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Abstract— Self-similar flows in the background, a gas-

ionizing cylindrical shock wave, associated with radiation 

heat-flux, in an ideal gas are considered. The ionizing shock 

is considered to be propagating in a medium at rest with 

variable density permeated by an azimuthal magnetic 

meadow. The electrical conductivity of the gas is never-

ending behind shock and zero ahead of it. Effect of 

radiation flux and the variation of initial density and the rate 

of energy input from the inner contact surface on the flow-

field behind the shock and on the shock proliferation are 

investigated. 

Keywords— Ionizing Shock Wave; Ideal Gas; Similarity 

Solution; Heat Transfer Effects; Variable Energy; Variable 

Initial Density; Variable Magnetic Field; Radiation Heat-

Flux. 
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1. Introduction 

The power of radiation on a shock wave and on the flow-

field following the shock obverse has always been of great 

interest, for instance, in the meadow of nuclear power and 

space study. Consequently, similarity replicas for classical 

blast wave troubles have been extended by taking radiation 

in to account (Elliott [1], Wang [2], Helliwell [3], Nicastro 

[4], Ghoniem et al.[5]) considered the explosion problem by 

initiating the radiation flux in its diffusion estimation. Wang 

[2] explained the piston dilemma with radioactive heat 

transmit in the thin and thick limits and also in the general 

case with idealized two path approximately. Ghoniem et al. 

[5] gets a self-similar result for spherical blast taking into 

account the effects of both conduction and radiation in the 

two confines of Rosseland radiative diffusion and Plank 

radiative emission. 

Since at elevated temperatures that overcome in the 

difficulty associated with shock waves a gas is partly 

ionized, electromagnetic effects may also be important. A 

complete analysis of such problem should therefore the 

study on the gas dynamic flow and the electromagnetic 

radiation fields simultaneously. Also, the results of the 

study of shock waves propagating in a non-uniform 

medium are more applicable to skocksfomed in the stars 

(Sedov[6],Sakurai[7],Rogers[8],Summer‘s[9]). 

The purpose of this study is, there to obtain self-similar 

solutions for the propagation of a cylindrical shock wave in 

a non-uniform gas with radiation heat-flux. The initial 

density of gas and initial azimuthal magnetic field are to 

vary some powers of distance. The problem of line 

explosion with time needy energy discharge and radiation 

in the charisma of an azimuthal magnetic field is measured 

due to its significance to the experiments on pinch effect 

and explosion wires. A gas-ionizing cylindrical shock wave, 

generated by line bang, is propagating in an ideal gas. The 

counter pressure is taken into account. The radiation 

pressure and radiation energy are considered very little in 

comparison to material pressure and energy, 

correspondingly, and therefore only radiation fluctuation is 

taken into account. A dispersal model for an optically thick 

grey gas is assumed. The piston velocity is considered to 

vary as a few power of time and the initial density of the 

gas and the initial azimuthal magnetic field is assumed to be 

varying as some power of the distance from the axis of 

symmetry. Also, the rate of energy contribution to the flow 

behind shock, the radiation fluctuation and the idealness of 

the gas are found to have important effects on the 

proliferation of the shock as well as the flow-field behind it. 

    2. Basic Equations and Boundary  Conditions 

The basic equations governing the unsteady and 

cylindrically symmetric motion of aninviscid, perfectly 

conducting and idyllic gas in with the effects of radiation 

fluctuation  and azimuthal magnetic field may be 

noteworthy, can be written as (Christer and 

Helliwell[10];Vishwakarma and Pandey [11], Gretler and 

Wehle[12]): 

d
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d t r r

d u 1 p h
( rh ) 0 , ( 2 .2 )

d t r r r

d h u
h 0 , ( 2 .3 )
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d
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Here, ρ is the density, p the force, u the radial velocity, h 

the azimuthal magnetic field, q the radiation temperature 

fluctuation, t the time, r the distance from the axis of 

symmetry   and   e   the   interior    energy.   The    magnetic 

permeability of the medium is taken to be concord. In most 

of the cases the proliferation of shock waves arise in 
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tremendous conditions under which the assumption that the 

gas is an ideal a sufficiently accurate description. The 

system of equations could be supplemented with an 

equation of state. An ideal gas behaviour of the medium is 

assumed, so that 
p T , 

                                                                          (2.5) 

 

p
e ,

1

  

                                                                  (2.6) 

Where,   is the gas constant and γ is the ratio of specific 

heats. For an isentropic change of state of the ideal gas, we 

may calculate the so called speed of sound in the ideal gas 

as follows  
1 1

2 2

S

d p p
a ,

d

   
    

    

                                                    (2.7) 

Where, subscript ‗S‘ refers to the course of stable entropy. 

Assuming local thermodynamic equilibrium and a diffusion 

model for an optically thick grey gas (Pomraning[13]), the 

differential approximation of the radiation transport 

equation can be written in the following form  

 
4c

q T ,
3 r

 
  

                                                            
(2.8) 

Where,
1

q c
4

  is the Stefan-Boltzmann constant and c the 

velocity of light andµ is the Rosseland mean  free path for 

radiation. The assumption of an optically thick grey gas is 

physically reliable with the neglect of radiation force and 

radiation power in the equation system (2.1) to (2.4) (Ni-

Castro [4]).  

  The Wang [2], we take     0
T ,

 
   

                       (2.9)
 

Where,
0

, an d   are the constants. It will be seen 

afterward that the exponents an d   must gratify the 

resemblance necessities. The self-similarity state puts no 

restraints on requirement of the density trust of .
 

 We presume that a cylindrical shock is circulating in the 

medium and the flow variables immediately ahead of the 

shock front are, 

u 0,
d

1
A R ,   

n

1
h h B R   (n<0) 

(Rosenou [14]), 

  2 2 n

1

n 1
p p B R ,

2 n


   1

q q 0   (Laumbach and 

Probstein [15]),                                                       (2.10)     

  Where, R is the shock radius, and A, B, d and n are 

constants. A cylindrical shock is hypothetical to be 

propagating in the uninterrupted ideal gas with changeable 

density and due to get ahead of the shock, the gas is 

tremendously ionized and its electrical conductivity turn 

into infinitely large. The circumstances across such a gas-

ionizing shock are (Singh and Srivastava [16], 

Vishwakarma and Pandey [11]) 

 2 2 1 s
V u V m ,    
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Where, subscripts 2 and 1 are for the regions that behind 

and ahead of the shock surface correspondingly, and V 

indicates the shock velocity. The shock front is assumed to 

be obscure and it does not obtain any temperature 

fluctuation from exterior sources. Therefore, the 

temperature fluctuation 
2

q  is the heat fluctuation swapped 

between the flow-field and the shock front. The jumps 

circumstances (2.11) are not adequate to decide all the 

stream variables at the shock front. Hence, one variable 

resides irresolute there. This complexity is detached by 

pretentious the shock front to isothermal that is, 

2 1
T T

(Zel‘dovich and Raizer [17], Rosenau and 

Frankenthal [18], Singh and Mishra [19]). The shock 

conditions (2.11) may be written as 

2 2

1
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M

 
  

 

2
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2
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p V , 

3
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2 M
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Here, 
1

2 2

1

1

V
M

p

 
  

 

 is the shock Mach-number referred to 

the frozen speed of sound 
1

2

1

1

p 
 
 

and 1
2 2

1

A 2

1

V
M

h

 
  
 

 is 

the Alfven-Mach number.  

  The total energy of the flow-field behind the shock is not 

constant, but implied to be time dependent and subjective as 

(Rogers[20], Freeman [21]) w

0
E E t , w≥0 (2.13) 

where,
0

E and ‗w‘ are the constants. The positive morals of 

‗w‘ match to the class in that the total power boosts with 

time. This improve of power may be realized by the 

pressure used on the fluid by mounting surface. This 

surface might be, actually, the exterior of the stellar corona 

or the strong explosives or the diaphragm contains very 

high force driver gas. By unexpected growth of the stellar 

corana or the ignition harvest or the driver gas into the 

ambient gas, a shock is formed in the ambient gas. The 

shocked gas is alienated from this mounting surface which 

is a contact discontinuity. This contact facade takes action 

as a ‗piston‘ for the shock wave. Thus the flow is headed by 

a shock front and has a mounting surface as the inner border. 

A condition very much of the same type may triumph 

during the configuration of a cylindrical spark channel from 

explosion wires. In addition, in the common cases of flash 

break down, time-dependent energy input is a more 

pragmatic assumption than instantaneous energy input 

(Freeman and Cragges [22], Director and Dabora [23]). The 

expression for the total energy of an ideal gas behind the 

shock is given by 
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      

  


       
 (2.14) 

Where,
p

r is the position of inner contact surface.
 

    

3.   Similarity Solutions 

 
For self- similar motions, the structure of partial 

discrepancy equations (2.1) – (2.4), (2.8) reduces to a 

system of usual differential equations in new unidentified 

functions of the similarity variable 
r

.
R

  Let us obtain 

these equations. To accomplish this we symbolize the 

solution of the partial differential equations (2.1) – (2.4), 

(2.8) in terms of the products of scale functions and the 

novel unknown functions of the resemblance variable 

r
,

R
  R=R(t). The pressure, density, velocity, magnetic 

field, radiation heat flux and length scales are not all free of 

each other. If we decide R and 
1

  as essential scales, then 

quantity V R   can provide as the velocity scale, 
2

1
V as 

the pressure scale, 
1

2

1
V as the magnetic pasture scale, and 

3

1
V as the radiation fluctuation scale. This does not edge 

the generality of the result, as the scale is only defined to 

within an arithmetic coefficient which can always be 

incorporated in the new unidentified purpose. We request a 

result of the form (Ghoniem et al. [5], Abdel-Raouf and 

Gretler [24], and Vishwakarma and Singh [25]). 

         
1

22 3

1 1 1 1
u V U , D , p V P , h V H , q V Q . (3 .1)                

Where, U, D, P, Q and H are the functions of the non-

dimensional changeable (similarity variable)  only. 

Pertain the resemblance transformations (3.1) to the relation 

(2.14), we find that the motion of the shock front is given 

by the equation 
w

d 2 2 0
E t

R V ,
2 A J




    
(3.2) 

Where,                                   

p

1 2

21 P H
J D U d .

2 1 2


 
     

  


                       

(3.3) 

Where,
p

 being the value of  at the inner expanding 

surface. 

Equation (3.2) can be written as  

 

1
12 d 2w

0 2 2
Ed R

V t R .
d t 2 A J

  
   

                                      (3.4)
 

Which is on integration, gives 
12

w 2
d 4d 4

0 d 4
Ed 4

R t .
w 2 2 A J





   

    
    

                                     (3.5)      

 

From (3.5), we get the shock velocity 
w d 2

w 2
d R w 2 R

V K R
d t d 4 t

 


 

   
                                      

(3.6) 

Where, 

1w

w 2w 2
0

Ew 2
K .

d 4 2 A J

   
    

                                   

(3.7) 

Since M and 
A

M are constants for similarity solutions, we 

have 

d w d 2
n ,

2 w 2

 
 

                                                           
 (3.8) 

The conservation equations (2.1) to (2.4) can be 

transformed into following system of ordinary differential 

equations with respect to 
 

( U d U )D
D ,

( U )

   
 

  
                                                    (3.9) 

 

( n U ) H
H ,

U


 

                                                              
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    
2w d 2 1 H

P D U U U H
w 2 H

      
          

      

    (3.11) 

U P ( U ) D w d 2 2 P Q
Q P d P .

1 D ( 1) w 2 1

         
         

          

(3.12) 

Where, primed denotes the differentiation with respect to  . 

By using equations (2.5), and (2.9) in (2.8), we get  

                           

3

0

3 3

c p4 T
q .

3 r

  

   

   
 

  
                     (3.13) 

Again, Using equations (2.5) in (3.13), and then the 

similarity transformations (3.1) we get  

w d 21 2 5 d ( 1 ) 1 ( 2 5 )
w 24 40

4

c A K4 P D
Q D P R .

3 P D

               
        

 

    
  

 
  

(3.14) 

Equation (3.14) shows that the similarity solution of the 

present problem exists only when  

 ( w 2 ) 1 d ( 1) 5
,

2 ( w d 2 ) 2

   
  

                                           

(3.15)

 
Therefore, equation (3.14) becomes: 

4 4 P D
Q N D P ,

P D

     
  

  
 
                                         

(3.16) 

Where,

1 2 5

0

4

cA K4
N ,

3

   

 

 



                                      

(3.17) 

is a non-dimensional radiation parameters. N depends on 

the mean free path of radiation. By using (3.9) and (3.11) in 

(3.16), we get 

 

     

2 2

2 4 42

U P D U w d 2 H n H U d Q
U . (3 .1 8 )

P w 2 P P U U ( U ) N D P[ D U H P ]
     

     
        

              
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Using the self-similarity transformations (3.1), equations 

(2.12), can be rewritten as: 

     
2

2 2 4

A

1 1 1 1
U 1 1 , D 1 M , P 1 1, H (1) , Q (1) 1 .

M M 2 M

 
        

     

(3.19) 

In addition to the shock conditions (3.19), the condition to 

be satisfied at the inner bounbary surface is that the velocity 

of the fluid is equivalent to the velocity of inner frontier 

itself. The kinematic condition, from the equations (3.1) and 

(3.6), can be written as: 

                                      
 p p

U .                                (3.20) 

Where,
p

  is the value of   at the inner expanding surface. 

Now, the equations (3.9) to (3.12) and (3.18) may be 

integrated, with the boundary conditions (3.19) and the 

appropriated, values of the constant parameters γ, d, α, w, 
2 2

A
M , M  and N to obtain D, H, P, Q and U. To exhibit the 

numerical solutions, it is convenient to write the flow- 

variables in the following non- dimensional form 

as  

 

 

 

 

 

 

 

 

 2 2 2 2 2

U D P H Qu p h q
, , , , .

u U 1 D 1 p P 1 h H 1 q Q 1

    
    


 

(3.21) 

4.   Results and Discussion 

Non-dimensionally flowing variables 
2 2 2 2 2

u h p q
, , , an d

u h p q



  
are obtained by numerical integration of the equations (3.9) 

to (3.12) and (3.18) with the boundary conditions (3.19).For 

the purpose of numerical calculations, the values of the 

constant parameters are taken as(Elliott [1], Singh and 

Mishra [19], Rosenau [14], Vishwakarma and Singh 

[25])γ=1.4; α= -2;M=5; 2

A
M 2 0; d=0.25, 0.50; w=1, 1.2; 

N=10, 100 .Figures 1(a) to 1(e) show the variation of the 

flow variables 
2 2 2 2 2

u h p q
, , , an d

u h p q




with   at various 

values of parameters w, d, N. It is shown that, as we move 

inward from the  shock front to the contact surface in     

inner, the reduced magnetic field 
2

h

h
 and the reduced 

pressure 
2

p

p
increase and the reduced density

2




,and the 

reduced total heat flux 
2

q

q
 decreases. Similarly, move 

inwards from the shock surface reduced fluid velocity 
2

u

u
 

increases. The effects of an increase in the density variation 

exponent‗d‘ are (from figures 1 (a), (b), (c), (d), (e) and 

table 1) 

(i) to increase the velocity 
2

u

u
, magnetic field 

2

h

h
and  

pressure 
2

p

p
 at any point in the flow-field behind the 

shock; and 

(ii) to decrease the density
2




 and radiation heat flux 

2

q

q
; 

(iii) to decrease the distance of the inner growing surface 

from the shock front(see tables 1);  

(iv) to increase the slope of profiles of velocity, magnetic 

field and pressure; and to decrease the slope of  

density and radiation heat flux. 

The effects of an increase in the value of exponent in the 

law for energy input ‗w‘ ( or the exponent in the law for 

early magnetic field ‗n‘) are (from figures 1(a-e) and table 1) 

(i) to increase the velocity 
2

u

u
, magnetic field 

2

h

h
and 

pressure 
2

p

p
 at any point in the flow-field behind the 

shock; and to decrease these quantities for the value 

of d=0.25, N=10; and 

(ii) to decrease the density
2




 and radiation heat flux 

2

q

q
; and to increase these quantities for the value of 

d=0.25, N=10; and  

(iii) to decrease the length of the inner expanding surface 

from the shock front(see tables 1);  

(iv) to increase the slope of profiles of velocity, magnetic 

field and pressure; and to decrease the slope of  

density and radiation heat flux; and 

(v) to decrease the slope of profiles of velocity, magnetic 

field and pressure; and to increase the slope of  

density and radiation heat flux for the value of 

d=0.25, N=10. 

The effects of an increase in the value of the radiation 

heat transfer parameter N are (from figures 1(a) to 1(e) and 

table 1): 

(i) to decrease the reduced velocity 
2

u

u
, the reduced 

magnetic field 
2

h

h

and the reduced pressure 
2

p

p

; 

and to increase the reduced density
2




and the 
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reduced radiation heat flux 
2

q

q
at any point in the 

flow-field behind the shock; and  

(ii) To increase the distance of the inner expanding 

surface from the shock front(see table 1); and 

(iii) To decrease the slope of profiles of velocity, 

magnetic field and pressure; and to increase the 

slope of density and radiation heat flux, in general. 

The effect of an increase in the radiation parameter N, the 

effect is small for the values of w=1.2, d=0.50, N=10,100.  

 

 

Table 1: Position of the inner boundary surface  for the various 

values γ=1.4, α= -2, M=5, 
2

A
M 2 0 , d=0.25,  

0.50, w=1, 1.2 and N=10, 100. 

 
w d N   

1 0.25 

 

0.50 

10 

100 

10 

100 

0.984685 

0.984140 

0.985595 

0.985485 

1.2 0.25 

 

0.50 

10 

100 

10 

100 

0.984747 

0.984673 

0.986012 

0.985997 
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Fig. 1 (a), (b), (c), (d), (e) : Variation of reduced velocity, 

density, magnetic field, pressure and radiation heat flux  
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