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Abstract: Radars are primarily used to detect and identify 

moving objects, so the multi-axis drive system is one of the 

most important parts that directly affect the quality and 

versatility of the radar station. In the problem of control of 

the two axes of the radar station, we always need to 

consider many things at the same time such as variable 

dynamic parameters, the movement of one axis affected by 

the other, the requirement for accurate traction, the need 

for wave interference. An adaptive robust control designed 

to satify the quality requirement, with flexible structure 

which reduces the amount of computation is proposed in 

this paper. 

Keywords:  Radar, MIMO, Adaptive Control, Robust 

Control, Adaptive Robust Control. 

I. INTRODUCTION 

The development of microelectrics and computer 

science has created new avenues for the development 

of radar. The latest radars in the world have advanced 

features, remote detection distance, high target 

resolution, compact device, automated signal 

processing which is very convenient for the users. 

Radars are primarily used to detect and identify 

moving objects, so the multi-axis drive system is one 

of the most important parts that directly affect the 

quality and versatility of the radar station. 

II. AUTOMATIC TARGET TRACKING SYSTEM 

BASED ON CONICAL SCANNING METHOD 

LAYOUT 

Conical scanning method is commonly used in 

automatic target tracking according to the radar angles.  

 

Fig. 1. Radar Waves 

In these radars, the same antenna is usually used as the 

receiver and transmitter with high orientation 

characteristics, the pencil-shaped waveform (Fig. 1). 

Rotate the wave around the OO’ axis (signal 

equilibrium axis) with the angular velocity a (Fig. 2). 

The maximum deviated wave and the signal 

equilibrium axis make the angle  . The signal 

equilibrium axis and the target-directed wave make an 

angle  . 

 

Fig. 2. Signal Modulation Principle 

The trajectory of the waves is a cone in space, with the 

peak at the antenna. In this case, the target amplitude 

modulation principle will bring the information about 

the bias of the azimuth angle ( ) and the altitude 

angle ( ) made by the target-directed wave and the 

signal equilibrium axis OO’. In the direction of the 

signal equilibrium axis, the intensity of the radiation 

and the signal received when the wave is rotated are 

constant, so the signal modulation is not applied. 

III. MATHEMATICAL DESCRIPTION OF THE 

TWO AXES OF THE RADAR STATION 

3.1. Characteristics of Movement of the Two Axes of 

the Radar Station: 

The two-axis motion requirements of the radar station 

are divided as the followings: 

Azimuth axis: Rotational movement. 

Altitude angle axis: movement according to the 

sinusoidal law in the limited surface 

Limited angle β=90
0
; The actual angular displacement 

of the altitude angle axis is 90
0
≤ α ≤180

0
 

 

Fig. 3. Two-Axis Motion Requirement 
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3.2. Dynamic Modelling Sequencedenavit- Hartenberg: 

The objects here are the two axes of the radar, one axis 

rotates along the azimuthal axis, the other rotates along 

the altitude angle. We can choose the coordinate 

system on each axis as follows: 
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Fig. 4.  Radar the Coordinate Mounted on Two Axes 

3.3. Dynamics of the Two Axes of the Radar Lagrange 

Equation: 

The two-axis dynamic equation was established from 

the Lagrange equation: 

d L L
- =τ                                           (1)

dt q q
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In which: L is Lagrange function 

2

i
i=1

K= K is the sum of kinetic energy,  

iK is the kinetic energy of the bar i. 

2

i
i=1

P= P is the sum of potential energy,  

iP is potential energy of the bar i 

Combine (1) with (2) we get: 
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Equivalent form of equation                        

 

            

  (4) 

In which i = 1, 2. 

3.4. General Dynamics Equation: 

General dynamics equation of the two axes of the radar 

as follows: 

     τ=M q q V q,q G q  
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In which:   2x2M θ R is symmetrical positive matrix, 
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IV. MAKE THE CONTROL LAW FOR THE TWO 

AXES OF THE RADAR 

4.1. Requirements for Controlling the Radar: 

The radar work mode consists of two modes: 

reconnaissance (realignment) and target tracking (when 

targeting). There are the following requirements for 

controlling the two axes of the radar: Accurate traction 

requirement: allowable error less than 1%. Wave 

interference: internal interference (caused by the 

system itself), external interference (caused by wind, 

air resistance…) 

4.2. Analysis of Controlling Requirement: 

From the dynamic equation of the radar (5) we will 

analyze this transfer function to indicate the 

uncertainty of the control object. 
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 qq,V   :  Reciprocal Component 
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Here we can minimize the dynamic equation as follows:
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     τ=M q q +V q,q +G q                         (6) 

 

Providing the interference effect, the dynamic equation 

is rewritten as follows. 

     τ=M q q V q,q G q          (7)dF   

 

4.3. Synthesis of the tzwo-Axis Control for the Radar 

According to the Adaptive Robust Control: 

The dynamic equation of the control object 

τ = M q q + Vm q, q  q + G q + Fd q + Fs q       (8) 

In which: 

Fd: the matrix of the positive defining diagonal line 

n×n, describe dynamic friction 

Fs: vector n ×1  static friction constant 

The adaptive robust control uses the same algorithm as 

the robust control, in which the supplementary control 

is used to block indefinite parameter limits. This robust 

control uses the scalar functions as the combination of 

the error standard and the positive limit constant. For 

example, the system has a dynamic model given by: 

w = M q  q + e  + Vm q, q   q + e + G q  

+Fd q + Fs q                                                               (9) 

The above dynamic equation is uncertain of load, 

friction coefficient and external interference. It can be 

concluded that although the positive-ratio function ρ 

can be used for uncertainty of the limit, the positive 

uncertainty is as follows: 

ρ ≥  w                  (10) 

We can limit the physical properties of the system by 

using equation (10): 

 ρ = δ0 + δ1 e + δ2 e 2 ≥  w                               (11)  

In which e =  
e
e 
 ; δ0, δ1 , δ2  are the positive bound 

constants calculated on the basis of maximum values of 

load, bar weight, friction coefficient, interference, … 

The robust control requires the envelope of the 

constant defined in (11) to have a predetermined form. 

The adaptive robust control developed here will learn 

limited constants online when the mechanism moves. 

While conducting the control, we do not need to know 

exactly the limited constants. We only  require that the 

limited constants exist according to (11). 

The adaptive robust control is as follows:  

τ = Kv r + vR                                                             (12)  

In which: 

Kv : Diagonal Matrix, Positive  n × n 

r : Trajectory Error 

VR : Vector (n ×1) Supplementary Control 

Supplementary control vR  is defined by: 

 vR =
rp 2

ρ  r +ε 
                 (13) 

In which ε = −kεε, ε 0 > 0 

kε: a positive ratio control parameter  

p : is a proportional function defined by 

ρ = δ 0 + δ 1 e + δ 2 e 2                   (14) 

and dynamic estimates of the restricted kinetic 

parameters defined in (15). These limited estimates 

marked by “^” are updated online based on a new 

updated adaptive law, written in (14) as follows: 

ρ = Sθ                                                                        (15) 

In which:  

S =  1   e  e 2  và  θ =  δ 0δ 1δ 2 
T
               (16) 

The limit function ρ given by (3-42) can be written in 

matrix form 

ρ = Sθ                                                                       (17) 

In which θ =  δ0δ1δ2 
T  

There is a similarity between the formula of the 

regression matrix in the adaptive control method and 

the formula given by (17). In particular, the matrix S 

(1x3)  made by “the regression matrix” and vector θ  
create a parametric estimation vector. 
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The limited estimates defined in (17) are updated 

online by the relation: 

d

dt
θ = γST r                                                             (18) 

In which: 

r : trajectory error with r = e + e  

γ: a positive control constant 

Because δ0 , δ1 , δ2  are constants,( 13) can be rewritten 

as: 

d

dt
θ = −γST r  ;θ = θ − θ                  (19)  

Paying attention to the stability analysis of the bias 

system for the control.  

M q r = −Vm q, q  r − Kv r + w − vR              (20)          

In which w is defined by (9) 

We again analyze the stability of the system error 

given by (20) with the Lyapunov function: 

V =
1

2
rT M q r +

1

2
θ 

T
γ−1θ + kε

−1                               (21)                         

Derived from time, we have 

V =
1

2
 rTM  q r + rTM q r  + θ 

T
γ−1 d

dt
θ )+kε

−1
ε  

From (19) and (20) we have 

V = −rTKv r −
1

2
Sθ  r +

1

2
rT w − vR + kε

−1
ε +

                    
1

2
rT  M  q + Vm q, q   r                           (22) 

Because (M  q + Vm q, q  ) is a associated matrix so  
1

2
rT  M  q + Vm q, q   r = 0.   

From (10, 17, 22) 

V ≤ −rTKv r −
1

2
Sθ  r +

1

2
Sθ r −

1

2
rTvR + kε

−1
ε (23) 

Replace (13), (14), (15), (19) into (23), we have: 

V ≤ −rTKv r − ε + Sθ  r −
rT r(Sθ )2

Sθ  r +ε
              (24) 

V ≤ −rTKv r − ε + Sθ  r −
 r 2(Sθ )2

Sθ  r +ε
            (25) 

V ≤ −rTKv r − ε +
εSθ  r 

Sθ  r +ε
               (26) 

Because the sum of the last two terms of (26) is always 

less than 0, we can set the new limit of  V .        

V ≤ −rTKv r                   (27) 

Consider the sustainability of the trajectory error : First, 

notice from (27), we can change the new upper limit of 

V : 

V ≤ −λmin  Kv  r 2                   (28) 

We see all the limited signals r ∈ L2
n . So we can use 

r = e + e   to show that the position error (e) is related 

with the trajectory error filter r by the transfer function: 

e s = G s r(s)                       (29) 

From the above results, we can see that the position 

error e is the asymptotically stable state. This 

corresponds to the extension rule described in this 

section, we can only set the speed error e and estimate 

the limit θ in the area. 

In general, the torque control is designed as follows: 

τ = Kv r + vR = Kv r +
rp 2

ρ  r +ε 
              (30) 

In which: 

Kv r: component of sustainability 

rp 2

ρ  r +ε 
: (the supplementary control), is the adaptive 

component. The estimated value of p  is designed as 

follows : 

ρ = Sθ =  1   
e
e 
    

e
e 
  

2

  δ 0δ 1δ 2 
T
 

r = e + e  và ε = −kεε 

The updated law estimates the limit of the parameters 

θ =  δ0δ1δ2 
T ;

d

dt
θ = γST r  

The position error e is in the asymptotically stable state. 

Limit estimate θ  and velocity error are limited. The 

adaptive robust control with compensation of wave 

interference but without change. 

 

Fig. 5. The Adaptive Robust Control Block 

V. DEMONSTRATION OF CONTROL SYSTEM 

5.1. Building Two-Axis Model of he Radar Station 

Using Simmechanics: 

To consider the effect of external interference on the 

model we need to add the external interference model 

to the two-axis model of the radar. The external 

interferences in this case are static friction and dynamic 
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friction. Supposed that the external interference has the 

dynamic model: 

( ) ( )d i s i i iF q F q q sign q       

 δ0δ1δ2 
T =  8 9 10 T  

 

 

Fig. 6. Two-Axis Model of the Radar when 

Considering the Effect of Friction on Joints 

5.2. System Simulation with the Adaptive Robust 

Control: 

 

Fig. 7. Dynamic Trajectory when there is Friction 

 

Fig. 8. Responses to Displacement, Velocity Deviation, 

Bounding Estimates in the Presence of Friction 

Comment on the response of the system: 

Position Error: 

The azimuth axis : Position error  ≤ 0,0002(Rad). 

The altitude angle axis : Position error  ≤ 0,004(Rad) 

Velocity Error: 

The azimuth axis : Position error ≤ 0,002 (Rad/s) 

The altitude angle axis : Position error ≤ 0,00085 

(Rad/s) 

Bounding estimates: fast convergence, in which the 

change in the delta 0 bounding estimates is greatest at 

0,25. 

VI. CONCLUSIONS 

With the adaptive robust control algorithm applied for 

the two axes of the radar, it is found that the position 

error and velocity error are not stable, the limit 

estimate is within limited area. In all cases, the position 

error and velocity error are always around the zero 

point. This indicates that the position error is 

asymptotically stable when all other signals remain 

within limited area. 
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