and roadbed materials, and has high economic value. In the process of iron and steel smelting, blast 
furnace slag exists in the form of liquid slag[2] with a temperature as high as 1450-1550℃. Each ton of slag contains 
1770 MJ[3] of heat and a large amount of waste heat resources can be recovered. 

At present, the most commonly used method for treating high-temperature slag is water quenching[4] which 
consumes a large amount of water resources and cannot utilize the waste heat resources in blast furnace slag, thus there 
are many shortcomings. The centrifugal granulation waste heat recovery technology has the advantages of saving energy 
and high waste heat recovery rate[6] and has become one of the most promising methods for treating high-temperature 
slag[7]. In centrifugal granulation waste heat recovery. In the process, blast furnace slag is discharged from the blast 
furnace and flows to a high-speed rotating granulation device. After centrifugal crushing, fine solid high-temperature 
particles are formed, which enter a moving bed for waste heat recovery. Amorphous particles[8-12] are generated in the 
rapid cooling process for subsequent resource utilization. In this process, it is necessary to ensure that the slag flow rate 
matches the rotating speed of the granulation device[13] otherwise, the granulation effect will be deteriorated, affecting 
the waste heat recovery efficiency and subsequent resource utilization. Therefore, reasonable control of the flow of blast 
furnace slag to ensure its stable flow is the key to the centrifugal granulation waste heat recovery technology. Accurate 
measurement of high temperature blast furnace slag flow is to maintain its flow quantity stable premise. At present, there 
are few researches on the detection of high temperature fluid flow. Sun Qiang[14] et al. used the weighing method to find 
out the relationship between the flow rate and weight of 600 ℃ crude zinc liquid and realized the on-line measurement 
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of crude zinc liquid. However, this method needs to additionally set up a weighing device in the system, which increases 
the complexity of the system. Moreover, the heat dissipation in the measurement process will reduce the temperature of 
the measured substance and is not suitable for the flow rate of high-temperature slag. Fife[15] et al. use pulsed ultrasonic 
echo technology to detect echo phase changes of tiny particles in liquid metal and measure liquid flow rate. however, 
due to the limitation of sensor materials, this method can only be used for liquid metal at most 750 ℃ speed detection 
cannot be applied to flow detection of high-temperature slag; Liu Junjie[16] and others have designed a measuring device 
for calculating molten iron outflow flow rate by using infrared radiation time difference. This device can be used for 
molten iron flow rate detection at temperatures as high as 1534 ℃. However, this method can only measure the initial 
velocity of molten iron outflow from the nozzle, and the subsequent flow rate is still unavailable. It is not suitable for 
long-term operation of slag off-center granulation systems. Bizjan[17] et al. have set up an experimental system suitable 
for measuring the flow rate of molten rock wool. By calculating the flow velocity of the wave on the fluctuating liquid 
column, the flow rate of molten rock wool at 1450 ℃ is detected, and the measurement error is within 20%.

It requires the liquid column to remain unstable and fluctuating, however, the slag centrifugal granulation system 
needs to keep the liquid column stable and cannot adopt this method. As mentioned above, there is no mature and 
reliable method to measure the flow rate of high-temperature slag centrifugal granulation system, and the research in 
this field is urgently needed.

The image recognition technology[18-20] is a technique for recognizing objects in images to recognize different 
patterns of targets and objects. It has the advantages of high accuracy and fast recognition speed, and has been widely 
used in many fields[21-25]. Tong Jianjun[26] et al. use image recognition technology to realize the detection of vehicle speed 
in the monitoring video, and the positioning time reaches about 13ms, which is accurate.

The rate reached above 92%. Shi Lilian et al.[27,28] used image recognition technology to judge the two-phase flow 
pattern through threshold segmentation, binarization and other means, and the recognition accuracy rate reached above 
85%; He and others have studied the behavior characteristic[29] of molten slag droplets hitting different surfaces by 
means of gray scale calibration. The above research shows that image recognition technology is likely to become one of 
the potential feasible technologies for non-contact measurement of high temperature liquid flow.

Therefore, according to the characteristics of slag, this paper designs a high temperature flow detection method 
based on image recognition. The flow characteristics of high temperature slag are similar to that of Newtonian fluid[30]. 
Therefore, normal temperature glycerin is used as working medium to verify the method, and the influence of shooting 
parameters and region of interest (ROI) on measurement accuracy is explored.

1. Experiment and device
1.1 High temperature slag shooting verification

In the centrifugal granulation process of slag, slag will flow from the tundish to the granulation device, forming 
a liquid column between the two. The change of slag flow rate in this process has obvious influence on granulation 
quality. However, there is currently a lack of relevant flow measuring equipment to measure high temperature slag. As 
shown in Figure 1, because the slag granulation process is complicated and the slag flows through the slag chute and 
other structures during this process, the temperature distribution of the slag liquid flow is not uniform, which makes 
the slag liquid column present a number of color blocks different from the color of the main liquid column. these color 
blocks are defined as characteristic points.

Since the high-temperature slag is between 1450-1550 ℃, we used a 90% concentration glycerin solution 
(Figure 2) close to the viscosity (=0.344 Pa s) of the slag at 1500℃ as a substitute working medium in carrying out 
a large number of basic experiments is pre-mixed with a certain amount of carbon powder as a characteristic point in 
glycerin solution at room temperature to facilitate identification. Comparing Figure 1 with Figure 2 shows that the flow 
characteristics of the two are very similar.

1.2 Measurement of molten slag column diameter
The temperature of blast furnace slag is as high as 1500 ℃. It emits strong light and is easy to generate halo in 

imaging. Therefore, it is necessary to reduce the exposure and take pictures of it in a small aperture mode with low 
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exposure time. As shown in Figure 1 in 1.1, the shooting background is difficult to perceive at this time, appearing 
black, in sharp contrast to bright red liquid column, with clear edge of liquid column. According to the gray gradient 
change, the position of the edge of the liquid column is judged. It is considered that the molten slag column is a regular 
cylinder, and the two liquid columns in the image are taken at the shooting angle directly opposite to the liquid column. 
The distance between the edges is the diameter of the liquid column. Since the method described in this paper is based 
on image recognition, it is necessary to establish the conversion relation between the pixel length and the actual length 
in the image. 

1.3 Measurement of slag liquid column velocity
The RGB color mode is a color standard in industry. Various colors are obtained through the changes of the three 

color channels of red (R), green (G) and blue (B) and their superposition. RGB is the color representing the three 
channels of red, green and blue. This standard includes almost all colors that can be perceived by human vision and is 
one of the most widely used color systems at present.

The color of a computer image can be represented by an RGB value, a reasonable RGB value range is set to judge 
the characteristic points, the position of the characteristic points in each frame is determined, and the speed of the 
characteristic points is calculated frame by frame. Assuming that there is no slip between the characteristic point and the 
main flow of the liquid column, the velocity of the characteristic point can be considered as the velocity of the molten 
slag liquid column.

(a) p frame feature point position         (b) p+1 frame feature point position 
Figure3. Algorithm schematic of flow velocity.

1.4 Experimental system and working conditions
Figure 4 is a designed and built verification experimental system for slag flow measurement program. The system 

is mainly composed of an aluminum structure frame (0.5 m×0.5 m×2m), plexiglass water tank (0.4 m×0.3 m×0.5 m), 
outflow nozzle, Phantom high-speed camera, tori (tokina) a t-x m100 pro d 100 mm f2.8macro lens, artificial light 
source, computer, etc.

Figure 4. Schematic diagram of experimental system. (1. Acrylic water tank; 2. Aluminum alloy frame; 3. Data. 
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connection line; 4. Artificial light source; 5. Data connection line; 6. High speed camera; 7. Computer Diagram)
According to the shape of the liquid column, as shown in Figure 2, the view frame is set to 512×1024 pixels, with 

512 pixels horizontally and 512 pixels vertically pixels.

2. Experimental results and analysis
2.1 Influence of exposure time on measurement accuracy

In this paper, the glycerin flow rate measured by weighing method is 17.43 g s-1, which is taken as the standard 
flow rate, and the measured value is compared with it. The experiments in this paper were all carried out indoors at 23.4 
℃ and the measured glycerol density was = 1.21 g cm-3 under this condition, and the density was calculated with the 
subsequent mass flow rate. The exposure time is changed to shoot the glycerin solution liquid column and the obtained 
image is subsequently processed. Figure 5 shows the relationship between measurement error and exposure time. When 
the exposure time t is 200 sµ false, the error reaches 29.5%, as shown in Figure 5. 

Figure 5. The relation of measurement deviation to exposure time.

2.2 Influence of shooting frame rate on measurement accuracy
Changing the shooting frame rate to shoot the glycerin solution liquid column. Figure 6 shows the relationship 

between measurement error and shooting frame rate. When the shooting frame rate P is 200 fps, the measurement error 
reaches 15.7%, because the video can be regarded as a collection of several still images, while the shooting frame rate 
can be regarded as the number of images shot per unit time. When the shooting frame rate P is 200 fps, the number of 
images taken per unit time is small, and the interval time between each two images is long, which makes the moving 
distance of the feature point between two consecutive images larger. 

Figure 6. The relation of measurement deviation to frame rate.

2.3 Influence of material distance on measurement accuracy
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Change the object distance to shoot the glycerin solution liquid column and carry out subsequent processing on the 
obtained image. Figure 7 shows the relationship between measurement error and object distance u 195. When the object 
distance U is 0.4 m, 0.5 m and 0.6 m, the measurement error is only 1.2%, 2.1% and 4.8% ,which is because the liquid 
column occupies a large proportion of the picture, the liquid column contour and characteristic points occupy a large 
number of pixels, and the identification difficulty is small, so the result is more accurate. 

Figure 7. The relation of measurement deviation to focal length.

3. Conclusion
(1) Exposure time affects the measurement accuracy by affecting the image contrast. Too low exposure time will 

cause the characteristic points to be close to the RGB value of the liquid column, thus increasing the measurement error. 
Too high exposure time will blur the edge and reduce the gray gradient, which is also not conducive to measurement. 
The shooting frame rate has an optimal value. When shooting at a low frame rate, measurement errors may occur 
due to horizontal displacement of feature points between two frames, while high frame rate may affect measurement 
accuracy due to rounding errors. The smaller the object distance is, the more advantageous it is to get the details of the 
detection area, thus improving the measurement accuracy. For the object distance shot by slag, the high temperature 
characteristics should be considered and reasonable selection should be made.

(2) When the center position of ROI is too close to the nozzle, the measurement results cannot reflect the actual 
situation due to the sharp changes in diameter and flow rate. The reasonable ROI position is about 4 times the pipe 
diameter from the nozzle.  The selection of the length of ROI also affects the measurement accuracy. When the selected 
length of ROI is too small, the feature points pass through ROI too fast and fail to collect enough information for 
program calculation. The reasonable length of ROI is 1/3~2/3 times the pipe diameter.

(3) The problems of false focus and feature point agglomeration in shooting will bring inevitable errors to the 
measurement of high-temperature slag, which need to be solved by raising the shooting technology and optimizing the 
algorithm. In addition, in the actual detection process, problems such as lens deformation, reduction of camera working 
time and unstable imaging quality are easy to occur, which need to be solved urgently through follow-up research.
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