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Abstract - The dynamics of the two-degrees-of-freedom 

system, constituted of two bodies interacting with the 

weightless plate having harmonic displacement in different 

environments, is analyzed in this paper. Resistance of the 

environment is described by four different friction models: 

Coulomb friction model, Coulomb viscous model, 

Coulomb-Stribeck model and the LuGre friction model. 

The paper is mainly focused on changes in vibration of 

masses depending on the friction model. The analysis is 

conducted by monitoring displacements of the masses and 

phase-space diagrams. 

Keywords: Vibration, friction, Coulomb friction, Stribeck 

effect, LuGre model. 

I. INTRODUCTION 

       This paper studies a vibration of a system constituted of 

two bodies interacting with a harmonically driven weightless 

plate in various environments described by four friction 

models. They are Coulomb friction model, Coulomb viscous 

model, Coulomb-Stribeck model and LuGre friction model. 

Not much work on this topic has been performed so far and 

the literature related to such kind of analyses is relatively 

scarce. It is well known that a friction between solid bodies is 

an extremely complicated physical phenomenon. It 

encompasses elastic and plastic deformations of surface layers 

of contacting bodies, interactions with wear particles, micro-

fractures and a restoration of a continuity of materials, 

chemical reactions, and the transfer of particles from one body 

to another [1]. 

       The Coulomb friction model is a simple model of dry 

friction and, according to this model, the friction force is 

proportional to the normal force and it is independent of the 

contact area. The Coulomb viscous model is employed in the 

presence of lubricants. The lubricants provide a fluid barrier 

between rubbing metal parts which replace dry friction with 

viscous friction and may vastly reduce wear [2]. The friction 

force, according to this model, is proportional to the relative 

velocity between the bodies in contact.  

       The friction force may vary at low values of the relative 

velocity when the thickness of the lubricant is large enough to 

completely separate the contacting bodies and hydrodynamic 

effects become significant. This effect is recognized as the 

Stribeck effect [3]. The Coulomb-Stribeck model, representing 

combination of the Coulomb friction and the Stribeck effect, 

provides appropriate presentation of the friction at low 

velocity. However, in the vicinity of zero relative velocity, it 

lacks a physical representation of the friction. The 

representation of the friction, according to the LuGre model, is 

based on the interaction between contacting surfaces on the 

microscopic level. The nature of friction depends on the 

relationship between asperities and it is modeled by means of 

their elastic deformations. 

       Important characteristic of vibrating system is the time 

period to reach the steady state motion. This time period 

depends on the dissipation of energy from the system. The 

mechanical system has two energy dissipaters in form of a 

viscous damper and different frictions. This paper shows how 

fast the system transits to the steady state motion for different 

friction models and an amplitude of oscillations. Similar 

physical system was analyzed in [4-7] where the excitation is 

caused by vibro-impact motion. 

       Their goal was to show the way the vibro-impact system 

is used to govern certain system, as well as influence of 

different friction models on analyzed vibro-impact system. In 

this paper the excitation source is a harmonic displacement 

function which may be produced by an electromotor through a 

simple operating mechanism. The aim is to explain an 

influence of different friction models on vibrating motion 

caused, simulating different environments in which the 

vibrating system may operate. 
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II. MATHEMATICAL AND PHYSICAL MODELLING 

       In this work, two degrees-of-freedom system is 

considered, shown in Fig. 1, where weightless plate has a 

harmonic displacement with amplitude 𝑢𝑜  and frequency 𝛺𝑝 . 

 

Figure 1: Physical model of two-degrees-of-freedom system 

       The weightless plate interacts with a mass 1 via linear 

spring with stiffness 𝑐1. Mass 1 is connected to the mass 2 by 

a linear spring with stiffness 𝑐2 and a viscous damper with 

damping coefficient 𝑏. The motion of the system is completely 

described by coordinates 𝑥(𝑡) and 𝑦(𝑡), defining the positions 

of the masses m1 and m2 at any time t from the respective 

equilibrium positions. Bidirectional motion of the mass 1 and 

mass 2 will occur when the forces acting on the bodies exceed 

the threshold of the friction forces between bodies and the 

supporting environmental surface. 

Equations of motion of the system are given by the Lagrange 

equation: 
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       where 𝐸𝑘  is kinetic energy of the system, 𝐸𝑝  is potential 

energy of the system, 𝑞𝑖 is generalized coordinate, 𝑞𝑖  is 

generalized velocity, t is time, 𝑄𝑖  is generalized force and 𝑠is 

number of degrees of freedom of the system. 
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       Where µis friction coefficient, 𝑚1 and 𝑚2are masses of 

the body 1 and body 2, respectively, gis gravitational 

acceleration and 𝑐1 and 𝑐2 are stiffness of the spring 1 and 

spring 2, respectively. 

A) Coulomb model 

       According to Coulomb model, when the contact surface 

between two solids is dry, friction force has a constant value 

and it is acting in the direction opposite to the relative velocity 

[8]. Friction force 𝐹𝜇  is proportional to the normal contact 

force 𝑁 [9]. 

Differential equations of motion are given by: 
 

𝑚1𝑥 + 𝑏𝑥 − 𝑏𝑦 +  𝑐1 + 𝑐2 𝑥 − 𝑐2𝑦 + 𝜇𝑚1𝑔 𝑠𝑖𝑔𝑛 𝑥  
= 𝑐1𝑢𝑜 cos(𝛺𝑝𝑡) 

 
𝑚2𝑦 + 𝑏𝑦 − 𝑏𝑥 + 𝑐2𝑦 − 𝑐2𝑥 + 𝜇𝑚2𝑔 𝑠𝑖𝑔𝑛 𝑦  = 0 

 

B) Coulomb viscous model 

        When the contact surface between two solids is covered 

with a thin liquid film so that the two surfaces do not touch, it 

is usual to assume that the friction force is proportional to the 

relative velocity of two bodies. It is often combined with 

Coulomb friction [10]. 

Differential equations of motion are given by: 

 

𝑚1𝑥 + (𝑏 + 𝐾𝑠𝑖𝑔𝑛(𝑥 ))𝑥 − 𝑏𝑦 +  𝑐1 + 𝑐2 𝑥 − 𝑐2𝑦
+ 𝜇𝑚1𝑔 𝑠𝑖𝑔𝑛 𝑥  = 𝑐1𝑢𝑜 cos(𝛺𝑝𝑡) 

 
𝑚2𝑦 + (𝑏 + 𝐾𝑠𝑖𝑔𝑛 𝑦  )𝑦 − 𝑏𝑥 + 𝑐2𝑦 − 𝑐2𝑥 + 𝜇𝑚2𝑔 𝑠𝑖𝑔𝑛 𝑦  = 0 

 

C) Coulomb-Stribeck model 

       The Stribeck effect represents decreasing friction with 

increasing velocity at low velocity during transition from 

static to kinetic friction. A combination of static friction, 

Coulomb and viscous friction model is been referred to as 

Stribeck friction [11]. Differential equations of motion are: 

 

𝑚1𝑥 + 𝑏𝑥 − 𝑏𝑦 +  𝑐1 + 𝑐2 𝑥 − 𝑐2𝑦 + (𝜇𝑚1𝑔
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𝑚2𝑦 + 𝑏𝑦 − 𝑏𝑥 + 𝑐2𝑦 − 𝑐2𝑥 +                            

(𝜇𝑚2𝑔 +  𝜇𝑠 − 𝜇 𝑚2𝑔 𝑒
−|

𝑦 

𝑣𝑠
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D) LuGre model 

       The LuGre friction model is the dynamic friction model. 

Friction is modeled as the average deflection force of elastic 

springs. This models the phenomenon that the surfaces are 

pushed apart by the lubricant and model the Stribeck effect 

[12].Differential equations of motion are now: 
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𝑚1𝑥 +  𝑏 + 𝜎2 𝑥 − 𝑏𝑦 +  𝑐1 + 𝑐2 𝑥 − 𝑐2𝑦 + 𝜎𝑜𝑧1 + 𝜎1

𝑑𝑧1

𝑑𝑡
= 𝑐1𝑢𝑜 cos 𝛺𝑝𝑡  

 

𝑚2𝑦 +  𝑏 + 𝜎2 𝑦 − 𝑏𝑥 + 𝑐2𝑦 − 𝑐2𝑥 + 𝑓𝑚2𝑔 𝑠𝑖𝑔𝑛 𝑦  + 𝜎𝑜𝑧2

+ 𝜎1

𝑑𝑧2

𝑑𝑡
= 0 

III. DYNAMIC ANALYSIS AND DISCUSSION 

       In order to understand the system dynamics in different 

friction environments, this section shows various responses of 

the system with four different frictions. The results are 

presented on two different diagrams for each body: 1) where 

the displacement is plotted on the y-axis as a function of time 

and 2) space-phase diagram, where velocity is plotted on the 

y-axis as a function of displacement. The calculations were 

run for 15 seconds of motion of the system. 

A) Coulomb model 

 

Figure 2: Displacement of mass 1 and phase diagram for the system with 

Coulomb friction model 

       The diagram presented in Figure 2 shows the 

displacement of mass 1 as a function of time and the velocity 

of mass 1 as a function of displacement x for the system with 

the Coulomb friction model. 

        The first diagram in Figure 2 shows two different parts of 

motion: transient motion and the steady state motion. 

Transient motion lasts for approximately 4 seconds. During 

the transient motion, the amplitude decreases. 

       As can be seen in Figure 2, during the transient motion, 

mass 1 has a positive displacement for tϵ(0,0.428s), negative 

displacement for tϵ(0.428s,1.359s), positive displacement for 

tϵ(1.359s,2.272s) and then again negative displacement for 

tϵ(2.272s,3.377s). Maximum displacement occurs at the 

beginning of motion at t = 0.249 s and it amounts to 0.713 m. 

       After transient motion decays, mass 1 settles into the 

steady state motion. The frequency of the steady state motion 

is equal to the forcing frequency (frequency of the weightless 

plate). 

       The second diagram in Figure 2 represents space-phase 

diagram, where the velocity of mass 1 is plotted on y-axis as a 

function of the displacement x. Mass 1 has a velocity at the 

beginning of motion according to the initial conditions. 

       The diagram presented in Figure 3 shows the 

displacement of mass 2 as a function of time and the velocity 

of mass 2 as a function of displacement y for the system with 

the Coulomb friction model. 

 

Figure 3: Displacement of mass 2 and phase diagram for the system with 

Coulomb friction model 

       The first diagram in Figure 3, same as before, shows two 

different parts of motion: transient motion and steady state 

motion. Transient motion lasts for approximately 3 seconds. 

During the transient motion, the amplitude decreases. 

       At the beginning of motion, mass 2 exhibits displacement 

of 1m according to the initial conditions. During the transient 

motion, mass 2 has positive displacement for tϵ(0,0.646s), 

negative displacement for tϵ(0.646s,1.182s), positive 

displacement for tϵ(1.182s,1.342s), negative displacement for 

tϵ(1.342s,1.541s), positive displacement for tϵ(1.541 s,2.083 

s), negative displacement for tϵ(2.083s,2.185s), positive 

displacement for tϵ(2.185s,2.522s) and again negative 

displacement for tϵ(2.522s,3.481s). Maximum displacement, 

excluding the initial displacement, occurs att=0.884s and it 

amounts to 0.97 m (in negative direction). 

       After transient motion decays, mass 2 settles into the 

steady state motion. The frequency of the steady state motion 

is equal to the forcing frequency.  

The second diagram in Figure 3 represents space-phase 

diagram, where the velocity of mass 2 is plotted on y-axis as a 

function of the displacement y. Mass 2 has a velocity at the 

beginning of motion according to the initial conditions. 
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B) Coulomb viscous model 

       The diagram presented in Figure 4 shows the 

displacement of mass 1 as a function of time and the velocity 

of mass 1 as a function of displacement x for the system with 

the Coulomb viscous model. 

       The first diagram in Figure 4 shows two different parts of 

motion: transient motion and steady state motion. Transient 

motion lasts for approximately 3 seconds. During the transient 

motion, the amplitude decreases. 

       During the transient motion, mass 1 has positive 

displacement for tϵ(0,0.479s), negative displacement for 

tϵ(0.479s,1.340s), positive displacement for tϵ(1.340s,2.924s) 

and then again negative displacement for tϵ(2.924s,3.373s). 

Maximum displacement occurs at the beginning of motion at 

t=0.295s and it is approximately 0.703 m. 

 

Figure 4: Displacement of mass 1 and phase diagram for the system with 

Coulomb viscous model 

       After transient motion decays, mass 1 settles into steady 

state motion. The frequency of the steady state motion is equal 

to the forcing frequency. 

       The second diagram in Figure 4 represents space-phase 

diagram, where the velocity of mass 1 is plotted on y-axis as a 

function of the displacement x. Mass 1 has a velocity at the 

beginning of motion according to the initial conditions. 

       The diagram presented in Figure 5 shows the 

displacement of mass 2 as a function of time and the velocity 

of mass 2 as a function of displacement y for the system with 

the Coulomb viscous model. 

       The first diagram in Figure 5 shows two different parts of 

motion: transient motion and steady state motion. Transient 

motion lasts for approximately 3 seconds. During the transient 

motion, the amplitude decreases. 

 

Figure 5: Displacement of mass 2 and phase diagram for the system with 

Coulomb viscous model 

        At the beginning of motion, mass 2 has a displacement of 

1m according to the initial conditions. During the transient 

motion, mass 2 has a positive displacement for tϵ(0,0.656s), 

negative displacement for tϵ(0.656s,1.507s), positive 

displacement for tϵ(1.507s,2.470s) and then again exhibits 

negative displacement for tϵ(2.470s,3.502s). Maximum 

displacement, excluding the initial displacement, occurs at 

t=0.904s and it amounts to 0.904 m (in negative direction). 

       After transient motion decays, mass 2 settles into the 

steady state motion. The frequency of the steady state motion 

is equal to the forcing frequency. 

       The second diagram in Figure 5 represents space-phase 

diagram, where the velocity of mass 2 is plotted on y-axis as a 

function of displacement y. Mass 2 has a velocity at the 

beginning of the motion according to the initial conditions. 

C) Coulomb-Stribeck model 

       The diagram presented in Figure 6 shows the 

displacement of mass 1 as a function of time and the velocity 

of mass 1 as a function of displacement x for the system with 

the Coulomb-Stribeck model. 

 

Figure 6: Displacement of mass 1 and phase diagram for the system with 

Coulomb-Stribeck model 

       The first diagram in Figure 6 shows two different parts of 

motion: transient motion and steady state motion. Transient 
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motion lasts for approximately 3 seconds. During the transient 

motion, the amplitude decreases. 

       During the transient motion, mass 1 has positive 

displacement for tϵ(0,0.445s), negative displacement for 

tϵ(0.445s,1.359s), positive displacement for tϵ(1.359s,2.289s) 

and then again negative displacement for tϵ(2.289s,3.366s). 

Maximum displacement occurs at the beginning of motion at 

t=0.272s and it is approximately 0.723 m. 

       After transient motion decays, mass 1 settles into the 

steady state motion. The frequency of the steady state motion 

is equal to the forcing frequency. 

       The second diagram in Figure 6 represents space-phase 

diagram, where the velocity of mass 1 is plotted on y-axis as a 

function of displacement x. Mass 1 has a velocity at the 

beginning of motion according to the initial conditions. 

 

Figure 7: Displacement of mass 2 and phase diagram for the system with 

Coulomb-Stribeck model 

       The diagram presented in Figure 7 shows the 

displacement of mass 2 as a function of time and the velocity 

of mass 2 as a function of displacement y for the system with 

the Coulomb-Stribeck model. 

        The upper diagram in Figure 7 shows two different parts 

of motion: transient motion and steady state motion. Transient 

motion lasts for approximately 3 seconds. During the transient 

motion, the amplitude decreases. 

        At the beginning of motion, mass 2 has a displacement of 

1m according to the initial conditions. During the transient 

motion, mass 2 has positive displacement for tϵ(0,0.658s), 

negative displacement for tϵ(0.658s,1.164s), positive 

displacement for tϵ(1.164s,1.324s), negative displacement for 

tϵ(1.324s,1.525s), positive displacement for tϵ(1.525s,2.050s), 

negative displacement for tϵ(2.050s,2.237s), positive 

displacement for tϵ(2.237s,2.506s) and again negative 

displacement for tϵ(2.506s,3.489s). Maximum displacement, 

excluding the initial displacement, occurs at t=0.884s and it 

amounts to 0.966 m (in negative direction). 

       After transient motion decays, mass 2 settles into the 

steady state motion. The frequency of the steady state motion 

is equal to the forcing frequency. 

       The second diagram in Figure 7 represents space-phase 

diagram, where the velocity of mass 2 is plotted on y-axis as a 

function of displacement y. Mass 2 has a velocity at the 

beginning of motion according to the initial conditions. 

D) LuGre model 

 

Figure 8: Displacement of mass 1 and phase diagram for the system with 

LuGre model 

       The diagram presented in Figure 8 shows the 

displacement of mass 1 as a function of time and the velocity 

of mass 1 as a function of displacement x for the system with 

the LuGre model. 

       The first diagram in Figure 8 shows two different parts of 

motion: transient motion and steady state motion. Transient 

motion lasts for approximately 3 seconds. During the transient 

motion, the amplitude decreases. 

       During the transient motion, mass 1 has positive 

displacement for tϵ(0,0.475s), negative displacement for 

tϵ(0.475s,1.356s), positive displacement for tϵ(1.356s,2.439s) 

and then again negative displacement for tϵ(2.439s,3.459s). 

Maximum displacement occurs at the beginning of motion 

att=0.292s and it amounts to 0.718 m. 

       After transient motion decays, mass 1 settles into the 

steady state motion. The frequency of the steady state motion 

is equal to the forcing frequency. 

       The second diagram in Figure 8 represents space-phase 

diagram, where the velocity of mass 1 is plotted on y-axis as a 

function of displacement x. Mass 1 has a velocity at the 

beginning of motion according to the initial conditions. 
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       The diagram presented in Figure 9 shows the 

displacement of mass 2 as a function of time and the velocity 

of mass 2 as a function of displacement y for the system with 

the LuGre model. 

       The upper diagram in Figure 9 shows two different parts 

of motion: transient motion and steady state motion. Transient 

motion lasts for approximately 3 seconds. During the transient 

motion, the amplitude decreases. 

 

Figure 9: Displacement of mass 2 and phase diagram for the system with 

LuGre model 

       At the beginning of motion, mass 2 has displacement of 

1m according to the initial conditions. During the transient 

motion, mass 2 has positive displacement for tϵ(0,0.638s), 

negative displacement for tϵ(0.638s,1.583s), positive 

displacement for tϵ(1.583s,2.64s) and then again negative 

displacement for tϵ(1.583s,3.66s). Maximum displacement, 

excluding the initial displacement, occurs at t=0.901s and it 

amounts to 0.834 m (in negative direction). 

       After transient motion decays, mass 2 settles into the 

steady state motion. The frequency of the steady state motion 

is equal to the forcing frequency. 

       The second diagram in Figure 9 represents space-phase 

diagram, where the velocity of mass 2 is plotted on y-axis as a 

function of displacement y. Mass 2 has a velocity at the 

beginning of motion according to the initial conditions. 

IV. CONCLUSION 

       The vibrating responses of the two-degrees-of-freedom 

system with various friction models were studied in this paper. 

The four friction models, Coulomb, Coulomb viscous, 

Coulomb-Stribeck and LuGre model, were used to investigate 

the qualitative change of the system dynamics in different 

friction environments. The analysis was conducted by 

monitoring displacement and velocity of masses 1 and 2 

during 15 seconds of motion. 

       The analysis has revealed minimum resistance between 

these friction models when the Coulomb model of friction is 

applied. For the Coulomb friction model, maximum 

displacements of masses 1 and 2 were 0.723m and 0.974m, 

respectively. For other three investigated models, maximum 

displacements were lower, meaning that the vibrations are 

more damped in case of other friction models than in case of 

Coulomb model. 

       Time period to reach steady state motion is similar for all 

friction models, with the shortest time period encountered for 

the Coulomb friction and the LuGre model. 

       The analysis gives an insight on the way different friction 

models may be used to decrease the oscillating amplitude and 

get faster to steady state motion with a constant and close to 

the minimum value of vibration. These properties are of high 

importance for dynamic absorbers. Another important 

characteristic is the type of motion in the steady state region. 

For the LuGre model, the second body in steady state motion 

is resting for certain time period at the maximum amplitude 

value. This property can be advantage for some systems while 

disadvantage for others. If the body needs to move quickly in 

the opposite direction, this feature is the disadvantage. The 

load on the spring will also be greater in this case, because it 

will be stretched and held for some time leading to a shorter 

lifetime. 

REFERENCES 

[1] V.L. Popov, “Contact Mechanics and Friction”, 

Springer, 2010. 

[2] B. Armstrong-Hélouvry, P. Dupont, C.C. de Wit, “A 

survey of models, analysis tools and compensation 

methods for the control machines with friction”, 

Automatica, 1994. 

[3] R. Stribeck, “Die wesentlichen Eigenschaften der 

Gleitund Rollenlager”, Zeitschrift des Vereines 

Deutscher Ingenieure, 1902. 

[4] Y. Liu, M. Wiercigroch, E. Pavlovskaia, H. Yu, 

“Modelling of a vibro-impact capsule system”, 

International Journal of Mechanical Sciences, 66:2-
11, 2013. 

[5] Y. Liu, E. Pavlovskaia, M. Wiercigroch, 

“Experimental verification of the vibro-impact 

capsule model”, Nonlinear Dynamics, 83:1029-1041, 

2016. 

[6] Y. Liu, E. Pavlovskaia, D. Hendry, M. Wiercigroch, 

“Vibro-impact responses of capsule system with 

various friction models”, International Journal of 

Mechanical Sciences, 72:39-54, 2013. 

[7] Y. Liu, E. Pavlovskaia, M. Wiercigroch, Z. Peng. 

“Forward and backward motion control of a vibro-
impact capsule system”, International Journal of 

Non-Linear Mechanics, 70:30-46, 2015. 



International Research Journal of Innovations in Engineering and Technology (IRJIET) 

ISSN (online): 2581-3048 

Volume 4, Issue 3, pp 6-12, March-2020 

 

 

© 2017-2020 IRJIET All Rights Reserved                   www.irjiet.com                          Impact Factor: 2.2     12                                                                    
 

[8] W. Sextro, “Dynamical Contact Problems with 

Friction”, Springer, 2002. 

[9] K.L.Johnson, “Contact Mechanics”, Cambridge 

University Press, 1985. 

[10] A.H. Nayfeh, D.T. Mook, “Nonlinear Oscillations”, 

John Wiley & Sons Ltd, 1995. 

[11] B. Armstrong-Hélouvry, “Control of Machines with 

Friction”, Springer-Science+Business Media, 1991. 

[12] P.J.Dolcini, C.C. de Wit, H. Béchart, “Dry Clutch 

Control for Automotive Applications”, Springer, 

2010. 

 

AUTHOR’S BIOGRAPHIES 

 

Kanita Lemes is MSc student at 

Mechanical Engineering Faculty of the 

University of Sarajevo, Bosnia and 

Herzegovina. 

 

Dzanko Hajradinovic is Senior 

Research Assistant in Department of 

Mechanics at Mechanical Engineering 

Faculty of the University of Sarajevo, 

Bosnia and Herzegovina. He is working 

on a Phd thesis in the field of vibro-

impact systems with non-ideal 

excitation. He has published 3 papers in 

scientific journals, as well as 

participated in 2 scientific conferences. 

 

 

 

Marin Petrovic is Associate Professor 

in Department of Mechanics at 

Mechanical Engineering Faculty of the 

University of Sarajevo, Bosnia and 

Herzegovina. He was awarded PhD at 

University College Dublin, Ireland. He 

has published 3 university books and 19 

papers in scientific journals, as well as 

participated in 13 scientific 

conferences. 

 

 

 

 

 

 

 

 

******* 

Citation of this Article: 

Kanita Lemes, Dzanko Hajradinovic, Marin Petrovic, “Numerical Analysis of a Nonlinear Vibrating Two-Degrees-of-

Freedom System with Various Friction Models” Published in International Research Journal of Innovations in Engineering 

and Technology - IRJIET, Volume 4, Issue 3, pp 6-12, March 2020.  

 


