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ABSTRACT 
In recent years, the numbers of patents have been devoted to the development of rough pipes. The technique theoretical 
settlement determine of factor of hydraulic resistance for round pipes with rough walls is developed on the basis of a 
principle of a superposition of complete viscosity in turbulent a layer mainly distinguished from the existing theories. The 
received results of account for the extended range of determining parameters much distinguished from appropriate given 
for round pipes with turbulizers, specify a level и intensification of heat exchange. 
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1. Introduction 
Study patterns of flow in pipes with rough walls can be considered relevant, as the use of rough surfaces is a method of 
heat transfer. In the theoretical study of heat transfer processes in heat exchangers and devices used in  various fields of 
technology, it is very important to know the basic laws of flow in rough pipes in turbulent regime. 
 
Flow patterns for rough pipes differs from the behavior for tubes with turbulence, as indicated by both experimental[1] and 
theoretical[2,3] studies. Theoretical studies of flow in rough pipes,  both  experimental  and theoretical, are based on the use 
of a logarithmic velocity profile, which to some extent simplify the mathematical model, which is especially important for 
large relative (relative to pipe diameter) roughness. Conditions for large roughness can be implemented, for example, in 
small diameter pipes. It can be compared with the conditions for pipes of small diameters with turbulence[4]. 
 
Theoretical studies of pipes with rough surfaces are not numerous, sufficiently comprehensive list of studies found, for 
example, in[5-7], the analysis of which indicates that the theory did not come out of the logarithmic velocity profile. 
Generated in this study, the theory provides a more complex pattern for the coefficient of hydraulic resistance for rough 
pipes than existing ones, which provided him with a greater value of validity, a higher accuracy and a wider range of 
characteristic parameters. It should be noted that more complex patterns have occurred in the study of tubes with 
turbulence[2-4], which also received a more complex mathematical decision on the coefficient of hydraulic resistance, than 
those based on a logarithmic velocity profile. Ismagilovich et al. discussed the procedure to reduce the hydraulic resistance 
in turbulent flow comprising to introduce the anti-turbulent admixture to generate Toms effect[8]. 

2. Mathematical modeling 
Nikuradse reported that at relatively high roughness, turbulent flow was essentially different from the flow in smooth pipes. 
In US8538738, processes have been described to provide prediction of the transition from laminar to turbulent flow on the 
surface[9]. Rajnarayan  and  Sturdza disclosed the methods, systems and devices for estimating conversion from laminar to 
turbulent flow on the surface manipulating mode shape parameters[10]. His classification took place into four flow regimes: 
laminar (for small Reynolds numbers, regardless of the roughness that occurs in law Poiseuille); turbulent flow (for 
intermediate Reynolds numbers, the law of hydraulic resistance for smooth tubes); turbulent flow (for intermediate 

numbers Reynolds by hydraulic resistance, which is a function of the relative roughness ℎ
__

 = ℎ/R0 (the ratio of the average 
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height of the roughness to the radius of the tube; D = 2R0 - а larger internal diameter of the pipe)) and the Reynolds 
number for self (at high Reynolds numbers by a factor of hydraulic resistance, which is a function only of the relative 
roughness). Sufficiently high relative roughness is eliminated from the turbulent regime with regularity characteristic for 
smooth pipes. A similar situation occurs for tubes with turbulence[1-4]. Liu discussed the anti-drag protecting agents move 
the turbulent heat transfer property of the pipeline to laminar flow heat transfer property[11]. 
 
For tubes with a relatively low surface roughness, height of the projection asymptotic behavior of the flow resistance 
described by the known empirical relation Nikuradse is: 

 
The hydraulic resistance for rough pipes, not only depends on the relative roughness, but also the Reynolds number  ξ = 𝑓𝑓 

( ℎ
𝑅𝑅0

; Re), described by Colebrook. The empirical formula can be written as follows: 

 
1

�𝜉𝜉
= 1.74 − 2lg ( 18.7

𝑅𝑅𝑅𝑅�𝜉𝜉
+ ℎ

𝑅𝑅0
)  (2) 

Thus, the empirical correlations for the coefficient of hydraulic resistance of flow in rough pipes is a logarithmic velocity 
profile. Hydraulic resistance coefficient for flow in straight circular tubes is determined as follows:    

               
where Δ𝑝𝑝 - pressure drop; 𝑑𝑑 - diameter; 𝐿𝐿 - length of pipe;  𝜌𝜌  -  density of coolant;  𝑤𝑤𝑥𝑥  - average  expenditure  speed; 𝑤𝑤∗ - 
friction velocity. 
 
For a straight circular pipe, the sredneraskhodnoy speed is determined by the following integral equation: 
 

              𝑤𝑤𝑥𝑥 = 2 ∫1(1 –𝑦𝑦
__

)𝑤𝑤𝑥𝑥𝑑𝑑𝑦𝑦      (4) 

Where 𝑦𝑦� - relative transverse coordinate and 𝑦𝑦� = 𝑦𝑦
𝑅𝑅0

 . 

The integration is performed for two sites: from zero to the boundary of the viscous sublayer δ0 and for the core flow (𝛿𝛿̅ =
𝛿𝛿0
𝑅𝑅0

): 

 
 
or 
 
 

 

Consequently, for the integration of the last expression is necessary to determine the velocity profiles (𝑤𝑤𝑥𝑥
𝑤𝑤�𝑥𝑥

) for each of the 

sub-layers. The boundary of the viscous sublayer can be determined by the following: 

𝛿𝛿̅ = 𝛿𝛿 4
𝑅𝑅𝑅𝑅 �2

𝜉𝜉
    (7) 

where δ is a constant (δ =7.8) [12-14]. The equation of motion in a straight circular pipe roughness can be written as 
follows: 

 
where ∑𝑖𝑖 𝜈𝜈𝑖𝑖 - full kinematic viscosity; τ0 - shear stress at the wall. 
 
Full kinematic viscosity based on the superposition principle is the sum of molecular viscosity, the turbulent viscosity is 
independent of roughness but depends on the distance from the wall. The turbulent viscosity depends on the roughness. 
We must now derive formulas for the total of determining the coefficient of kinematic viscosity. 
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The molecular kinematic viscosity is determined by the properties of the coolant and is ν. 
 
The turbulent kinematic eddy viscosity in a circular tube is independent of the roughness and can be postulated as a 
function of distance from the wall of the tube follows. Turbulent kinematic viscosity νт𝑙𝑙 determined as the product of the 
mixing l the characteristic speed - dynamic speed on the current radius 𝑤𝑤∗𝑙𝑙 : 

νт𝑙𝑙   = 𝑙𝑙 ⋅ 𝑤𝑤∗𝑙𝑙         (9) 

The mixing l can be postulated as follows: 

 
where 𝑎𝑎 = 0.39 and 𝑘𝑘0 = 0.97 – both are constants [12-14]. 

Next, we have to express the dynamic speed of the current radius 𝑤𝑤∗1 through dynamic  speed on the  tube wall 𝑤𝑤∗: 
 

therefore: 

 

 

 

 
Given the Vyshepred-stavlennye relations, we obtained the final expression for the turbulent kinematic viscosity νт𝑙𝑙 , which 
is independent of roughness: 

 

The turbulent kinematic viscosity νтℎ depends on the roughness and is determined by the product of the characteristic 
length L the characteristic speed - dynamic speed 𝑤𝑤∗𝑙𝑙 at the current radius: 

νтℎ   = 𝐿𝐿 ⋅ 𝑤𝑤∗𝑙𝑙 (15) 

This theory focuses mostly pipe roughness equal height h. In fact, there is a certain roughness height variation. 

Experiments show that with small dispersion σ
__

 (standard deviation of the average) roughness height holds a rather abrupt 
transition from the smooth pipes to the regime of rough tubes, with large dispersion will be a smooth transition, since there 
will be a gradual withdrawal of the roughness of the viscous sublayer in the thickness of the wall layer. The    
characteristic length L for the kinematic eddy viscosity, which depends on the roughness for roughness height is equal to: 

𝐿𝐿  = 𝑎𝑎(ℎ − δ0)√1 − 𝑘𝑘2𝑦𝑦 (16) 

The final expression for the turbulent kinematic viscosity νтℎ, which depends on the roughness: 

 

Hence, the equation of motion in a straight circular pipe roughness (8) becomes: (18) 

 
In the future, should write (18) in the dimensionless form: 

 
which for convenience should be rewritten as follows:
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The desired velocity profiles (𝑤𝑤𝑥𝑥
𝑤𝑤∗

) obtained by integration of (20) provided a smooth closing of the border’s sublayers 

under the following conditions: 

 

Integration is performed for the two sub-layers: 0 to the boundary of the viscous sublayer δ
__

 , for which a constant 𝑎𝑎 ≡ 0 

and from the above limits δ
__

 to 1, where 𝑎𝑎 = 0.39 on the boundary condition soft closing 𝑤𝑤𝑥𝑥
𝑤𝑤∗

= δ. 

 

Hence, the equation for the coefficient of hydraulic resistance in rough tubes can be written as follows: 

 
After the integration and mathematical calculations, we obtain the final equation for the transcendental of deter-mining the 
coefficient of hydraulic resistance for round rough pipes:  

 

The double integral in (24) cannot be expressed in a class of elementary functions. The form of the transcendental equation 
(24) indicates that, the calculation of the hydraulic resistance in the round rough pipes are used in more complex and 
accurate ratio than current based (somehow) on the logarithmic velocity profile. The solution of equation (24) is the best to 
produce numerically. 
 
As noted earlier, in this paper are modeled mostly pipe roughness with projections of equal heights. However, with the 
help of the model, the possibility of similar modeling and when there is some deviation of the roughness height of their 

average value. If the variance of the mean values of roughness height σ
__

 is not zero, the average height of the roughness can 
determine this (thus determined diffuse boundaries "roughness-viscous sublayer"): 

 
 

where ℎ𝑝𝑝 - values of the relative roughness height with a probability density 𝑝𝑝. 
 
Therefore, to calculate the average height of the roughness ℎ𝑝𝑝, beyond the limits of the viscous sublayer δ, we need to 
know the probability law roughness height distribution in the pipe. For example, for a normal distribution of roughness 
heights transcendental equation for the pressure drop in a round of rough pipe is as follows: 

 

In the future, we shall make calculations of hydraulic resistance for pipes with rough walls on received in the solution (24) 
for different heights of roughness and Reynolds number. This compares to bring the calculated values obtained by formula 
Colebrook and data for tubes with turbulators other things being equal (equal to the Reynolds number and the relative 
roughness height and turbulence). It should be noted that the above recent data have significant limitations on the height of 
vortex generator, while the equation obtained in this work, we have to great heights of roughness. 
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Table 1 shows the calculated data for the hydraulic resistance in straight round rough tubes, obtained from the solution of 
the transcendental equation (24) for the relative heights of the turbulators: 

ℎ
𝑅𝑅0

= 1
70

= 1.43 × 10−2 and ℎ
𝑅𝑅0

= 1
50

= 2 × 10−2  

 

 
Table 1. Hydraulic resistance in round rough pipes, calculated from the solution of the transcendental equation (24) for the relative 
heights of the turbulators h/R0 = 1/70 and 1/50. 
 
The similar values obtained by formula Colebrook and values for a smooth tube obtained from the dependence Filonenko 
were compared. From the data in Table 1, it is clear that the theoretical solutions are close to the formula of Colebrook for 
the relatively low heights of roughness. 

For a much wider range of heights, roughness values of hydraulic resistance for round rough pipes are given in Table 2 
and 3, in which, only similar relevant data, calculated by the empirical relationship Colebrook and values of hydraulic 
resistance for a smooth pipe from the empirical formula Filonenko were compared. For clarity of presentation in Table 2, 

values of hydraulic resistance for rough pipes are given in the form of lg(100⋅ξ) according to lg(Re) for ℎ
𝑅𝑅0

=
1

15
, 1

30.6
, 1

60
, 1

126
, 1

252
, 1

507
 . 

 

 
Table 2. Hydraulic resistance [in the form of log (100)] in round rough pipes, depending on the Reynolds number [in the form lg (Re)], 

calculated from the solution of the transcendental equation (24) for a wide range of turbulence heights h/R0=1/15, 1/507. 
 

Similar data are given in absolute units. As shown in Table 2 and 3, at relatively low altitudes of roughness and at high 
Reynolds numbers (about 106) hydraulic resistance values for rough pipes, calculated on the developed theory, 
approximately coincide with those values calculated by the formula Colebrook, for medium Reynolds numbers (about 105) 
calculation formula Colebrook gives higher values. 
 
When compared to the average roughness height theoretical values of hydraulic resistance in rough pipes are 
approximately equal empirical values obtained from the dependence of Colebrook, at medium and high Reynolds numbers, 
at low Reynolds numbers (about 104) Colebrook empirical formula gives higher values. For tubes with relatively large 
roughness height calculated from the empirical formula Colebrook provides even inflated data on hydraulic resistance has 
in the entire range of Reynolds numbers. Therefore, on the basis of the data presented, we conclude that empirical 
correlations have a significant disadvantage compared with dependencies developed in this study, for large values of the 
relative roughness height h/R0. 
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The disadvantage of the existing theoretical and empirical relationships should be recognized that they are limited by the 
relative roughness height: they do not allow to determine the hydraulic resistance for pipes with very high altitudes 
turbulence, which can be characterized, for example, rough pipes of small diameters. 
 
In the future we should bring estimates of the hydraulic resistance in rough tubes, obtained by the developed dependencies, 
for very large values of the relative roughness height: h/R0 = 0.15/0.30. Table 4 shows the calculated values of hydraulic 
resistance for rough pipes, which are very large relative roughness height (h/R0 = 0.15 or 0.30) for the typical range of 
Reynolds numbers (Re =104/106); for comparison, the corresponding values of hydraulic resistance for smooth pipe ξSM 
(h/R0 = 0). 
 

 

Table 3. Hydraulic resistance in round rough pipes, depending on the Reynolds number, calculated from the solution of the 
transcendental equation (24) for a wide range of relative heights of turbulators. 
 

 

Table 4. Hydraulic resistance in round rough pipes, calculated from the solution of the transcendental equation (24) for very high 
relative roughness heights (h/R0 = 0.15/0.30), depending on the Reynolds number. 
 
The data presented indicate that the pressure drop in rough tubes great heights roughness increases at low Reynolds 
numbers from about 2.4 to 2.9 times compared to the smooth tube with increasing height roughness with a  h/R0 ranging 
from 0.15 tо 0.30, for medium Reynolds numbers, this increase is already about 4,1 and 4,9 раз respectively,  for the big - 
about 6.3 tо 7.6 bout. When the Reynolds number increases with 104 tо 106 hydraulic resistance of rough pipes compared 
to a smooth tube increases by about 2.6 times for the considered range of relative roughness height, with an increase in the 
relative roughness height twice (about h/R0 = 0.15 tо 0.30) corresponding increase in the relative pressure drop of about 
1.2 times. Consequently, the increase in the height of roughness and an increase in the Reynolds number is a significant 
increase in pressure drop in rough tubes to the smooth tube. 
 
The discrepancy between the solution for the hydraulic resistance for rough pipes were obtained in this study, with the 
decision based on a logarithmic velocity profile is of the order (10/15)% for the relatively high roughness height at low 
Reynolds numbers, with a decrease in the height of roughness and an increase Reynolds discrepancy disappears. 
 
In the future, it is necessary to conduct a comparative analysis of the estimated values of hydraulic resistance for rough 
pipes and tubes with turbulators other things being equal (equal heights roughness h/R0 and turbulence, the equality of the 
Reynolds number Re). Table 5 listed the values of hydraulic resistance for round rough pipes, which were calculated 
based on the developed theory and the empirical formula Colebrook, and were compared with experimental data for pipes 
with periodic transverse in turbulence flow in circular pipes [1] provided h/R0 = idem and Re = idem (h/R0 = 0.01-0.13; t/D 
= 0.25-1.00; Re = 104-2×105); for comparison the hydraulic resistance for a smooth tube, calculated from the empirical 
formula Filonenko. Comparative analysis of the hydraulic resistance in rough pipes and tubes with turbulence were 
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presented in  Table 5, showing that for small relative roughness height ( ℎ
𝑅𝑅0

= 1
100

), pressure drop in the rough tubes at low 

Reynolds numbers is about the same as in the tubes with turbulators equal altitudes throughout the range considered the 
relative pitches between turbulence and at high Reynolds numbers - about twice as much. 

 

Table 5. Comparative analysis of hydraulic resistance values for round rough pipes calculated according to the developed theory, 
according to the empirical Colebrook formula and experimental data for pipes with periodic transversely located turbulators in round 
tubes for h/R0 = 0.01-0.13; t/D = 0.25-1.00; Re = 104-4×105. 

 

At an average altitude of the relative roughness ( ℎ
𝑅𝑅0

= 1
100

) , pressure drop in rough tubes approximates hydraulic 

resistance in the pipes with turbulence: a small step between turbulence (𝑡𝑡
𝐷𝐷

= 1
4

) at high Reynolds numbers, the average 

step (𝑡𝑡
𝐷𝐷

= 1
2

) – at medium Reynolds numbers, a large step (𝑡𝑡
𝐷𝐷

= 1) – at low Reynolds numbers. 

 

At high altitudes, the relative roughness ( ℎ
𝑅𝑅0

= 1
10

)  hydraulic resistance of tough tubes approximately the hydraulic 

resistance in the tubes with turbulators with a big step between turbulence at high Reynolds numbers. Hydraulic resistance 
of rough tubes with large relative roughness height for the remaining cases – for small, medium and large steps between 
turbulence at low and medium Reynolds numbers, as well as small and medium-sized steps between turbulence at high 
Reynolds numbers – always much lower than pipes with turbulence, other thing being equal, (h/R0=idem and Re=idem). 

For very high roughness height ( ℎ
𝑅𝑅0

> 1
10

)  hydraulic resistance of rough pipes is much lower than for tubes with 

turbulators, other things being equal for all the considered range of geometrical parameters of turbulence and flow regimes 
coolants (h/R0=0.11-0.13, t/D=0.25-1.00, Re=104-4×105) . 
 

The data  in  Table  5  of  hydraulic  resistance  data  for  rough  pipes  for  very  high  Reynolds  numbers (Re ≥ 106) 
indicate that, for low and medium heights roughness theoretical solution obtained in this work, and the empirical formula 
of Colebrook give approximately equal results, and for high and very high heights roughness dependence Colebrook 
clearly gives higher values. Hence, it is proved that the theory has generated over the existing empirical formulas distinct 
advantage in the high and very high relative roughness height and very high Reynolds numbers (h/R0>0,10; Re∈[106-109]). 

3. Conclusions 
1. The technique of determining the theoretical calculation of the coefficient of hydraulic resistance for round tubes 
with rough walls, based on the principle of superposition full viscosity in the turbulent layer, mainly differs from existing 
theories.
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2. Resulting in a more accurate solution for the flow resistance in rough pipes has a notable advantage over existing 
solutions and it should be used in the calculation, although certainly higher complexity. 

3. For small and medium roughness height theoretical values of hydraulic resistance in rough tubes approximately 
correspond to empirical values - with a further increase of the relative roughness height mainly theoretical values differ 
from the empirical values, including, at very high Reynolds numbers (Re ≥ 106) . 

4. Theoretical solutions obtained in this study showed that the increase in the relative values of the Transactional 
hydraulic resistance  ξ/ξSM  for tubes with very high values of the relative roughness makes a significant contribution  to 
the increase in the height of roughness h/R0 , and an increase in the Reynolds number Re. 

5. Comparative analysis of the calculated values of hydraulic resistance in rough tubes with similar experimental 
values for tubes with periodic transverse in turbulence flow showed that the rough is very large relative roughness height 
hydraulic resistance is always lower than for tubes with turbulators other things being equal, a small, medium and large 
heights found the limits of their approximate match other things being equal: the smaller the Reynolds number Re, the 
greater should be the relative spacing between the turbulence h/R0 . 

6. The main advantage of the solutions obtained by the theory developed in comparison with empirical dependencies 
is that they allow you to calculate the pressure drop in rough tubes for large and very large relative roughness height 
including for large Reynolds numbers, which is typical, for example, for small diameter pipes. 

7. Result of the calculation of hydraulic resistance for round rough pipes for an extended range of characteristic 
parameters that are significantly different from the corresponding data for round tubes with turbulence, indirectly indicate 
the level of heat transfer through the use of rough tubes instead of smooth. 
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