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ABSTRACT
The invasion of the healthy urinary system is restricted to a group of microorganisms known as “uropathogens”. 80-90% of all 
urinary tract infections (UTI) are caused by uropathogenic E. coli. The development of UTI depends on several virulence factors 
of the infecting organisms. This work shows the most relevant aspects in relation to the strategies responsible for the survival of 
uropathogenic E. coli in various environments in the host.
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INTRODUCTION

UTI are an infectious condition α potentially severe compli-
cations (Mohajeri et al., 2014). The invasion of the healthy 
urinary system is restricted to a group of microorganisms 
known as “uropathogens” (Flores-Mireles et al., 2015). Vari-
ous types of bacteria can cause UTI. For 80-90% of all UTI 
are caused by uropathogenic E. Coli (UPEC) (Mohajeri et 
al., 2014). It has been reported that the UTI are produced by 
ethnic microorganisms of the fecal microbiota, which have 
reached there by drag or poor hygiene, or they can also be 
produced by microorganisms that are introduced into the uri-
nary tract by manipulation (Minardi et al., 2011). In gen-
eral, the development of UTI depends on anatomical factors, 
the integrity of host defense mechanisms, and the virulence 
of the infecting organisms (Magistro and Stief, 2019). This 
work shows the virulence factors of greater importance pre-
sent in UPEC. 

The virulence factors of uropathogenic E. coli
UPECcolonizes the bladder using a variety of virulence fac-
tors that play a critical role in the urinary tract pathogenesis. 
It can survive in the urinary tract and cause disease due to a 

diverse range of virulence factorsbelow described (Karamet 
al., 2018; Terlizzi et al., 2017). 

The polysaccharide capsule
The capsule (capsular antigen or K antigen) is a homogene-
ous layer of polysaccharides that provides protection against 
antiphagocytic effects and the serum resistance (Sarkar et 
al., 2014). The capsule increase the virulence (Phanphak et 
al., 2019).The capsule of E. coliis highly variable, with more 
than 80 different types described (Goh et al., 2017). The cap-
sules of group 2 are expressed by UPEC strains and are com-
posed of different K antigens (K1, K2, K5, K100) (Gohet 
al., 2017). The K1 and K2 capsules provide protection to 
killing mediated by complement (Sarkar et al., 2014). It has 
been reported that K1 capsule is required for the develop-
ment of intracellular bacterial communities contributing to 
host immune evasion (Anderson et al., 2010). K1 capsule is 
also associated with strains that cause UTI, bacteriemia and 
meningitis (Goh et al., 2017). 

The toxins of uropathogenic E. coli
The lipopolysaccharide (LPS) of UPEC plays an important 
role mediating the resistance to the bactericidal activity of 
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human serum (Sarkar et al., 2014). The O antigen types such 
as O1, O2, O4, O6, O7, O8, O16, O18, O25, O75, are the 
most common among UPEC strains. The glycosyl trans-
ferase enzymes seem to be responsible for the observed 
variations (Totsikaet al., 2012).It has been reported that LPS 
promotes the synthesis of cytosines (IL-1, TNFα) enhanc-
ing the inflammatory response; it induces also the synthesis 
of specific antibodies to the O antigen (Sarkar et al., 2014; 
Totsika et al., 2012). The α-haemolysin (HlyA) is a lipopro-
tein and it is the most important virulence factor exported 
from UPEC. The production of toxins by colonizing E. coli 
may cause an inflammatory response, a possible pathway for 
urinary tract infection symptoms. The α-haemolysin is as-
sociated with upper UTI such as pyelonephritis (Dhakalet 
al., 2012). It is a family of toxins forming pores, which in-
duces cell lysis producing the release of nutrients and other 
growth factors. At high concentrations, the α-haemolysin is 
able to lyse erythrocytes and nucleated host cells, which fa-
vors that UPEC crosses mucosal barriers, damage effect or 
immune cells, and gain enhanced access to host nutrients and 
iron stores. At low concentrations, α-haemolysin can induce 
eryptosis and the apoptosis of target host cells, including 
neutrophils, T lymphocytes, and renal cells, and promote the 
exfoliation of bladder epithelial cells. It has also been de-
scribed that the α-haemolysin of E. coli triggers proteolysis 
of host proteins to disrupt cell adhesion, inflammatory and 
survival pathways (Carrizo-Velásquez et al., 2015;Dhakal 
and Mulvey, 2012; Ristow and Welch, 2016).The secreted 
autotransporter toxin (Sat) is a virulence factor of pyelone-
phritis E. coli strains, which has a toxic activity against cell 
lines of bladder or kidney; it may be important for patho-
genesis of urinary tract infections. Sat has been found pre-
dominantly in UPEC (Maroncle et al., 2006). It has been 
described that Sat induces morphological alterations in the 
actin cytoskeleton in bladder cells, rounding them and in 
the kidney elongating them; it also produces the folding of 
the membrane of the cells (Moal et al., 2011). Sat causes 
vacuolization and glomerular damage; it is a vacuolating 
cytotoxin for bladder and kidney epithelial cells.The vacu-
olatin gautotransporter toxin (Vat) contributes to UPEC fit-
ness during systemic infection. Vat-specific antibodies were 
detected in plasma samples from urosepsis patients infected 
by  vat-containing UPEC strains, demonstrating that Vat is 
expressed during infection. It has been reported also that Vat 
has cytotoxic effects similar to those caused by the VacA 
toxin of Helicobacter pylori and induces the formation of in-
tracellular vacuoles. The vat gene has been shown to be most 
prevalent in E. coli strains from the B2 phylogenetic group, 
with similar distributions observed among cystitis, pyelone-
phritis, prostatitis, and bloodstream isolates (Nichols et al., 
(2016). The cytotoxic necrotizing factor-1 (CNF1) is a 115-
kDa toxin that is expressed by 40% of UPEC strains. CNF1 
constitutively activates small Rho-family GTPases contrib-
uting to urothelial cell invasión and it has citotoxic effects on 

urotehlium (Michaud et al., 2017). In vitro, changes include 
cell multinucleation, actin cytoskeletal rearrangement, apop-
tosis of urothelial cells, formation of lamellipodia and filo-
podia, decreased polymorphonuclear phagocytic capacity, 
activation of nuclear factor-B (NF-B)(Garcia et al., 2013). 
The cytolethal distending toxin (CDT) was discovered in an 
E. coli strain isolated from diarrheal patient in 1987. In more 
recent years, the E. coli producing CDT has been isolated 
from patients with gastrointestinal or UTI and sepsis. Appar-
ently, healthy cattle and swine could be the reservoir of CDT, 
and they could be a potential source of human infections. 
When tested in HeLa cells, CDT produced giant mononucle-
ated cells caused by an irreversible block in the cell cycle at 
the G2/M stage (Hinenoya et al., 2014). 

Adhesins
The ability to adhere to host epithelial cells in the urinary 
tract represents the most important factor of pathogenicity 
in UTI. Among the adhesins reported, P-pili have thought to 
be a major virulence factor in UPEC (Terlizzi et al., 2017).
The pathogenic strains of E. coli express adherence factors 
which form pili or fimbriae of different types for their at-
tachment in the sites where they usually do not live. These 
structural virulence factors include P fimbriae and type 1 
fimbriae. The fimbrial adhesins such as PapG and CsgA are 
virulence factors that facilitate the attachment of E. coli (Lu-
na-Pineda et al., 2018). UPEC can impair host immune sys-
tem by a variety of ways: the toxins and iron acquisition sys-
tems causing an inflammatory response and with it the UTI 
symptoms (Olson and Hunstad, 2016). P fimbria is the most 
studied adhesin and the main virulence factor of strains that 
cause pyelonephritis and urosepsis. At the distal tip of pili 
P a specific adhesin protein, called PapG, which mediates 
bacterial adhesion to host cells is located. There are three 
types of PapG adhesion: PapG I, II, and III and they recog-
nize globotriasylceramide variants on the surface of target 
cells. PapG I and PapG II adhesins bind preferentially to 
globotriaosylceramide(Gb3) and globoside (GbO4) (abun-
dant in human uroepithelial cells). UPEC strains containing 
PapG I and PapG II adhesins have been associated with pye-
lonephritis and bacteremia. The PapGIII adhesins bind to the 
Forssman antigen or GbO5(Lane and Mobley, 2007). GbO5 
is a heterophilic glycolipid with structural similarity to the 
antigen of blood group A. Mouse and dog were also classi-
fied as Forssman-positive, and human and other anthropoid 
apes as Forssman-negative. The Forssman antigen was also 
found in species other than mammals. For example, chicken, 
turtles, and carp express the antigen, whereas goose, pigeon, 
and frog lack the antigen (Yamamoto et al., 2012).

Biofilm
Biofilms are complex ecosystems of microorganisms and 
their extracellular products adhered on a biotic or abiotic 
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surface, which are made up of approximately 15% cells and 
85% extracellular matrix. It is believed that the extracellular 
matrix has a fundamentally protective mission, some com-
ponents can sometimes serve as food for resident organisms 
and it confers resistance against disinfectants and antibiotics 
(Costerton et al., 1999; Flores-Encarnación et al., 2014). It 
has been observed that UPEC strains have the ability to in-
vade the cells of the bladder and biofilm formation protect 
them to action of antibiotics. The ability to form biofilm by 
UPEC is mediated by pili type 1, which binds to mannose 
receptors in the bladder epithelial cells, favoring the bacte-
rial adhesion and invasion (Lewis et al., 2016). Once inside 
the bladder cells, UPEC multiplies and forms morphologi-
cally distinct colonies called intracellular bacterial commu-
nities, which provide a safe haven against effectors of host 
immunity. These communities are collections of rod-shaped 
bacteria, that then mature into coccoid organisms with a dif-
ferent architecture and a non-replicative state or latent state 
(quiescent state). Later, they eventually adopt a filamentous 
phenotype separating themselves from the community and 
reestablishing infection in epithelial cells and eventually 
starting a new cycle of intracellular bacterial communities 
(Blango and Mulvey, 2010). 

Iron-acquisition systems
UPEC strains possess iron-acquisition systems (Terlizzi et 
al., 2017). As is known, iron is an essential factor for many 
cellular processes, both in eukaryotic and prokaryotic cells. 
It has been reported that the UPEC have developed multiple 
strategies to scavengiron from the host (Correnti and Strong, 
2012). The role of iron as a critical nutrient in pathogenic 
bacteria is widely regarded as having driven selection for 
iron acquisition systems among UPEC isolates. The iron ac-
quisition systems use siderophores to scavengiron from the 
environment. Bacteria capture iron bound to siderophores 
through receptors that facilitate the transport of iron-sidero-
phore complexes through the bacterial membrane and into 
the cytosol where iron is released. The advantage that gives 
the bacteria is to colonize and survive in environments where 
the concentration of iron is very low, as is the case of the 
urinary tract (Robinson et al., 2018). To combat this, the 
host has developed mechanisms defense in the form of iron 
chelating proteins, such as transferrin. This protein is highly 
conserved among mammals, birds, fish and amphibians and 
it has a strong affinity for iron (Recalcati et al., 2010). 

CONCLUSION 

The UPEC is a bacterium of great interest in the world due 
to its participation in UTI processes. UTI are a serious public 
health problem, so that knowledge of the virulence factors 
of UPEC allow better understanding of the pathogenesis of 
bacterium. 
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