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Abstract

Here we study l-fuzzy languages recognized by finite monoids. We show that the class
of monoid recognizable l-fuzzy languages is closed under scalar products, quotients, inverse
homomorphic images and c-cuts. We introduce the notion of variety of monoid recognizable
l-fuzzy languages. Also we obtain an Eilenberg type variety theorem for l-fuzzy languages.
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1 Introduction

Fuzzy sets were introduced by Zadeh in [7]. The theory of fuzzy language was developed as a
generalization of the classical notion of (crisp)languages. The concept of fuzzy automaton was
introduced by Wee in 1967. More on recent developments in the theory of automata and fuzzy
languages was given in [3]. Petkovic [4] introduced the concept of regular (recognizable) fuzzy lan-
guages as generalization of regular languages. In [4], he introduced the notion of syntactic monoid
of a fuzzy languages and proved that the syntactic monoid of a recognizable fuzzy language is finite.
Also he proved that the class of all recognizable fuzzy languages is a variety and there is a one-one
correspondence between the variety of all recognizable fuzzy languages and the pseudovariety of
finite monoids. We generalized the notion of monoid recognizability and syntactic monoid etc to
the class of l-fuzzy languages in [1].
In this paper we introduce the notion of variety of monoid recognizable l-fuzzy languages. We
prove that there exists a mutually inverse lattice isomorphism between the lattices of all varieties
of l-fuzzy languages and all varieties of crisp languages. Using this results and Eilenberg variety
theorem we establish a one to one correspondence between the lattices of all varieties of l-fuzzy
languages and all varieties of finite monoids.

2 Preliminaries

In this section we recall the basic definitions, results and notations that will be used in the sequel.
All undefined terms are as in [2, 3, 5, 6]. A lattice is a partially ordered set in which every subset
consisting of two element has a least upper bound and a greatest lower bound. A lattice l is said
to be distributive if elements of l satisfies distributive properties.

i) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).
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ii) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

A lattice l is said to be bounded if it has a greatest element 1 and a least element 0. Let l be a
bounded lattice and let a ∈ l. An element b ∈ l is called complement of a if a∨ b = 1 and a∧ b = 0.
A lattice l is called complemented if it is bounded and if every element in l has a complement. A
lattice l is called a complete lattice if every nonempty subset of l has greatest lower bound and
least upper bound in l.

A nonempty set M with an associative binary operation is called a semigroup. Semigroups
that have an identity element are called monoids.

Let A be a nonempty finite set, called an alphabet. Elements of A are called letters. A finite
sequence of letters of A is called a word. The length of the word w is the number of letters of A
occurring in w. A word of length zero is called empty word and is denoted by ε. A+ denotes the
set of all nonempty words over an alphabet A and A∗ = A+ ∪{ε} is a monoid under the operation
concatenation, called free monoid over A. A subset of A∗ is called the language L over an alphabet
A.

A ∗-variety of languages is a class of recognizable languages A∗V such that

i) For every alphabet A, A∗V is a Boolean algebra.

ii) If ϕ : A∗ → B∗ is a homomorphism and if L ∈ B∗V , then Lϕ−1 ∈ A∗V .

iii) If L ∈ A∗V and a ∈ A, then both a−1L = {u ∈ A∗ | au ∈ L} and La−1 = {u ∈ A∗ | ua ∈ L}
are in A∗V .

Let l be a complete complemented distributive lattice. Any function λ from A∗ into l is called
a l-fuzzy language over the alphabet A.

The complement λ of a l-fuzzy language λ is defined as

λ(u) = λ(u)

where λ(u) denotes the complement of λ(u) in l.

For l-fuzzy languages λ1, λ2 over A, their join (∨) and meet(∧) are defined by

(λ1 ∨ λ2)(u) = λ1(u) ∨ λ2(u)

and

(λ1 ∧ λ2)(u) = λ1(u) ∧ λ2(u).

Definition 2.1 (cf.[1], Definition 3.2). Let λ be a l-fuzzy language over an alphabet A. Then λ is
recognizable if there exist a finite monoid M , a homomorphism φ : A∗ → M and a l-fuzzy subset
π : M → l such that λ = πφ−1 where πφ−1(u) = π(φ(u)), u ∈ A∗.

The class of all recognizable l-fuzzy languages over A is denoted by lF (A∗).

Theorem 2.2 (cf. [1], Theorem 3.4). Let λ, λ1, λ2 be recognizable l-fuzzy languages over an
alphabet A. Then we have the following

(i) λ1 ∨ λ2 is recognizable.

(ii) λ1 ∧ λ2 is recognizable.

(iii) λ is recognizable.
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3 Quotient, Scalar product, c-cut and Inverse
homomorphic image of l-fuzzy languages

Let λ1, λ2 be l-fuzzy languages over A. Then their left and right quotients are defined by

(λ−11 λ2)(u) =
∨
v∈A∗

(λ2(vu) ∧ λ1(v)), u ∈ A∗.

and
(λ2λ

−1
1 )(u) =

∨
v∈A∗

(λ2(uv) ∧ λ1(v)), u ∈ A∗.

Let c ∈ l, then the scalar product c ·λ of the l-fuzzy language λ is defined as (c ·λ)(u) = c∧λ(u).
The following theorem shows that the scalar product and left, right quotients of recognizable

l-fuzzy languages are recognizable.

Theorem 3.1. Let λ, λ1, λ2 ∈ lF (A∗), c ∈ l. Then

(i) c · λ ∈ lF (A∗).

(ii) λ−11 λ2, λ2λ
−1
1 ∈ lF (A∗).

Proof. (i) Since λ is recognizable, there exist a finite monoid M , an onto homomorphism φ : A∗ →
M and a l-fuzzy subset π on M such that λ = πφ−1 where λ(u) = (πφ−1)(u) = π(φ(u)). Define a
map π1 : M → l by

π1(m) = c ∧ π(m).

Then π1 is well defined. Also we have

(π1φ
−1)(u) = π1(φ(u)) = c ∧ π(φ(u))

= c ∧ λ(u) = (c · λ)(u),

for all u ∈ A∗. Therefore π1φ
−1 = c · λ. Hence c · λ is recognized by M .

(ii) Since λ2 is recognizable, there exist a finite monoid M2, an onto homomorphism φ2 : A∗ →M2

and a l-fuzzy subset π2 on M2 such that λ2 = π2φ
−1
2 where λ2(u) = (π2φ

−1
2 )(u) = π2(φ2(u)).

Define a map π : M2 → l by

π(m) =
∧
v∈A∗

(π2(φ2(vu)) ∧ λ1(v)),

where m = φ2(u). Then we have,

(πφ−12 )(u) = π(φ2(u))

=
∧
v∈A∗

(π2(φ2(vu)) ∧ λ1(v))

=
∧
v∈A∗

(λ2(vu)) ∧ λ1(v)) = λ−11 λ2(u),

for all u ∈ A∗. Hence λ−11 λ2 = πφ−12 . Therefore M2 recognizes λ−11 λ2.
Similarly λ2λ

−1
1 is recognized by M2.

Let A and B be finite alphabets and φ : A∗ → B∗ be a homomorphism. Let λ be a l-fuzzy
language over B. The inverse of λ under φ is a l-fuzzy language λφ−1 over A defined by

(λφ−1)(u) = λ(φ(u)), u ∈ A∗.

The following theorem shows that the inverse homomorphic image of recognizable l-fuzzy lan-
guage is recognizable.
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Theorem 3.2. Let A,B be finite alphabets and let φ : A∗ → B∗ be a homomorphism. If λ ∈
lF (B∗), then (λφ−1) ∈ lF (A∗).

Proof. Since λ ∈ lF (B∗), there exist a monoid M , a homomorphism γ : B∗ → M and a l-fuzzy
subset π of M such that λ = πγ−1 where λ(w) = (πγ−1)(w) = π(γ(w)), where w ∈ B∗. Define a
map β : A∗ →M by

β(u) = γ(φ(u)), where u ∈ A∗.

Since φ and γ are well defined, β is also well defined. For u, v ∈ A∗, we have

β(uv) = γ(φ(uv)) = γ(φ(u)φ(v))
= γ(φ(u))γ(φ(v)) = β(u)β(v).

So β is a homomorphism. Thus

(πβ−1)(u) = π(β(u)) = π(γ(φ(u)))
= λ(φ(u)) = (λφ−1)(u),

for all u ∈ A∗. So (λφ−1) = πβ−1. Hence λφ−1 is recognized by M .

Let λ be a l-fuzzy language over A. The c-cut of λ is the crisp language λc defined by λc =
{u ∈ A∗ | λ(u) ≥ c}.

The membership function can be recovered from the level cut as λ(u) = sup{c | u ∈ λc}. Then

λ =
∨
c∈l

(c · χλc).

4 Syntactic Congruence

Let λ be a l-fuzzy language over A. Define a relation (∼λ) on A∗ as follows:

For u, v ∈ A∗, u ∼λ v if and only if λ(puq) = λ(pvq),

for all p, q ∈ A∗. Then the relation ∼λ is a congruence on A∗ called syntactic congruence of λ.
The quotient monoid A∗/ ∼λ= Syn(λ) is called syntactic monoid of λ. We have already proved
the following theorems in [1].

Theorem 4.1. For every monoid M with | M |≤| l |, there exist a l-fuzzy language λ such that
M is the syntactic monoid of λ.

Theorem 4.2. Let λ be a l-fuzzy language over an alphabet A. Then the following statements are
equivalent

(i) λ is recognizable.

(ii) ∼λ has finite index.

The following theorem gives the effect operations of l-fuzzy languages on the syntactic congru-
ence.

Theorem 4.3. Let A and B be finite alphabets, λ, λ1, λ2 be l-fuzzy languages over A, ϕ be a l-fuzzy
language over B, φ : A∗ → B∗ be a homomorphism and c ∈ l . Then the following holds.

(i) ∼λ = ∼λ .

(ii) ∼λ ⊆ ∼c·λ .

(iii) ∼λ1∨λ2
,∼λ1∧λ2

⊇ ∼λ1
∩ ∼λ2

.
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(iv) ∼λ−1
1 λ2

,∼λ2λ
−1
1
⊇ ∼λ2

.

(v) φ◦ ∼ϕ ◦φ−1 ⊆ ∼ϕφ−1 where φ◦ ∼ϕ ◦φ−1 is a congruence on A∗ defined by (u, v) ∈ φ◦ ∼ϕ
◦φ−1 ⇔ (φ(u), φ(v)) ∈∼ϕ .

Proof. (i) For u, v ∈ A∗

(u, v) ∈∼λ ⇔ λ(puq) = λ(pvq), for all p, q ∈ A∗
⇔ λ(puq) = λ(pvq)
⇔ λ(puq) = λ(pvq)
⇔ (u, v) ∈∼λ .

Thus ∼λ = ∼λ.
(ii)Let u, v ∈ A∗

(u, v) ∈∼λ ⇔ λ(puq) = λ(pvq), for all p, q ∈ A∗
⇒ c ∧ λ(puq) = c ∧ λ(pvq)
⇒ (u, v) ∈∼c·λ .

Thus ∼λ ⊆ ∼c·λ. The proof of part (iii), (iv) and (v) are similar to that given for fuzzy languages
[3].

We have the following theorems.

Theorem 4.4. Let λ be a l-fuzzy language over an alphabet A. Then ∼λ=
⋂
c∈l

∼λc .

Proof. Let (u, v) ∈∼λ, then λ(puq) = λ(pvq) for all p, q ∈ A∗. So for all c ∈ l, λ(puq) ≥ c if and

only if λ(pvq) ≥ c. Thus (u, v) ∈∼λc for all c ∈ l. Hence (u, v) ∈
⋂
c∈l

∼λc .

Conversely assume that (u, v) ∈∼λc for all c ∈ l . Then puq ∈ λc if and only if pvq ∈ λc for all
p, q ∈ A∗ and c ∈ l. That is, λ(puq) ≥ c if and only if λ(pvq) ≥ c for all c ∈ l and p, q ∈ A∗.

Thus we get λ(puq) = λ(pvq) for all p, q ∈ A∗. That is, (u, v) ∈∼λ. Hence ∼λ=
⋂
c∈l

∼λc .

Theorem 4.5. A l-fuzzy language λ is recognizable if and only if Im(λ) = {λ(u) | u ∈ A∗} is a
finite subset of l and language λc is recognizable for every c ∈ l.

Proof. Assume that the l-fuzzy language λ is recognizable. Then by Theorem 4.2, ∼λ has finite

index. Also by Theorem 4.4, we have ∼λ=
⋂
c∈l

∼λc . Thus for all c ∈ l,∼λc⊇∼λ. Hence ∼λc has

finite index for all c ∈ l. So λc is recognizable for every c ∈ l.
Since ∼λ has finite index, the congruence classes of ∼λ are finite. We may assume that these

classes are [u1]∼λ , [u2]∼λ , · · · , [un]∼λ . If v, w ∈ [ui]∼λ , for all i = 1, 2, · · · , n, then v ∼λ w. So
λ(v) = λ(w). Thus Im(λ) = {λ(u1), λ(u2), · · · , λ(un)}. Hence Im(λ) is finite.

Conversely assume that λc is recognizable for all c ∈ l and Im(λ) is finite. χλc , the characteristic

function of λc is a l-fuzzy recognizable language and λ =
∨
c∈l

(c ·χλc). Let Im(λ) = {c1, c2, · · · , cn}.

Then

λ =

n∨
i=1

(ci · χλci )

= (c1 · χλc1 ) ∨ (c2 · χλc2 ) ∨ · · · (cn · χλcn ).

Since χλci , i = 1, 2, · · · , n are recognizable, ci ·χλci are recognizable by Theorem 3.1. By Theorem

2.2, their join is recognizable. Thus, λ =
∨n
i=1(ci · χλci ) is recognizable.
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5 Varieties of l-Fuzzy Languages

The notion of variety of l-fuzzy languages is introduced in this section.
A family of recognizable l-fuzzy languages is a variety of l-fuzzy languages, if it is closed under

joins, meets, complements, scalar products, quotients, inverse homomorphic images and cuts.

Theorem 5.1. lF (A∗), the class of all recognizable l-fuzzy languages over A, is a variety of l-fuzzy
languages.

Proof. lF (A∗) is closed under the Boolean operations, quotients, scalar products, inverse homo-
morphic images, and c-cut by Theorems 2.2, 3.1, 3.2 and 4.5. Thus lF (A∗) is a variety of l-fuzzy
languages.

Theorem 5.2. The class {χL | L ∈ Rec(A∗)} is a variety of l-fuzzy languages.

Proof. Take A = {χL | L ∈ Rec(A∗)}. Let χL1 , χL2 ∈ A , then L1, L2 ∈ Rec(A∗). Since Rec(A∗)
is a variety of crisp languages, L1∩L2 and L1∪L2 belongs to Rec(A∗). Hence χL1∩L2

and χL1∪L2

belongs to A . Thus χL1
∧ χL2

and χL1
∨ χL2

belongs to A . Hence A is closed under join and
meet. Let χL ∈ A then L ∈ Rec(A∗). Since L ∈ Rec(A∗), χL ∈ A . But χL = χL. So χL ∈ A .
Thus A is closed under complementation.

If χL1
and χL2

belongs to A then L1, L2 ∈ Rec(A∗). So L2L
−1
1 and L−11 L2 are in Rec(A∗).

Thus χL−1
1 L2

and χL2L
−1
1

belongs to A . But χL−1
1 L2

= χ−1L1
χL2

and χL2L
−1
1

= χL2
χ−1L1

. Hence A

is closed under quotients.
Let φ : A∗ → B∗ be a homomorphism and L ∈ Rec(B∗) then Lφ−1 belongs to RecA∗. Thus

χLφ−1 ∈ A . But χLφ−1 = χLφ
−1. Hence A is closed under inverse homomorphic images.

Let χL ∈ A then the c-cut of χL = {u ∈ A∗ | χL(u) ≥ c}. If c = 1, the c-cut of χL is L. If
c = 0, then the c-cut of χL is A∗. For all other c ∈ l, the c-cut of χL is L. So A is closed under
c-cut.

If χL ∈ A , then c · χL ∈ A . Thus A is closed under scalar products. Hence A is a variety of
l-fuzzy languages.

Since {χL : L ∈ Rec(A∗)} ⊂ lF (A∗), the class {χL : L ∈ Rec(A∗)} is a subvariety of lF (A∗).
Here we define some family of recognizable languages and recognizable l-fuzzy languages.
Let lF and C be varieties of l-fuzzy and crisp languages respectively. lF c be a family of

recognizable languages such that for each alphabet A,

lF c(A∗) = {L ⊆ A∗ | χL ∈ lF (A∗)}

and C f be a family of recognizable l-fuzzy languages such that for each A,
C f (A∗) = {λ ∈ lF (A∗) |λ =

∨n
i=1 li ∧ χLi for some n ∈ N, li ∈ l and Li ∈ C (A∗)}.

Lemma 5.3. lF c(A∗) is a variety of crisp languages.

Proof. Let L1, L2 ∈ lF c(A∗) then χL1
, χL2

∈ lF (A∗). Since lF (A∗) is a variety, χL1
∧ χL2

, χL1
∨

χL2 ∈ lF (A∗). Thus L1 ∩ L2, L1 ∪ L2 ∈ lF c(A∗). Hence lF c(A∗) is closed under union and
intersection. Let L ∈ lF c(A∗) then χL ∈ lF (A∗). So χL = χL ∈ lF (A∗). Thus L ∈ lF c(A∗).
Hence lF c(A∗) is closed under complementation.
Similarly we can prove that lF c(A∗) is closed under quotients and inverse homomorphic image.
Thus lF c(A∗) is a variety of crisp languages.

Lemma 5.4. C f is a variety of l-fuzzy languages.

Proof. For proving the family C f (A∗) is closed under Boolean operations, we first proved the
following identities.

(1) Let L ⊆ A∗ and c ∈ l, c ∧ χL = (c ∧ χL) ∨ χL.
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(2) For L1, L2 ⊆ A∗, and l1, l2 ∈ l, (l1 ∧ χL1
) ∧ (l2 ∧ χL2

) = (l1 ∧ l2) ∧ (χL1∩L2
).

Let λ1 and λ2 belongs to C f (A∗) then λ1 =
∨n
i=1(ai ∧ χLi) for some n ∈ N,

ai ∈ l, Li ∈ C (A∗) and λ2 =
∨n
i=1(bi ∧ χWi

) for some n ∈ N, bi ∈ l,Wi ∈ C (A∗). Then

λ1 ∧ λ2 = (
∨n
i=1(ai ∧ χLi)) ∧ (

∨n
i=1(bi ∧ χWi))

=
∨n
i=1((ai ∧ χLi) ∧ (bi ∧ χWi

)).

Using the identity (2) and the fact that C (A∗) is closed under Boolean operations, we get λ1∧λ2 ∈
C f (A∗).

Let λ ∈ C f (A∗), then λ =
∨n
i=1(li ∧ χLi) for some n ∈ N, li ∈ l, Li ∈ C (A∗).

λ =
∨n
i=1(li ∧ χLi) =

∧n
i=1 li ∧ χLi .

Using the identity (1) and since C (A∗) is a variety, λ ∈ C f (A∗). Also λ1 ∨ λ2 = (λ1 ∧ λ2). So
λ1 ∨ λ2 ∈ C f (A∗). Hence C f (A∗) is closed under Boolean operations.

By the similar arguments given in the proof of fuzzy languages [4], C f (A∗) is closed under
scalar product, c-cut, quotients and inverse homomorphic images. So C f (A∗) is a variety of
l-fuzzy languages.

lF c and C f have the following properties.

Lemma 5.5. Let lF, lF1, lF2 be varieties of l-fuzzy languages and let C ,C1,C2 be varieties of crisp
languages. Then

(i) lF1(A∗) ⊆ lF2(A∗) implies lF c1 (A∗) ⊆ lF c2 (A∗) for every A.

(ii) C1(A∗) ⊆ C2(A∗) implies C f
1 (A∗) ⊆ C f

2 (A∗) for every A.

(iii) lF cf = lF .

(iv) C fc = C .

Proof. (i) Let lF1(A∗) ⊆ lF2(A∗). If L ∈ lF c1 (A∗) then χL ∈ lF1(A∗). So χL ∈ lF2(A∗). Thus
L ∈ lF c2 (A∗). Hence lF c1 (A∗) ⊆ lF c2 (A∗).

(ii) Let C1(A∗) ⊆ C2(A∗) and let λ ∈ C f
1 (A∗) then λ =

∨n
i=1(ci ∧ χLi) for some n ∈ N, ci ∈

l, Li ∈ C1(A∗). So for every A, λ =
∨n
i=1(ci ∧ χLi) for some n ∈ N, ci ∈ l, Li ∈ C2(A∗) and thus

λ ∈ C f
2 (A∗). Hence C f

1 (A∗) ⊆ C f
2 (A∗).

(iii) λ ∈ lF cf (A∗) if and only if λ =
∨n
i=1 ci ∧ χLi for some n ∈ N, ci ∈ l and Li ∈ lF c(A∗). Since

Li ∈ lF c(A∗) for i = 1, 2, · · · , n , we have χLi ∈ lF (A∗) for i = 1, 2, · · · , n. Then
∨n
i=1 ci ∧ χLi ∈

lF (A∗) as lF (A∗) is a variety,. That is, λ ∈ lF (A∗). Thus lF cf = lF .
(iv) By the definition of C fc, we have

L ∈ C fc ⇔ χL ∈ C f (A∗)
⇔ L ∈ C (A∗).

Thus C fc = C .

From the above results, now we obtain a one to one correspondence between the varieties of
l-fuzzy languages and that of crisp languages.

Theorem 5.6. The mappings lF → lF c and C → C f are mutually inverse lattice isomorphisms
between the lattices of all varieties of crisp languages and all varieties of l-fuzzy languages.

Proof. By Lemmas 5.3 and 5.4, lF c is a variety of crisp languages and C f is a variety of l-fuzzy
languages. By Lemma 5.5, if lF1 ⊆ lF2 then lF c1 ⊆ lF c2 and if C1 ⊆ C2 then C f

1 ⊆ C f
2 . Also,

lF cf = lF and C fc = C . Hence the theorem.
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6 Variety Theorem

In this section we obtain an Eilenberg type variety theorem for l-fuzzy languages.
A class V of finite monoids is called a pseudovariety of monoids if it is closed under finite direct

product, morphic images and subobject.
Let C be a variety of crisp languages, M(L) be the syntactic monoid of L then a variety of finite

monoids Cm = {M(L) | L ∈ C (A∗) for some A} is assigned to C . On the other hand, to a variety
of finite monoid M , a variety M c = {L is a recognizable language |M(L) ∈M } of recognizable
language is assigned. By Eilenberg’s theorem the mappings C → Cm and M →M c are mutually
inverse lattice isomorphisms between lattices of all varieties of languages and all varieties of finite
monoids. By this theorem Cmc = C and M cm = M . Here we obtain a mutual isomorphism
between varieties of l-fuzzy languages and varieties of finite monoids.

Let lF be a variety of l-fuzzy languages and

lFm = {Syn (λ) | λ ∈ lF (A∗), for some A}

be a family of finite monoids.

Lemma 6.1. lFm is a variety of monoids.

Proof. By Theorem 4.1, lFm is closed by taking submonoids and homomorphic images. Let M1

and M2 in lFm, then there exist λ1, λ2 in lF such that M1 = Syn(λ1) and M2 = Syn(λ2). By
Theorem 2.2, λ1 ∨λ2 and λ1 ∧λ2 are recognizable by the monoid M1×M2. Also since λ1, λ2 ∈ lF
and lF is a variety of l-fuzzy languages, λ1 ∨λ2 and λ1 ∧λ2 are in lF . Hence M1×M2 ∈ lFm. So
lFm is a variety of finite monoids.

Let M be a variety of finite monoids and for some A

M f = {λ ∈ lF (A∗) | Syn(λ) ∈M }

be a family of l-fuzzy languages.

Lemma 6.2. M f is a variety of l-fuzzy languages.

Proof. Let λ ∈ M f then Syn (λ) ∈ M . By Theorem 4.3, ∼λ=∼λ. So Syn(λ) = Syn(λ). Thus

Syn(λ) ∈ M . Hence λ ∈ M f . Thus M f is closed under complement. Similarly using the
Theorems 4.4 and 4.3, we get that M f is a variety of l-fuzzy languages.

Lemma 6.3. Let lF be a variety of l-fuzzy languages, C be a variety of crisp languages and M
be a variety of finite monoids. Then

(i) lF cm = lFm and C fm = Cm.

(ii) M fc = M c.

(iii) M cf = M f .

(iv) lFmc = lF c.

(v) Cmf = C f .

Proof. (i) Let Syn (λ) ∈ lFm then λ ∈ lF (A∗). Since lF is a variety of l-fuzzy languages, λc ∈
lF (A∗). So λc ∈ lF c for every c ∈ l. By Theorem 4.4, ∼λ=

⋂
c∈l

∼λc . So Syn (λ) is a subdirect

product of Syn(λc) for all c ∈ l. Thus Syn(λ) ∈ lF cm. Hence lFm ⊆ lF cm. We have lF cm ⊆ lFm.
Thus lFm = lF cm. By Lemma 5.5, C = C fc. So Cm = C fcm. But by (i) lF cm = lFm.Thus
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Cm = C fm.
(ii) Let L ⊆ A∗, then

L ∈M fc ⇒ χL ∈M f

⇒ Syn(χL) ∈M

⇒ L ∈M c.

Thus M fc ⊆M c. Also M c ⊆M fc. Hence M fc = M c.
(iii) By Lemma 5.5, lF cf = lF . So M f = M fcf . Also by (ii) M fc = M c. Thus M cf = M f .
(iv) By Lemma 5.5, lF = lF cf . So lFmc = lF cfmc. By (i), Cm = C fm. Thus lFmc = lF cmc. By
Eilenberg’s theorem Cmc = C . Thus lFmc = lF c.
(v) By (iii) M f = M cf . So Cmf = Cmcf . By using Eilenberg’s theorem we get Cmf = C f .

Now we give Eilenberg type variety theorem for l-fuzzy languages.

Theorem 6.4. The mappings lF → lFm and M →M f form two isomorphisms that are inverses
of each other among lattices of all varieties of l-fuzzy languages and all varieties of finite monoids.

Proof. Let lF, lF1, lF2 be varieties of l-fuzzy languages and M ,M1,M2 be varieties of finite
monoids. Let M1 ⊆ M2 and λ ∈ M f

1 (A∗) then Syn (λ) ∈ M1. So Syn (λ) ∈ M2. Thus

λ ∈M f
2 (A∗). Hence M f

1 (A∗) ⊆M f
2 (A∗).

Also let lF1(A∗) ⊆ lF2(A∗) for every A and Syn (λ) ∈ lFm1 (A∗). Then λ ∈ lF1(A∗). So,
λ ∈ lF2(A∗). Thus Syn (λ) ∈ lFm2 . Hence lFm1 (A∗) ⊆ lFm2 (A∗).

By Lemma 6.3, M fc = M c. By Eilenberg’s theorem, we have M = M cm. So M = M fcm.
Also by Lemma 6.3, lF cm = lFm. Thus M = M fm.

By Lemma 5.5, lF = lF cf . By Eilenberg’s theorem, Cmc = C . So lF = lF cmcf . By Lemma
6.3, M cf = M f . Hence lF = lF cmf . Again lF cm = lFm by Lemma 6.3. So we get lF = lFmf .
Thus M = M fm and lF = lFmf . Hence the mappings M → M f and lF → lFm are mutually
inverse lattice isomorphisms between the lattices of all varieties of l-fuzzy languages and all varieties
of finite monoids.
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