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ABSTRACT  

In this paper, we determine the optimal location of the piezoelectric element on the 

upper surface of a plate, interacting with a layer of a quiescent fluid of finite size. As a 

quantity, allowing us to evaluate the operating efficiency of a piezoelectric element in 

damping a single specified mode of structure vibrations, we take the 

electromechanical coupling coefficient. It is calculated based on the values of the 

natural frequencies of the system, obtained for the two characteristic performance 

modes of an electric circuit (open and short circuit modes). The behavior of the 

piezoelectric element is described by the equations of electrodynamics of deformable 

electroelastic media in the framework of the quasi-static approximation. The motion of 

an ideal fluid in the case of small perturbations is considered in the framework of the 

acoustic approximation. Small strains in a thin plate are determined using the 

Reissner – Mindlin theory. The numerical implementation of the problem is carried 

out using the finite element method. The obtained results made it possible to identify 

situations, where the optimal location of the piezoelectric element can be determined 

without considering the effect of the fluid. 
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1. INTRODUCTION  

In the last few decades, piezoelectric materials have found wide use in many practical 

applications in different branches of science and technology. One of the variants of advanced 

engineering applications is their use in controlling the dynamic characteristics of structures, in 

particular, vibration damping. When connected to external passive electric circuits, 

piezoelectric elements attached to the surface of structures comprise devices, which serve to 

dissipate energy. The piezoelectric effect consists in the transformation of part of the 
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mechanical energy of vibrations into the electrical energy, which can dissipate through a 

shunting circuit as heat or electromagnetic radiation, enabling in such a way the mechanism of 

passive control of vibrations. 

The first studies, which consider the possibility of controlling the dynamic characteristics 

of structures by attaching an additional electrical impedance to the piezoelement, dated back 

to the late 70s of the last century [1]. However, the first work where this approach was 

investigated in detail is article [2]. It described the main features of the behavior of structures 

with shunted piezoelements, including the influence of the external circuit on the mechanical 

characteristics of the structure. In addition, work [2] introduced an approach for the selection 

of parameters of external circuits, which was based on the analysis of the transfer function of 

the system. 

In designing modern high-tech structures, which incorporate elements made of 

piezoelectric materials, one of the most important problems, irrespective of the targeted 

applications of piezoelectric elements (vibration control [3], sensors and actuators [4], energy 

harvesting [5], and so on) is the problem of determining their optimal location. To date, 

although there are hundreds of works devoted to its solution [6], the search for the optimal 

location of the piezoelectric element in the structure is still the problem of current concern. 

In the context of the problems of vibration damping with the help of passive electric 

circuits connected to a piezoelement, the determination of the optimal location for a 

piezoelectric element reduces in most cases to a search for a point on the surface of the 

structure, at which one of the three parameters takes a maximum value. Among these are the 

deformation energy [6–8], potential difference on the electrode-covered surface of the 

piezoelectric element [9, 10] or the electromechanical coupling coefficient [11–13]. Analysis 

of the literature [6–13] shows that for numerical simulation, it is most convenient to use an 

approach based on the electromechanical coupling coefficient. This is explained by the fact 

that this coefficient is calculated using the values of natural frequencies of structure vibrations 

obtained for two characteristic modes (open and short circuit modes) [2]. 

In this paper, the optimal coordinates of the placement of a piezoelectric element on the 

surface of a plate interacting with a layer of quiescent fluid are determined from the condition 

for a maximum value of the electromechanical coupling coefficient obtained under the 

specified modes of vibration. The effect of such hydroelastic interaction on the performance 

of the piezoelectric element and its optimal location for different types of plate fastening is 

estimated based on the results of numerical solution of the problem by the finite element 

method. 

2. MATHEMATICAL MODEL 

The variational equation of motion of the body of volume V = Vs + Vp, consisting of an elastic 

plate of volume Vs and an attached piezoelectric element of volume Vp, is formulated on the 

basis of the relations of Reissner – Mindlin theory, linear theory of elasticity and quasi-static 

Maxwell equations [14–17]. The electrodes applied to the top (Stop) and bottom (Sbot) parts of 

the surface of piezoelectric body are assumed to be ideal conductors with negligible mass. 

The final resolving equation in the absence of body forces and free surface charges can be 

written in the matrix form as 

 

 T T T T T T

T T T T
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Here, the subscripts ―p‖ and ―s‖ refer to the corresponding variables of the piezoelectric 

element and the plate. The following notations are accepted: column vectors {} contain the 

components of strain tensors and are defined according to the well-known relations [15, 16]; 

[D] are the elastic constant matrices; [e], [] are the matrices of piezoelectric and dielectric 

coefficients; {E} is the electric field intensity vector; the potentiality condition is fulfilled for 

an electric field 
, , ,{ } { , , }x y z    E , here  is the electric potential; { }pu  is the vector of 

piezoelectric element displacements; { }su  is the generalized displacement vector of the plate, 

which includes rotation angles;  is the material density; { }st  is the surface traction vector 

caused by the interaction with fluid on the part of the plate surface .S  

The bottom electrode-covered surface of the piezoelectric element Sbot is grounded and 

has a zero-value electric potential. The corresponding boundary condition can be written as 

 = 0. On the electrode-free parts of the surface of piezoelectric body there are no free electric 

charges. When an external voltage supply is absent, the other parts of the electrode-covered 

surfaces of the peizoelement are considered free. In this case, the open circuit mode (oc) is 

realized. On the other hand, it can be considered as a zero-value electric potential, in which 

case the short- circuit mode is realized (sc). 

The small amplitude vibrations of an ideal compressible fluid in the region Vf is described 

by the well-known Euler equations, continuity equation and equation of state. The elimination 

of velocity from these equations leads to the Helmholtz equation governing the hydrodynamic 

pressure p, which together with the boundary conditions and the impermeability condition are 

converted into a weak form using the Bubnov – Galerkin method [18]. Finally, we have 

 2

2

1
0,

f

f

V S

p p p dV pwdS
c



 
      
 

   (2) 

where c is the speed of sound in the liquid medium, w is the normal displacement of the plate 

and f  the density of the fluid. 

To take into account the fluid-structure interaction, the traction integral in equation (1) can 

be expressed as  

 
T T{ } { } { } { } ,s s s f

S S

dS pdS

 

   u t u n  (3) 

where { }fn  is the vector of the outward normal to the fluid region. 

In the proposed mathematical model, we assume that sloshing of the free surface of the 

fluid (Sfree) is absent. The corresponding boundary condition is written as p = 0. At the 

interface between the fluid and the rigid wall Sw, the condition 
T{ } { } 0f n v  is fulfilled.  

Let us consider a perturbed motion of the fluid and the plate with the attached 

piezoelectric element defined as 

    ( , ) ( , ), ( , ), ( , ), ( , ) ( )e ,     , , ,i t

p st t t t p t x y z   U x u x x u x x U x x  (4) 

where ( )U x  is the function of coordinates, i     the characteristic parameter,  

corresponds to the circular natural frequency of vibrations and  is the rate of its damping. 

Taking into account the above mentioned form of solution instead (1) and (2) we have (wavy 

line is dropped) 
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As a criterion for evaluating the effectiveness of using the piezoelectric element for 

suppression of a single specified mode of structure vibrations, we use the coefficient of 

electromechanical coupling proposed in [2] and determined by the formula 

 
2 2

oc sc

2

sc

,K
 




 (7) 

where oc and sc are the natural frequencies of vibrations of the system in open circuit and 

short circuit modes corresponding to a given vibration mode. The maximum value of the 

coefficient K determines the best of possible locations of the piezoelectric element. 

In this paper, the coordinates of the location of the piezoelectric element, satisfying the 

specified constraints and providing the maximum value of the parameter K, are found by 

solving the problem of determining the maximum of the objective function  

 ( ) ,pF Kx  (8) 

where { } { , }p p px yx  are the coordinates of the prescribed point of the piezoelectric element, 

uniquely determining its location on the plate surface. The restrictions imposed on the 

parameter { }px  can take the form of equalities and inequalities that specify the admissible 

region of variation. 

3. NUMERICAL FORMULATION 

The application of the finite element method [15, 18, 19] to equations (5), (6) leads to 

generalized eigenvalue problem, which is written in the matrix form as 

  2[ ] [ ] { } 0, K M U  (9) 

where the stiffness matrix [K] and the mass matrix [M] are given as 
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Here, the subscript ―f‖ refers to the corresponding variables of the fluid, [Q] is the fluid-

structure interaction matrix [18], and all zeroes are the matrices, too. Discretization of the 

fluid, electroelastic body and plate computational domains was carried out using the spatial 

20-node brick and 8-node plane rectangular finite elements with quadratic approximation of 

nodal unknowns. The neodymium magnet was modeled as a mass element, which is defined 

at a single node with the specified concentrated mass and rotational inertia. 

Since the eigenvalues of the system of equations (9) are purely real,  = . They are 

calculated using the algorithm, which is based on the implicitly restarted Arnoldi method 

involving the sparse matrix technology for basic operations.  
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A numerical solution of the optimization problem (8) was carried out in several ways. In 

the simplest case, when the position of the piezoelectric element was determined only by a 

single coordinate ({ } { })p pxx , the golden section search algorithm was used. In all other 

cases we employed the first order optimization method, which is based on the computation of 

the derivative of the objective function, and the transformation of the constrained optimization 

problem to the unconstrained one. 

4. RESULTS AND DISCUSSIONS 

In this section, we present the results of determining the optimal location of the piezoelectric 

element, which provides the best damping of a given vibration mode of the plate of length Ls, 

width Ws, and thickness hs, interacting with a fluid. The computational schemes considered in 

this work are presented in Figure 1. In order to apply the obtained results to further studies, 

the numerical simulation was performed using the geometry and characteristics of the real 

experimental setup (see Table 1). For the boundary conditions (BC) we used the following 

notation: F is a free edge, C is a rigidly clamped edge ({us} = {0}). The liquid volume was a 

rectangular prism 200 mm long, 150 mm wide and 195 mm high. In view of the specific 

features of the excitation device, a light neodymium magnet weighting 0.10 g was glued to the 

plate surface at a distance of xmag from the clamped edge of the plate and 3 mm away from its 

long side. In order to reduce the risk of damage of the piezoelectric element during its 

attachment to the plate, it was located at a distance of 2 mm from the clamped end of the 

plate. Thus, a possible location of the piezoelectric element was restricted to a certain region 

on the free surface of the plate, which led to the following conditions for the variable 

parameter: 

 2 ,    for Case 1, 2;p mag p magx x L R     (10) 

 2 2,    0 ,    { , } ,    for Case 3,p s p p s p p px L L y W W x y         (11) 

where Lp, Wp are the length and the width of the piezoelectric element, Rmag is the magnet 

radius, and  is a set, which prevents the piezoelectric element from falling into a 

neighborhood of the magnet  = 3 mm (see the light grey square in Figure 1, Case 3). 

 

Figure 1. The computational schemes of numerical simulation (top view) 

The numerical simulation was made using the following characteristics: for the plate made 

of duraluminium alloy, the Youngs modulus E = 68.5 GPa, Poisson’s ratio  = 0.3, and
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2714s  kg/m
3
; for the liquid (water) c = 1500 m/s, 1000f  kg/m

3
; piezoelectric element 

was made of PZT-19 piezo-ceramics [20].  

Table 1. Geometrical characteristics of plates 

Case Ls , mm Ws , mm hs , mm xmag , mm BC 

1 150 20 0.94 66 CF 

2 150 20 0.94 120 CC 

3 200 100 0.94 130 CC 

4.1. Plates in air environment 

At the first stage of the study, we determined the natural frequencies and the vibration modes 

of the plates in air environment. Some results are presented in Table 2, in which the column 

caption ―sc PZT‖ correspond to the structure with an optimally located piezoelement in the 

short circuit mode. The classification of the vibration modes (B — bending, T — torsional, M 

— membrane) and the number of nodal lines in the transverse and longitudinal directions are 

given in the column headed ―Mode‖. Note that for Case 1 the frequency 5 corresponds to the 

plate vibrations in the plane (membrane mode), so that it cannot be damped with the help of a 

piezoelectric element polarized through thickness. An effective suppression of the torsional 

vibrations of the examined sample is also impossible, because the electromechanical coupling 

coefficient K for this mode is very low (Case 1, 3). 

Table 2. Natural frequencies of plates in air environment (Hz) 

No.  
Case 1, CF Case 2, CC Case 3, CC 

Mode sc PZT K Mode sc PZT K Mode sc PZT K 

1 B (0–0)   41.28 0.126 B (0–0)   238.98 0.105 B (0–0) 127.98 0.073 

2 B (1–0) 230.34 0.101 B (1–0)   587.49 0.100 B (0–1) 206.62 0.051 

3 T (0–1) 554.01 0.008 T (0–1) 1114.47 0.046 B (1–0) 342.18 0.061 

4 B (2–0) 588.58 0.097 B (2–0) 1212.53 0.108 B (1–1) 451.33 0.052 

5 M (0–0) — — B (3–0) 2008.56 0.105 B (0–2) 618.53 0.102 

A piezoelectric element located on the surface of the plate affects its dynamic 

characteristics due to the added mass and local increase in stiffness. In the first case, a 

decrease in the natural frequencies of vibrations is observed, and in the second case, there is 

an increase of the frequency. Which of these two effects prevails is the matter of particular 

structure configuration and kinematic boundary conditions. This can be illustrated by the 

example of a cantilevered plate (see Table 2, Case 1 and Figure 2,a). The location of the 

piezoelectric element near its clamped end significantly increases the rigidity of the system, 

which results in an increase of the frequencies 1–3. As the piezoelectric element is moved 

closer to the free end of the plate, the effect of the added mass becomes dominant, which 

leads to a decrease in the frequency of 4. In the case of a plate clamped at both ends (Case 

2), the frequency spectrum 1–5 increases. 

Figures 2, 3 compare the vibration modes of the plate with and without a piezoelectric 

element (indicated by a thick solid line). The normalized displacements max( )i i iw w w  

shown in Figure 2 were the displacements obtained along the straight line AB (Figure 1). The 

location of the magnet is denoted by a vertical dotted line in Figure 2 and by circle in 
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Figure 3. The results suggest that the bending vibration modes do not show qualitative 

changes. Figure 2 shows that due to the attachment of the piezoelectric element, the amplitude 

of the deflection decreases, and the displacement of nodal lines takes place. The most 

significant changes up to a full transformation are observed in the torsional modes. An 

example is the mixed vibration mode for the plate clamped at both ends, for which the number 

of half-waves along each side in the direction of the Ox-axis is different (Figure 3, Case 2, 

3). 

 

Figure 2. Normalized modes of vibration of the cantilever (a) and clamped-clamped (b) plates with 

(solid lines) and without piezoelectric element (dashed lines) 

Table 3 shows the values of  { , }p p px yx , which determine the optimal location of the 

piezoelectric element, providing maximum damping of the vibration mode i. 

 

Case 1, CF Case 2, CC 

  

  

1: 33.78 Hz / 41.28 Hz 1: 212.76 Hz / 238.98 Hz 

  

  

2: 209.24 Hz / 230.34 Hz 2: 582.07 Hz / 587.49 Hz 

  

  

3: 488.23 Hz / 554.01 Hz 3: 999.06 Hz / 1114.47 Hz 
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4: 592.19 Hz / 588.58 Hz 4: 1136.12 Hz / 1212.53 Hz 

 

Figure 3. Comparison of the vibration modes of the plates with and without piezoelectric element. On 

a spectral scale, colors denote the normalized displacement iw  

Table 3. Optimal positions xp of piezoelement on plates in air environment (mm) 

No.  
Case 1, CF Case 2, CC Case 3, CC 

Mode xp Mode xp Mode xp 

1 B (0–0) {2.0, 0.0} B (0–0) {2.0, 0.0} B (0–0) {168.0, 43.0} 

2 B (1–0) {2.0, 0.0} B (1–0) {87.0, 0.0} B (0–1) {2.0, 0.9} 

3 T (0–1) {12.8, 0.0} T (0–1) {7.1, 0.0} B (1–0) {47.0, 47.5} 

4 B (2–0) {31.1, 0.0} B (2–0) {60.7, 0.0} B (1–1) {43.3, 3.9} 

4.2. Plates located on the free surface of the fluid 

When the plate interacts with the fluid layer from bottom, a decrease in the natural 

frequencies of vibrations, especially in the lowest ones can reach and even exceed 50% 

(compare Table 2 and Table 4). At the same time, there is no qualitative change in the modes 

of vibrations, but their order in the spectrum is disturbed, and there is a small shift in the 

nodal lines. In this regard, it is advisable to evaluate the effect of hydroelastic interaction on 

the optimal location of the piezoelectric element on the surface of a plate located on the fluid 

layer.  

Table 4. Natural frequencies of plates located on the free surface of the fluid (Hz) 

No.  
Case 1, CF Case 2, CC Case 3, CC 

Mode sc PZT K Mode sc PZT K Mode sc PZT K 

1 B (0–0)   22.46 0.126 B (0–0) 125.97 0.105 B (0–0)   31.68 0.073 

2 B (1–0) 128.23 0.100 B (1–0) 342.24 0.099 B (0–1)   82.55 0.048 

3 B (2–0) 355.62 0.096 B (2–0) 703.16 0.107 B (1–0) 108.96 0.060 

4 T (0–1) 395.41 0.002 T (0–1) 686.73 0.064 B (1–1) 194.03 0.052 

As an example, consider the computational schemes shown in Figure 1. A comparison 

between the results presented in Table 3 and Table 5 demonstrates that in Cases 1, 2 the 

optimal values of the parameter xp for the plate in air environment and the plate located on the 

fluid layer either coincide or differ in the limits of relative error equal to 2%. In this case, the 

coefficients of the electromechanical coupling K also differ by no more than 2%. This can 

occur only in the absence of significant qualitative changes in the vibration modes and at the 

location of the piezoelement far from the nodal lines. The case of the torsional mode should 

be considered separately. It has been found that for a cantilevered plate (Case 1) this mode 

cannot be effectively damped, because K is too small, whereas for a plate clamped at two ends 
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(Case 2), this proves to be possible (K = 0.046 in air and K = 0.064 on the layer of fluid). In 

the third case (Case 3), the coordinates of the location of the piezoelectric element differ more 

significantly, but the change in the coefficient of electromechanical coupling is still no more 

than 2%. The exception is the mode B (0–1), which falls under the effect of the fluid near the 

plate edge, so that the value of K is somewhat lower. Note that the accuracy of gluing the 

piezoelectric element by hand is often 0.5 mm, which implies that value of tenths of a 

millimeter obtained in the numerical calculations is simply unfeasible. 

Table 5. Optimal positions xp of piezoelement on plates located on the fluid layer (mm) 

No.  
Case 1, CF Case 2, CC Case 3, CC 

Mode xp Mode xp Mode xp 

1 B (0–0) {2.0, 0.0} B (0–0) {2.0, 0.0} B (0–0) {168.0, 39.7} 

2 B (1–0) {2.0, 0.0} B (1–0) {87.0, 0.0} B (0–1) {2.0, 0.7} 

3 B (2–0) {31.5, 0.0} B (2–0) {60.2, 0.0} B (1–0) {45.7, 40.9} 

4 T (0–1) {29.9, 0.0} T (0–1) {52.9, 0.0} B (1–1) {45.9, 4.7} 

5. CONCLUSION 

A series of numerical calculations conducted during this study allowed us to identify 

situations where the hydroelastic interaction can be ignored in the search for the optimal 

position of the piezoelectric element on the surface of the plate, which is located on the fluid 

layer. Such assumption introduces a minor relative error (about 2%), and significantly reduces 

the computation time. In the proposed mathematical model, the effect of the fluid can be 

neglected, for example, in the case when the mode shape of the plate along the direction of 

one of the axes does not significantly differ from that of the beam. In other cases, the degree 

of the fluid effect on the value of the optimal parameter is determined by the specific features 

of the vibration mode being considered and depends on a number of factors (geometrical 

dimensions, boundary conditions, etc.). Nowadays, piezoelectric elements attached to the 

surface of various structures are generally used for passive and active suppression of 

hydroelastic vibrations. Therefore, consideration of the fluid effect is a necessity dictated by 

the fact it significantly reduces the spectrum of natural frequencies. 

The study was supported by the grant of the Russian Scientific Foundation (project No. 

18-71-10054). 
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